Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Human DNA Mutations and their Impact on Genetic Disorders

Author(s): Safia Samir*

Volume 18, Issue 4, 2024

Published on: 03 November, 2023

Page: [288 - 315] Pages: 28

DOI: 10.2174/0118722083255081231020055309

Price: $65

Abstract

DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer’s disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.

Graphical Abstract

[1]
a) Dai P, Williams CT, Witucki AM, Rudge DW. Rosalind Franklin and the discovery of the structure of DNA: Using historical narratives to help students understand nature of science. Sci Educ 2021; 30: 659-92.;
b) Devine KG, Jheeta S. De novo nucleic acids: A review of synthetic alternatives to DNA and RNA that could act as bio-information storage molecules. Life 2020; 10(12): 346.
[http://dx.doi.org/10.3390/life10120346] [PMID: 33322642]
[2]
Hengel SR, Spies MA, Spies M. Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem Biol 2017; 24(9): 1101-19.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.027] [PMID: 28938088]
[3]
Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat Commun 2020; 11(1): 5379.
[http://dx.doi.org/10.1038/s41467-020-19165-2] [PMID: 33097731]
[4]
Rosendahl HA, Van Hoeck A, Van Boxtel R. The mutagenic impact of environmental exposures in human cells and cancer: Imprints through time. Front Genet 2021; 12: 760039.
[http://dx.doi.org/10.3389/fgene.2021.760039] [PMID: 34745228]
[5]
Lyons DM, Lauring AS. Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses. Mol Biol Evol 2017; 34(12): 3205-15.
[http://dx.doi.org/10.1093/molbev/msx251] [PMID: 29029187]
[6]
Lu M, He X. Centromere repositioning causes inversion of meiosis and generates a reproductive barrier. Proc Natl Acad Sci 2019; 116(43): 21580-91.
[http://dx.doi.org/10.1073/pnas.1911745116] [PMID: 31597736]
[7]
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017; 58(5): 235-63.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[8]
Weeden CE, Asselin-Labat ML. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochim Biophys Acta Mol Basis Dis 2018; 1864(1): 89-101.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.015] [PMID: 29038050]
[9]
Gleason KM. Hermann joseph muller's study of X-rays as a mutagen, (1926-1927). Embryo Project Encyclopedia 2017; 7: 03-7. https://hdl.handle.net/10776/11441
[10]
Mahmood M, Liu EM, Shergold AL, et al. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. Nat Cancer 2024; 1-4.
[http://dx.doi.org/10.1038/s43018-023-00721-w]
[11]
Poon S, McPherson JR, Tan P, Teh B, Rozen SG. Mutation signatures of carcinogen exposure: Genome-wide detection and new opportunities for cancer prevention. Genome Med 2014; 6(3): 24.
[http://dx.doi.org/10.1186/gm541] [PMID: 25031618]
[12]
Roychoudhury S, Jha NK, Ruokolainen J, Kesari KK, Kesari K. Mutagenic factors in the environment impacting human and animal health. Environ Sci Pollut Res Int 2022; 29(41): 61967-71.
[http://dx.doi.org/10.1007/s11356-022-22247-x] [PMID: 35917065]
[13]
Jones JA, Karouia F, Toxicology C. Ionizing radiation environmental chemicals and childhood. Cancer 2010.
[14]
Kodym A, Afza R. Physical and chemical mutagenesis. Methods Mol Biol 2003; 236: 189-204.
[http://dx.doi.org/10.1385/1-59259-413-1:189]
[15]
Li B, Zhao L, Zhang S, et al. The mutational, epigenetic, and transcriptional effects between mixed high-energy particle field (CR) and 7li-ion beams (LR) radiation in wheat m1 seedlings. Front Plant Sci 2022; 13: 878420.
[http://dx.doi.org/10.3389/fpls.2022.878420] [PMID: 35646033]
[16]
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins. Cells 2021; 10(11): 3041.
[http://dx.doi.org/10.3390/cells10113041] [PMID: 34831262]
[17]
Jones DL, Baxter BK. DNA repair and photoprotection: Mechanisms of overcoming environmental ultraviolet radiation exposure in Halophilic archaea. Front Microbiol 2017; 8: 1882.
[http://dx.doi.org/10.3389/fmicb.2017.01882] [PMID: 29033920]
[18]
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17(12): 1816-41.
[http://dx.doi.org/10.1039/c7pp00395a] [PMID: 29405222]
[19]
Pfeifer GP. Mechanisms of UV-induced mutations and skin cancer. Genome Instabil Disease 2020; 1(3): 99-113.
[http://dx.doi.org/10.1007/s42764-020-00009-8] [PMID: 34589668]
[20]
Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY. Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol Biol 2018; 18(1): 126.
[http://dx.doi.org/10.1186/s12862-018-1252-8] [PMID: 30157765]
[21]
Waldvogel AM, Pfenninger M. Temperature dependence of spontaneous mutation rates. Genome Res 2021; 31(9): 1582-9.
[http://dx.doi.org/10.1101/gr.275168.120] [PMID: 34301628]
[22]
Samadi N, Naghavi MR. Moratalla-Lَpez N, Alonso GL, Shokrpour M. Morphological, molecular and phytochemical variations induced by colchicine and EMS chemical mutagens in Crocus sativus L. Food Chem: Mol Sci 2022; 4: 100086.
[http://dx.doi.org/10.1016/j.fochms.2022.100086] [PMID: 35415695]
[23]
Khromov-Borisov NN. Naming the mutagenic nucleic acid base analogs: The Galatea syndrome. Mutat Res 1997; 379(1): 95-103.
[http://dx.doi.org/10.1016/S0027-5107(97)00112-7] [PMID: 9330627]
[24]
Kryachko ES. Quantum chemical reactivity, mutations, and reality: Narrative essay. In: Chemical Reactivity Approaches and Applications. 2023; 2: pp. 89-122.
[http://dx.doi.org/10.1016/B978-0-32-390259-5.00010-X]
[25]
Gheorghiu A, Coveney PV, Arabi AA. The influence of base pair tautomerism on single point mutations in aqueous DNA. Interface Focus 2020; 10(6): 20190120.
[http://dx.doi.org/10.1098/rsfs.2019.0120] [PMID: 33178413]
[26]
Müller J, Hemphill A. Intercalating agent international review of cell and molecular biology neoplasia. 2014. Available from: https://www.sciencedirect.com/topics/nursing-and-health-professions/intercalating-agent
[27]
Fujii N, Yano S, Takeshita K. Selective enhancing effect of metal ions on mutagenicity. Genes Environ 2016; 38(1): 21.
[http://dx.doi.org/10.1186/s41021-016-0049-5] [PMID: 27822322]
[28]
Xu L, Wang W, Wu J, et al. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proc Natl Acad Sci 2017; 114(34): E7082-91.
[http://dx.doi.org/10.1073/pnas.1708748114] [PMID: 28784758]
[29]
van Opijnen T, Camilli A. Transposon insertion sequencing: A new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 2013; 11(7): 435-42.
[http://dx.doi.org/10.1038/nrmicro3033] [PMID: 23712350]
[30]
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21(9): 526-40.
[http://dx.doi.org/10.1038/s41576-020-0244-x] [PMID: 32533119]
[31]
Roy M, Viginier B, Saint-Michel É, Arnaud F, Ratinier M, Fablet M. Viral infection impacts transposable element transcript amounts in Drosophila. Proc Natl Acad Sci 2020; 117(22): 12249-57.
[http://dx.doi.org/10.1073/pnas.2006106117] [PMID: 32434916]
[32]
Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. Reactive oxygen species in pathogen clearance: The killing mechanisms, the adaption response, and the side effects. Front Microbiol 2021; 11: 622534.
[http://dx.doi.org/10.3389/fmicb.2020.622534] [PMID: 33613470]
[33]
Butcher LD, den Hartog G, Ernst PB, Crowe SE. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell Mol Gastroenterol Hepatol 2017; 3(3): 316-22.
[http://dx.doi.org/10.1016/j.jcmgh.2017.02.002] [PMID: 28462373]
[34]
Lutz CM, Linder CC, Davisson MT. Strains, stocks and mutant mice. Lab Mouse 2012; pp. 37-56.
[http://dx.doi.org/10.1016/B978-0-12-382008-2.00003-9]
[35]
Guimerá J, Floss T. Genetics Nomenclature, Mouse. 2013; pp. 271-5.
[36]
Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci 2015; 112(44): E5990-9.
[http://dx.doi.org/10.1073/pnas.1512136112] [PMID: 26460006]
[37]
Lewis CA Jr, Crayle J, Zhou S, Swanstrom R, Wolfenden R. Cytosine deamination and the precipitous decline of spontaneous mutation during Earth’s history. Proc Natl Acad Sci 2016; 113(29): 8194-9.
[http://dx.doi.org/10.1073/pnas.1607580113] [PMID: 27382162]
[38]
Singh V, Fedeles BI, Essigmann JM. Role of tautomerism in RNA biochemistry. RNA 2015; 21(1): 1-13.
[http://dx.doi.org/10.1261/rna.048371.114] [PMID: 25516996]
[39]
Koshland D. Mutations: Relentless drivers of evolution and disease a narrative produced by the explorer’s guide to biology. Available from: https://explorebiology.org/
[40]
Boyce KJ. Mutators enhance adaptive micro-evolution in pathogenic microbes. Microorganisms 2022; 10(2): 442.
[http://dx.doi.org/10.3390/microorganisms10020442] [PMID: 35208897]
[41]
Ham M, Kaunitz JD, Tract G. DNA damage gastroduodenal mucosal defense DNA damage responses in atheroscle- rosis a worldwide yearly survey of new data in adverse drug reactions. 2012. Available from: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/dna-damage
[42]
Krais AM, Arlt VM, Edition T. Biology of lung cancer. In: Carcinogen - DNA Adducts Elsevier. Amsterdam, The Netherlands 2019.
[43]
Carlos F. Oxidative stress, mutagenic effects, and cell death induced by retene. Chemosphere 2019; 231: 518-27.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.123]
[44]
Glover SA, Schumacher RR. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation: The role of fluorene and fluorenone substituents as DNA intercalators. In: Mutation Research/Genetic Toxicology and Environmental Mutagenesis Elsevier. Amsterdam, The Netherlands 2021; p. 503299.
[http://dx.doi.org/10.1016/j.mrgentox.2020.503299]
[45]
Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis 2017; 21(1): 1-20.
[http://dx.doi.org/10.1016/j.cld.2016.08.001] [PMID: 27842765]
[46]
Pecoraro VL, Hambley TW. Bioinorganic fundamentals and applications: Metals in natural living systems and metals in toxicology and medicine. 2013.
[47]
Toth M. Mechanisms of non-genetic inheritance and psychiatric disorders. Neuropsychopharmacology 2015; 40(1): 129-40.
[http://dx.doi.org/10.1038/npp.2014.127] [PMID: 24889369]
[48]
Jamuar SS, Walsh CA. Chapter 12 -Somatic mosaicism and neurological diseases. In: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry Academic Press. Massachusetts 2017.
[49]
Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenetics 2020; 12(1): 136.
[http://dx.doi.org/10.1186/s13148-020-00929-y] [PMID: 32917273]
[50]
Terao C, Suzuki A, Momozawa Y, et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 2020; 584(7819): 130-5.
[http://dx.doi.org/10.1038/s41586-020-2426-2] [PMID: 32581364]
[51]
Shaffer L. Disorders caused by chromosome abnormalities. Appl Clin Genet 2010; 159.
[http://dx.doi.org/10.2147/TACG.S8884]
[52]
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An overview of duplicated gene detection methods: Why the duplication mechanism has to be accounted for in their choice. Genes 2020; 11(9): 1046.
[http://dx.doi.org/10.3390/genes11091046]
[53]
Puig M, Casillas S, Villatoro S, Cáceres M. Human inversions and their functional consequences. Brief Funct Genomics 2015; 14(5): 369-79.
[http://dx.doi.org/10.1093/bfgp/elv020] [PMID: 25998059]
[54]
Perkins DD. Chromosome rearrangements in Neurospora and other filamentous fungi. In: Advances in genetics 1997; 36: 239-40.
[55]
Harewood L, Fraser P. The impact of chromosomal rearrangements on regulation of gene expression. Hum Mol Genet 2014; 23(R1): R76-82.
[http://dx.doi.org/10.1093/hmg/ddu278] [PMID: 24907073]
[57]
Malagnac F, Silar P. Epigenetics of eukaryotic microbes evolution of pathogenic Escherichia coli. 2013.
[58]
Mutation M, Mutation N, Old J, Principles R. Frameshift Mutation Hemoglobinopathies and thalassemias. 2013.
[59]
Wang X, Wang X, Li C, Peng H, Wang Y, Chen G. A frameshift mutation is repaired through nonsense-mediated gene revising in E. coli. bioRxiv 2020; 2020; 069971.
[60]
Dickson ET, Hyman P, Edition S. Mutation. Silent human gene mutation in inherited disease we are all mutants 2013.
[61]
Brodsky B, Persikov A. Structural consequences of glycine missense mutations in osteogenesis imperfecta. In: Imperfecta A, Ed. Osteogenes Approach to Brittle Bone Dis. 2013; pp. 115-24.
[http://dx.doi.org/10.1016/B978-0-12-397165-4.00011-3]
[62]
Malhotra S, Alsulami AF, Heiyun Y, et al. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census. PLoS One 2019; 14(7): e0219935.
[http://dx.doi.org/10.1371/journal.pone.0219935] [PMID: 31323058]
[63]
Benhabiles H, Lejeune F, Correction M. Pathologies susceptible to be targeted for nonsense mutation therapies human gene mutation in inherited disease. 2018.
[64]
Campbell M. Missense, Nonsense and Frameshift Mutations: A Genetic Guide | Technology Networks. 2022. Available from: https://www.technologynetworks.com/genomics/articles/missense-nonsense-and-frameshift-mutations-a-genetic-guide-329274
[65]
Shaikh TH. Copy number variation disorders. Curr Genet Med Rep 2017; 5(4): 183-90.
[http://dx.doi.org/10.1007/s40142-017-0129-2] [PMID: 29732242]
[66]
Pajic P, Pavlidis P, Dean K, et al. Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 2019; 8: e44628.
[http://dx.doi.org/10.7554/eLife.44628] [PMID: 31084707]
[67]
Taylor MS. Evolutionary dependencies show paths to cancer development. Nat Genet 2020; 52(11): 1135-6.
[http://dx.doi.org/10.1038/s41588-020-00728-4] [PMID: 33128046]
[68]
Devel C. Screening.Newborn, and Maternal. 2020.
[69]
Guidelines on Handling Chemical Carcinogens. Teratogens and Mutagens. 1995. Available from: https://www.chem.tamu.edu/rgroup/wooley/safety/15.pdf
[70]
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. Environ Sci Pollut Res Int 2022; 29(41): 62111-59.
[http://dx.doi.org/10.1007/s11356-021-16726-w] [PMID: 34611806]
[71]
Tenaillon O, Matic I. The impact of neutral mutations on genome evolvability. Curr Biol 2020; 30(10): R527-34.
[http://dx.doi.org/10.1016/j.cub.2020.03.056] [PMID: 32428494]
[72]
Anderson KL, Purdom G, Anderson KL, Ph D, Creation VA, Valley C. A creationist perspective of beneficial mutations in bacteria. Proc Int Conf Creationism 2008; 6: 9.
[73]
Williams SCP. Genetic mutations you want. Proc Natl Acad Sci 2016; 113(10): 2554-7.
[http://dx.doi.org/10.1073/pnas.1601663113] [PMID: 26957571]
[74]
a) Snow CP. The two cultures and the scientific revolution. The Syndics of Cambridge University Press 1962.;
b) Cook-Deegan R, Heaney C. Patents in genomics and human genetics. Annu Rev Genomics Hum Genet 2020; 11: 383-425.
[75]
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: Past, present, and beyond. Biomed Res Int 2015; 2015
[http://dx.doi.org/10.1155/2015/461524]
[76]
a) Shinya S. Method of treating microbial cells. U.S. Patent 3615654A, 1971.;
b) Carter WA. Nuclec acid complexes. U.S. Patent 4024222, 1977.
[77]
Forsberg LA, Absher D, Dumanski JP. Republished: Non-heritable genetics of human disease: Spotlight on post-zygotic genetic variation acquired during lifetime. Postgrad Med J 2013; 89(1053): 417-26.
[http://dx.doi.org/10.1136/postgradmedj-2012-101322rep] [PMID: 23781115]
[78]
Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH. An online compendium of treatable genetic disorders. Am J Med Genet C Semin Med Genet 2021; 187(1): 48-54.
[http://dx.doi.org/10.1002/ajmg.c.31874] [PMID: 33350578]
[79]
Hoch H, Sontag MK, Scarbro S, et al. Clinical outcomes in U.S. infants with cystic fibrosis from 2001 to 2012. Pediatr Pulmonol 2018; 53(11): 1492-7.
[http://dx.doi.org/10.1002/ppul.24165] [PMID: 30259702]
[80]
Carroll W, Green J, Gilchrist FJ. Interventions for preventing distal intestinal obstruction syndrome (DIOS) in cystic fibrosis. Cochrane Libr 2021; 2021(12): CD012619.
[http://dx.doi.org/10.1002/14651858.CD012619.pub3] [PMID: 34936085]
[81]
Shah S, Sheth R, Shah K, Patel K. Safety and effectiveness of thalidomide and hydroxyurea combination in β-thalassaemia intermedia and major: A retrospective pilot study. Br J Haematol 2020; 188(3): e18-21.
[http://dx.doi.org/10.1111/bjh.16272] [PMID: 31710694]
[82]
Shapiro JR. Osteogenesis imperfecta and other defects of bone development as occasional causes of adult osteoporosis. (4th ed.). Osteoporos 2013; pp. 1267-304.
[http://dx.doi.org/10.1016/B978-0-12-415853-5.00053-4]
[83]
Sharma A, Easow MM, Puri L. Splenectomy for people with thalassaemia major or intermedia. Cochrane Libr 2019; 2019(9): CD010517.
[http://dx.doi.org/10.1002/14651858.CD010517.pub3] [PMID: 31529486]
[84]
Coleman E, Inusa B. Sickle cell anemia: Targeting the role of fetal hemoglobin in therapy. Clin Pediatr 2007; 46(5): 386-91.
[http://dx.doi.org/10.1177/0009922806297751] [PMID: 17556734]
[85]
Nistri S, De Cario R, Sticchi E, et al. Differential diagnosis between marfan syndrome and loeys–dietz syndrome type 4: A novel chromosomal deletion covering tgfb2. Genes 2021; 12(10): 1462.
[http://dx.doi.org/10.3390/genes12101462] [PMID: 34680857]
[86]
Xiao Y, Liu X, Guo X, et al. A novel FBN1 mutation causes autosomal dominant Marfan syndrome. Mol Med Rep 2017; 16(5): 7321-8.
[http://dx.doi.org/10.3892/mmr.2017.7544] [PMID: 28944857]
[87]
Martínez-Quintana E, Caballero-Sánchez N, Rodríguez-González F, Garay-Sánchez P, Tugores A. Novel marfan syndrome-associated mutation in the FBN1 gene caused by parental mosaicism and leading to abnormal limb patterning. Mol Syndromol 2017; 8(3): 148-54.
[http://dx.doi.org/10.1159/000467909] [PMID: 28588436]
[88]
Zhang M, Zhou Y, Peng Y, Jin L. Two rare missense mutations in the fibrillin 1 gene associated with atypical cardiovascular manifestations in a Chinese patient affected by Marfan syndrome. Mol Med Rep 2018; 18(1): 877-81.
[http://dx.doi.org/10.3892/mmr.2018.9041] [PMID: 29845260]
[89]
Bartholomay K, Lee C, Bruno J, Lightbody A, Reiss A. Closing the gender gap in fragile X syndrome: Review on females with FXS and preliminary research findings. Brain Sci 2019; 9(1): 11.
[http://dx.doi.org/10.3390/brainsci9010011] [PMID: 30642066]
[90]
Joga-Elvira L, Roche-Martínez A, Joga ML, Jacas-Escarcelle C, Brun-Gasca C. Language in young females with fragile X syndrome: Influence on the neurocognitive profile and adaptive behavior. Am J Med Genet A 2021; 185(5): 1448-60.
[http://dx.doi.org/10.1002/ajmg.a.62130] [PMID: 33605062]
[91]
Saver JL, Warach S, Janis S, et al. Standardizing the structure of stroke clinical and epidemiologic research data: The National Institute of Neurological Disorders and Stroke (NINDS) Stroke Common Data Element (CDE) project. Stroke 2012; 43(4): 967-73.
[http://dx.doi.org/10.1161/STROKEAHA.111.634352] [PMID: 22308239]
[92]
Patel F, Mandal P. Molecular mechanism of nervous system disorders and implications for new therapeutic targets. Front Clin Drug Res - CNS Neurol Disord, 2020; 8: 60-89.
[http://dx.doi.org/10.2174/9789811470080120080005]
[93]
Bates GP. History of genetic disease: The molecular genetics of Huntington disease - a history | Learn Science at Scitable 2005. Available from: www.nature.com/scitable/content/History-of-genetic-disease-The-molecular-genetics-15297
[94]
Castiella A, Zapata E, De Juan MD, et al. Significance of H63D homozygosity in a Basque population with hemochromatosis. J Gastroenterol Hepatol 2010; 25(7): 1295-8.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06247.x] [PMID: 20594259]
[95]
Lin A, Yan WH, Xu HH, Zhu M, Zhou MY. Analysis of the HFE gene (C282Y, H63D and S65C) mutations in a general Chinese Han population. Tissue Antigens 2007; 70(3): 252-5.
[http://dx.doi.org/10.1111/j.1399-0039.2007.00877.x] [PMID: 17661915]
[96]
van Gammeren A, de Baar E, Schrauwen L, van Wijngaarden P. Compound heterozygous C282Y/Q283P and Q283P/H63D mutations in haemochromatosis. Br J Haematol 2015; 171(4): 650-1.
[http://dx.doi.org/10.1111/bjh.13417] [PMID: 25850353]
[97]
Duarte CW, Vaughan LK, Beasley TM, Tiwari HK. Multifactorial inheritance and complex diseases Elsevier. Amsterdam, The Netherlands 2013.
[http://dx.doi.org/10.1016/B978-0-12-383834-6.00014-8]
[98]
Depannemaecker D, Destexhe A, Jirsa V, Bernard C. Modeling seizures: From single neurons to networks. Seizure 2021; 90: 4-8.
[http://dx.doi.org/10.1016/j.seizure.2021.06.015] [PMID: 34219016]
[99]
Bamikole OJ, Olufeagba MB, Soge ST, Bukoye NO, Olajide TH, Abigail S. Genetics of epilepsy. J Neurol Neurophysiol 2019; 10(3)
[100]
Weinstein S. Seizures and epilepsy: An overview. Epilepsy Intersect Neurosci Biol Math Eng Phys 2016; pp. 65-77.
[http://dx.doi.org/10.1201/b10866-10]
[101]
Perucca P, Bahlo M, Berkovic SF. The genetics of epilepsy. Annu Rev Genomics Hum Genet 2020; 21(1): 205-30.
[http://dx.doi.org/10.1146/annurev-genom-120219-074937] [PMID: 32339036]
[102]
Cortés JMR. Zerón HM. Genetics of thyroid disorders. Folia Med 2019; 61(2): 172-9.
[http://dx.doi.org/10.2478/folmed-2018-0078] [PMID: 31301652]
[103]
Szinnai G, Ed. Paediatric Thyroidology. Basel: Karger 2014; 26: pp. 60-78.
[http://dx.doi.org/10.1159/000363156]
[104]
Dedmon LE. The genetics of rheumatoid arthritis. Rheumatology 2020; 59(10): 2661-70.
[http://dx.doi.org/10.1093/rheumatology/keaa232] [PMID: 32638005]
[105]
Kinsella M, Monk C. 基因的改变 NIH Public access. Genetics 2012; 23(1): 1-7.
[106]
Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol 2022; 44(1): 47-62.
[http://dx.doi.org/10.1007/s00281-022-00912-0] [PMID: 35088123]
[107]
Sadler B, Gurnett CA, Dobbs MB. The genetics of isolated and syndromic clubfoot. J Child Orthop 2019; 13(3): 238-44.
[http://dx.doi.org/10.1302/1863-2548.13.190063] [PMID: 31312262]
[108]
Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. Eur J Med Genet 2018; 61(2): 107-13.
[http://dx.doi.org/10.1016/j.ejmg.2017.09.006] [PMID: 28919208]
[109]
Dobbs MB, Gurnett CA. Genetics of clubfoot. J Pediatr Orthop B 2012; 21(1): 7-9.
[http://dx.doi.org/10.1097/BPB.0b013e328349927c] [PMID: 21817922]
[110]
Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem 2018; 62(5): 643-723.
[http://dx.doi.org/10.1042/EBC20170053] [PMID: 30509934]
[111]
Seror V, L’Haridon O, Bussières L, et al. Women’s attitudes toward invasive and noninvasive testing when facing a high risk of fetal down syndrome. JAMA Netw Open 2019; 2(3): e191062.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.1062] [PMID: 30924894]
[112]
Álvarez-Nava F, Racines-Orbe M, Witt J, et al. Metabolic syndrome as a risk factor for sensorineural hearing loss in adult patients with turner syndrome. Appl Clin Genet 2020; 13: 25-35.
[http://dx.doi.org/10.2147/TACG.S229828] [PMID: 32021381]
[113]
Hashemzadeh-Chaleshtori M, Teimori H, Ghasemi-Dehkordi P, Jafari-Ghahfarokhi H, Moradi-Chaleshtori M, Liehr T. Small supernumerary marker chromosomes and their correlation with specific syndromes. Adv Biomed Res 2015; 4(1): 140.
[http://dx.doi.org/10.4103/2277-9175.161542] [PMID: 26322288]
[114]
Sheth F, Gohel N, Liehr T, et al. Gain of chromosome 4qter and loss of 5pter: An unusual case with features of cri du chat syndrome. Case Rep Genet 2012; 2012: 1-4.
[http://dx.doi.org/10.1155/2012/153405] [PMID: 23320207]
[115]
Cerruti Mainardi P. Cri du Chat syndrome. Orphanet J Rare Dis 2006; 1(1): 33.
[http://dx.doi.org/10.1186/1750-1172-1-33] [PMID: 16953888]
[116]
Tranchant C, Anheim M. Movement disorders in mitochondrial diseases. Rev Neurol 2016; 172(8-9): 524-9.
[http://dx.doi.org/10.1016/j.neurol.2016.07.003] [PMID: 27476418]
[117]
Davis RL, Liang C, Sue CM. Mitochondrial diseases. Handb Clin Neurol 2018; 147: 125-41.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00010-5] [PMID: 29325608]
[118]
Flaquer A, Baumbach C, Kriebel J, et al. Mitochondrial genetic variants identified to be associated with BMI in adults. PLoS One 2014; 9(8): e105116.
[http://dx.doi.org/10.1371/journal.pone.0105116] [PMID: 25153900]
[119]
Sinnecker T, Andelova M, Mayr M, et al. Diagnosis of adult-onset MELAS syndrome in a 63-year-old patient with suspected recurrent strokes – a case report. BMC Neurol 2019; 19(1): 91.
[http://dx.doi.org/10.1186/s12883-019-1306-6] [PMID: 30606131]
[120]
Long JM, Holtzman DM. Alzheimer Disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[121]
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[122]
Anwal L. A comprehensive review on Alzheimer’s disease. World J Pharm Pharm Sci 2021; 10(7): 1170.
[http://dx.doi.org/10.20959/wjpps20217]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy