Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Meta-Analysis

Clinical Applicability of Autologous Chondrocyte Implantation for the Treatment of Osteochondral Defects: A Meta-analysis

Author(s): Faisal I. Almohaileb and Zafar Rasheed*

Volume 20, Issue 3, 2024

Published on: 07 November, 2023

Page: [317 - 331] Pages: 15

DOI: 10.2174/0115733971249660231101102757

Price: $65

Abstract

Purpose: Osteoarthritis and other joint disorders are the leading cause of disability in the elderly and the treatment of joint lesions is challenging. Autologous chondrocyte implantation (ACI) has been reported with variable effects for the treatment of osteochondral and other joint lesions. In this study, we performed a meta-analysis of the recent literature to determine the clinical applicability of ACI for osteochondral defects.

Methods: A meta-analysis was performed on the recent literature showing the effects of ACI on osteochondral defects. The PUBMED, ScienceDirect and Google Scholar databases were used to identify eligible studies from Jan 2010 to Sep 2022. Both fixed and random models of meta-analysis were applied with all reported scoring systems to quantify the effectiveness of ACI on osteochondral defects.

Results: The pool data of 965 patients as a case series after ACI from a fixed model showed a significant improvement in the osteochondral defects (odds ratio = 8.75, 95%CI = 7.127 to 10.743, p = 0.000). These results were further verified by a random model of meta-analysis. The data also showed a substantial heterogeneity among the studies used in the meta-analysis (Q-value = 160.41, I-squared = 87.53, p = 0.000). Furthermore, this meta-analysis also compared different ACI procedures with different scoring systems but the overall outcome remains the same as ACI was found to be useful for the healing of the osteochondral defects.

Conclusion: This meta-analysis of 965 case series revealed that the ACI markedly improved the damage osteochondral defects scores but the optimal treatment is still controversial, therefore further studies are needed to validate these findings in a clinical setting.

[1]
D’Ambrosi R, Maccario C, Serra N, Liuni F, Usuelli FG. Osteochondral lesions of the talus and autologous matrix-induced chondrogenesis: Is age a negative predictor outcome? Arthroscopy 2017; 33(2): 428-35.
[http://dx.doi.org/10.1016/j.arthro.2016.09.030] [PMID: 27956234]
[2]
Colombini A, Libonati F, Lopa S, Peretti GM, Moretti M, de Girolamo L. Autologous chondrocyte implantation provides good long-term clinical results in the treatment of knee osteoarthritis: A systematic review. Knee Surg Sports Traumatol Arthrosc 2022; 31(6): 2338-48.
[http://dx.doi.org/10.1007/s00167-022-07030-2] [PMID: 35716187]
[3]
Barié A, Kruck P, Sorbi R, et al. Prospective long-term follow-up of autologous chondrocyte implantation with periosteum versus matrix-associated autologous chondrocyte implantation: A randomized clinical trial. Am J Sports Med 2020; 48(9): 2230-41.
[http://dx.doi.org/10.1177/0363546520928337] [PMID: 32667270]
[4]
Migliorini F, Eschweiler J, Goetze C, et al. Cell therapies for chondral defects of the talus: A systematic review. J Orthop Surg Res 2022; 17(1): 308.
[http://dx.doi.org/10.1186/s13018-022-03203-4] [PMID: 35690865]
[5]
Heiss R, Guermazi A, Janka R, et al. Update: Posttreatment imaging of the knee after cartilage repair. Semin Musculoskelet Radiol 2022; 26(3): 216-29.
[http://dx.doi.org/10.1055/s-0042-1743405] [PMID: 35654091]
[6]
Niethammer TR, Gallik D, Chevalier Y, et al. Effect of the defect localization and size on the success of third-generation autologous chondrocyte implantation in the knee joint. Int Orthop 2021; 45(6): 1483-91.
[http://dx.doi.org/10.1007/s00264-020-04884-4] [PMID: 33280063]
[7]
Niemeyer P, Laute V, Zinser W, et al. Clinical outcome and success rates of ACI for cartilage defects of the patella: A subgroup analysis from a controlled randomized clinical phase II trial (CODIS study). Arch Orthop Trauma Surg 2020; 140(6): 717-25.
[http://dx.doi.org/10.1007/s00402-019-03264-x] [PMID: 31451902]
[8]
Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 2009; 19(5): 1253-62.
[http://dx.doi.org/10.1007/s00330-008-1249-6] [PMID: 19104822]
[9]
Niemeyer P, Andereya S, Angele P, et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: A guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Z Orthop Unfall 2013; 151(1): 38-47.
[http://dx.doi.org/10.1055/s-0032-1328207]
[10]
Oussedik S, Tsitskaris K, Parker D. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: A systematic review. Arthroscopy 2015; 31(4): 732-44.
[http://dx.doi.org/10.1016/j.arthro.2014.11.023] [PMID: 25660008]
[11]
Jungmann PM, Salzmann GM, Schmal H, Pestka JM, Südkamp NP, Niemeyer P. Autologous chondrocyte implantation for treatment of cartilage defects of the knee: what predicts the need for reintervention? Am J Sports Med 2012; 40(1): 58-67.
[http://dx.doi.org/10.1177/0363546511423522] [PMID: 21969180]
[12]
Richter DL, Schenck RC Jr, Wascher DC, Treme G. Knee articular cartilage repair and restoration techniques. Sports Health 2016; 8(2): 153-60.
[http://dx.doi.org/10.1177/1941738115611350] [PMID: 26502188]
[13]
Minas T, Ogura T, Bryant T. Autologous chondrocyte implantation. JBJS Essential Surg Tech 2016; 6(2): e24.
[http://dx.doi.org/10.2106/JBJS.ST.16.00018] [PMID: 30237933]
[14]
Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 2010; 468(1): 147-57.
[http://dx.doi.org/10.1007/s11999-009-0998-0] [PMID: 19653049]
[15]
Pareek A, Carey JL, Reardon PJ, Peterson L, Stuart MJ, Krych AJ. Long-term outcomes after autologous chondrocyte implantation. Cartilage 2016; 7(4): 298-308.
[http://dx.doi.org/10.1177/1947603516630786] [PMID: 27688838]
[16]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[17]
Critical Appraisal Skills Programme (CASP) 2019 (Systematic Review) Checklist. 2019. Available from:https://casp-uk.net/casp-tools-checklists/ (Accessed: March 16, 2022)
[18]
Ioannidis JPA. Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 2008; 14(5): 951-7.
[http://dx.doi.org/10.1111/j.1365-2753.2008.00986.x] [PMID: 19018930]
[19]
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327(7414): 557-60.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[20]
Sterne JAC, Egger M. Funnel plots for detecting bias in meta-analysis. J Clin Epidemiol 2001; 54(10): 1046-55.
[http://dx.doi.org/10.1016/S0895-4356(01)00377-8] [PMID: 11576817]
[21]
Deliwala U, Sethia SJ. Gel-based autologous chondrocyte implantation in a patient with noncontained osteochondral knee defect at 9-year follow-up. Case Rep Orthop 2022; 2022: 1-6.
[http://dx.doi.org/10.1155/2022/6946860] [PMID: 35615459]
[22]
Zorzi AR, Antonioli E, Kaleka CC, et al. Matrix-assisted autologous chondrocyte transplantation for treatment of focal chondral lesions in the knee: The Hospital Israelita Albert Einstein experience. Einstein 2022; 20: eAO6819.
[http://dx.doi.org/10.31744/einstein_journal/2022AO6819] [PMID: 35544896]
[23]
Niemeyer P, Hanus M, Belickas J, et al. Treatment of large cartilage defects in the knee by hydrogel-based autologous chondrocyte implantation: Two-year results of a prospective, multicenter, single-arm phase III trial. Cartilage 2022; 13(1)
[http://dx.doi.org/10.1177/19476035221085146] [PMID: 35354310]
[24]
Niethammer TR, Uhlemann F, Zhang A, Holzgruber M, Wagner F, Müller PE. Hydrogel-based autologous chondrocyte implantation leads to subjective improvement levels comparable to scaffold based autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc 2022; 30(10): 3386-92.
[http://dx.doi.org/10.1007/s00167-022-06886-8] [PMID: 35226109]
[25]
Hoburg A, Niemeyer P, Laute V, et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroids for patellofemoral or tibiofemoral defects: A 5-year follow-up of a phase 2, dose-confirmation trial. Orthop J Sports Med 2022; 10(1)
[http://dx.doi.org/10.1177/23259671211053380] [PMID: 35071653]
[26]
Li X, Li S, Qian J, Chen Y, Zhou Y, Fu P. Early efficacy of type I collagen-based matrix-assisted autologous chondrocyte transplantation for the treatment of articular cartilage lesions. Front Bioeng Biotechnol 2021; 9: 760179.
[http://dx.doi.org/10.3389/fbioe.2021.760179] [PMID: 34778233]
[27]
Lenz CG, Tan S, Carey AL, Ang K, Schneider T. Matrix-Induced Autologous Chondrocyte Implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int 2020; 41(9): 1099-105.
[http://dx.doi.org/10.1177/1071100720935110] [PMID: 32639169]
[28]
López-Alcorocho JM, Guillén-Vicente I, Rodríguez-Iñigo E, et al. High-density autologous chondrocyte implantation as treatment for ankle osteochondral defects. Cartilage 2021; 12(3): 307-19.
[http://dx.doi.org/10.1177/1947603519835898] [PMID: 30880428]
[29]
Kreulen C, Giza E, Walton J, Sullivan M. Seven-year follow-up of matrix-induced autologous implantation in talus articular defects. Foot Ankle Spec 2018; 11(2): 133-7.
[http://dx.doi.org/10.1177/1938640017713614] [PMID: 28587484]
[30]
Pagliazzi G, Vannini F, Battaglia M, Ramponi L, Buda R. Autologous chondrocyte implantation for talar osteochondral lesions: Comparison between 5-year follow-up magnetic resonance imaging findings and 7-year follow-up clinical results. J Foot Ankle Surg 2018; 57(2): 221-5.
[http://dx.doi.org/10.1053/j.jfas.2017.05.013] [PMID: 29146220]
[31]
Desando G, Bartolotti I, Vannini F, et al. Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair. Cartilage 2017; 8(1): 50-60.
[http://dx.doi.org/10.1177/1947603516642573] [PMID: 27994720]
[32]
Buda R, Vannini F, Castagnini F, et al. Regenerative treatment in osteochondral lesions of the talus: Autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 2015; 39(5): 893-900.
[http://dx.doi.org/10.1007/s00264-015-2685-y] [PMID: 25662594]
[33]
Kwak SK, Kern BS, Ferkel RD, Chan KW, Kasraeian S, Applegate GR. Autologous chondrocyte implantation of the ankle: 2- to 10-year results. Am J Sports Med 2014; 42(9): 2156-64.
[http://dx.doi.org/10.1177/0363546514540587] [PMID: 25056988]
[34]
Lee KT, Kim JS, Young KW, et al. The use of fibrin matrix-mixed gel-type autologous chondrocyte implantation in the treatment for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 2013; 21(6): 1251-60.
[http://dx.doi.org/10.1007/s00167-012-2096-1] [PMID: 22752415]
[35]
Battaglia M, Vannini F, Buda R, et al. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: Mid-term T2-mapping MRI evaluation. Knee Surg Sports Traumatol Arthrosc 2011; 19(8): 1376-84.
[http://dx.doi.org/10.1007/s00167-011-1509-x] [PMID: 21503808]
[36]
Giza E, Sullivan M, Ocel D, et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 2010; 31(9): 747-53.
[http://dx.doi.org/10.3113/FAI.2010.0747] [PMID: 20880476]
[37]
Kraeutler MJ, Aliberti GM, Scillia AJ, McCarty EC, Mulcahey MK. Microfracture versus drilling of articular cartilage defects: A systematic review of the basic science evidence. Orthop J Sports Med 2020; 8(8)
[http://dx.doi.org/10.1177/2325967120945313] [PMID: 32913875]
[38]
Frisbie DD, Trotter GW, Powers BE, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999; 28(4): 242-55.
[http://dx.doi.org/10.1053/jvet.1999.0242] [PMID: 10424704]
[39]
Bekkers JEJ, Inklaar M, Saris DBF. Treatment selection in articular cartilage lesions of the knee: A systematic review. Am J Sports Med 2009; 37(1_suppl): 148-55.
[http://dx.doi.org/10.1177/0363546509351143] [PMID: 19934442]
[40]
Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 2012; 470(8): 2261-7.
[http://dx.doi.org/10.1007/s11999-012-2304-9] [PMID: 22422593]
[41]
Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis. Am J Sports Med 2009; 37(10): 2053-63.
[http://dx.doi.org/10.1177/0363546508328414] [PMID: 19251676]
[42]
Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22(9): 1986-96.
[http://dx.doi.org/10.1007/s00167-013-2676-8] [PMID: 24051505]
[43]
Goyal D, Keyhani S, Lee EH, Hui JHP. Evidence-based status of microfracture technique: A systematic review of level I and II studies. Arthroscopy 2013; 29(9): 1579-88.
[http://dx.doi.org/10.1016/j.arthro.2013.05.027] [PMID: 23992991]
[44]
Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M. Radiological evaluation of cartilage after microfracture treatment: A long-term follow-up study. Eur J Radiol 2012; 81(7): 1618-24.
[http://dx.doi.org/10.1016/j.ejrad.2011.04.071] [PMID: 21684098]
[45]
Bert JM. Abandoning microfracture of the knee: Has the time come? Arthroscopy 2015; 31(3): 501-5.
[http://dx.doi.org/10.1016/j.arthro.2014.12.018] [PMID: 25744322]
[46]
Johnson LL, Spector M. The New Microfracture: All Things Considered. Arthroscopy 2015; 31(6): 1028-31.
[http://dx.doi.org/10.1016/j.arthro.2015.04.073] [PMID: 26048762]
[47]
Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics 1997; 20(6): 525-38.
[http://dx.doi.org/10.3928/0147-7447-19970601-08] [PMID: 9195635]
[48]
Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 1998; 28(4): 241-51.
[http://dx.doi.org/10.2519/jospt.1998.28.4.241] [PMID: 9785259]
[49]
Tran TM, Sosa B, O’Connell A, Chu T, Cottrell JA, Chang SL. A meta-analysis of non-osteoarthritis and osteoarthritis chondrocyte gene expression to determine the efficacy of autologous chondrocyte transplantation as a viable treatment option. Med Case Rep Short Rev 2019; 2(1): 264.
[PMID: 34970658]
[50]
Schneider TE, Karaikudi S. Matrix-Induced Autologous Chondrocyte Implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int 2009; 30(9): 810-4.
[http://dx.doi.org/10.3113/FAI.2009.0810] [PMID: 19755063]
[51]
Whittaker JP, Smith G, Makwana N, et al. Early results of autologous chondrocyte implantation in the talus. J Bone Joint Surg Br 2005; 87-B(2): 179-83.
[http://dx.doi.org/10.1302/0301-620X.87B2.15376] [PMID: 15736739]
[52]
Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation – a systematic review. Osteoarthritis Cartilage 2011; 19(7): 779-91.
[http://dx.doi.org/10.1016/j.joca.2011.02.010] [PMID: 21333744]
[53]
FDA approves first autologous cellularized scaffold for the repair of cartilage defects of the knee. Available from:https://www.fda.gov/news-events/press-announcements/fda-approves-first-autologous-cellularized-scaffold-repair-cartilage-defects-knee (Accessed on 20/6/2023)
[54]
Wood JJ, Malek MA, Frassica FJ, et al. Autologous cultured chondrocytes: Adverse events reported to the United States Food and Drug Administration. J Bone Joint Surg Am 2006; 88(3): 503-7.
[http://dx.doi.org/10.2106/00004623-200603000-00006] [PMID: 16510814]
[55]
Niemeyer P, Pestka JM, Kreuz PC, et al. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 2008; 36(11): 2091-9.
[http://dx.doi.org/10.1177/0363546508322131] [PMID: 18801942]
[56]
Procedure for early osteoarthritis to reduce need for knee replacement. Available from:versusarthritis.org/research/research-achievements/new-procedure-for-early-osteoarthritis/#:~:text=symptoms%20and%20treatments.,What%20is%20Autologous%20Chondrocyte%20Implantation%3F,cartilage%20cells%20in%20a%20laboratory">https://www.versusarthritis.org/research/research-achievements/new-procedure-for-early-osteoarthritis/#:~:text=symptoms%20and%20treatments.,What%20is%20Autologous%20Chondrocyte%20Implantation%3F,cartilage%20cells%20in%20a%20laboratory (Accessed 02/02/2023)
[57]
Shen H, He Y, Wang N, et al. Enhancing the potential of aged human articular chondrocytes for high-quality cartilage regeneration. FASEB J 2021; 35(3): e21410.
[http://dx.doi.org/10.1096/fj.202002386R] [PMID: 33617078]
[58]
Autologous chondrocyte implantation for treating symptomatic articular cartilage defects of the knee. Available from:https://www.nice.org.uk/guidance/TA477/chapter/1-Recommendations (Accessed 02/02/2023)
[59]
Roberts S, McCall IW, Darby AJ, et al. Autologous chondrocyte implantation for cartilage repair: Monitoring its success by magnetic resonance imaging and histology. Arthritis Res 2003; 5(1): R60-73.
[http://dx.doi.org/10.1186/ar613] [PMID: 12716454]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy