Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Drug Delivery for Ocular Allergy: Current Formulation Design Strategies and Future Perspectives

Author(s): Varaprasada Rao Regu, Ranjit Prasad Swain and Bharat Bhusan Subudhi*

Volume 29, Issue 33, 2023

Published on: 02 November, 2023

Page: [2626 - 2639] Pages: 14

DOI: 10.2174/0113816128275375231030115828

Price: $65

Abstract

The incidences of ocular allergy have been growing with the increase in pollution. Because of challenges in new drug development, there have been efforts to maximize the efficacy of existing drugs through drug delivery approaches. The effectiveness of drugs in ophthalmic conditions is primarily determined by permeability across the barrier, corneal retention, and sustained release. Thus, there have been widespread efforts to optimize these parameters to enhance efficacy through novel formulations. This review aims to analyze the approaches to drug delivery systems to encourage further research to optimize effectiveness. With this objective, research on drug delivery aspects of anti-allergy therapeutics was included and analyzed based on formulation/drug delivery technique, Food and Drug Administration approval limits, residence time, compatibility, pre-clinical efficacy, and potential for translational application. Conventional eye drops have concerns such as poor residence time and ocular bioavailability. The novel formulations have the potential to improve residence and bioavailability. However, the use of preservatives and the lack of regulatory approval for polymers limit the translational application. The review may assist readers in identifying novel drug delivery strategies and their limitations for the development of effective ophthalmic formulations for the treatment of ocular allergy.

[1]
Bielory L. Ocular allergy overview. Immunol Allergy Clin North Am 2008; 28(1): 1-23, v.
[http://dx.doi.org/10.1016/j.iac.2007.12.011] [PMID: 18282543]
[2]
Leonardi A, Bogacka E, Fauquert JL, et al. Ocular allergy: Recognizing and diagnosing hypersensitivity disorders of the ocular surface. Allergy 2012; 67(11): 1327-37.
[http://dx.doi.org/10.1111/all.12009] [PMID: 22947083]
[3]
Bielory L. Allergic and immunologic disorders of the eye. Part II: Ocular allergy. J Allergy Clin Immunol 2000; 106(6): 1019-32.
[http://dx.doi.org/10.1067/mai.2000.111238] [PMID: 11112882]
[4]
Undem BJ, Taylor-Clark T. Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol 2014; 133(6): 1521-34.
[http://dx.doi.org/10.1016/j.jaci.2013.11.027] [PMID: 24433703]
[5]
Ahmad R, Mehta H. The ocular adverse effects of oral drugs. Aust Prescr 2021; 44(4): 129-36.
[http://dx.doi.org/10.18773/austprescr.2021.028] [PMID: 34421178]
[6]
Trivedi A, Katelaris C. Presentation, diagnosis, and the role of subcutaneous and sublingual immunotherapy in the management of ocular allergy. Clin Exp Optom 2021; 104(3): 334-49.
[http://dx.doi.org/10.1111/cxo.13129] [PMID: 32944983]
[7]
Singh RB, Liu L, Yung A, et al. Ocular redness – II: Progress in development of therapeutics for the management of conjunctival hyperemia. Ocul Surf 2021; 21: 66-77.
[http://dx.doi.org/10.1016/j.jtos.2021.05.004] [PMID: 34000363]
[8]
Leonardi A. In-vivo diagnostic measurements of ocular inflammation. Curr Opin Allergy Clin Immunol 2005; 5(5): 464-72.
[http://dx.doi.org/10.1097/01.all.0000182539.45348.87] [PMID: 16131925]
[9]
Quinones K, Foster CS. Management of the patient with ocular allergy. In: Krouse JH, Derebery MJ, Chadwick SJ, Eds. Managing the allergic patients. Elsevier Inc 2008; pp. 145-74.
[http://dx.doi.org/10.1016/B978-141603677-7.50010-8]
[10]
Dinning WJ. Steroids and the eye-indications and complications. Postgrad Med J 1976; 52(612): 634-8.
[http://dx.doi.org/10.1136/pgmj.52.612.634] [PMID: 792855]
[11]
Gaynes BI, Fiscella R. Topical nonsteroidal anti-inflammatory drugs for ophthalmic use: A safety review. Drug Saf 2002; 25(4): 233-50.
[http://dx.doi.org/10.2165/00002018-200225040-00002] [PMID: 11994027]
[12]
Badr MY, Abdulrahman NS, Schatzlein AG, Uchegbu IF. A polymeric aqueous tacrolimus formulation for topical ocular delivery. Int J Pharm 2021; 599: 120364.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120364] [PMID: 33571621]
[13]
Kalam MA, Alshamsan A. Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomed Pharmacother 2017; 94: 402-11.
[http://dx.doi.org/10.1016/j.biopha.2017.07.110] [PMID: 28772219]
[14]
Wu B, Li M, Li K, et al. Cell penetrating peptide TAT-functionalized liposomes for efficient ophthalmic delivery of flurbiprofen: Penetration and its underlying mechanism, retention, anti-inflammation and biocompatibility. Int J Pharm 2021; 598: 120405.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120405] [PMID: 33647409]
[15]
Xu J, Li X, Sun F. In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery. Drug Deliv 2011; 18(2): 150-8.
[http://dx.doi.org/10.3109/10717544.2010.522612] [PMID: 21043996]
[16]
Newa M, Bhandari KH, Kim JO, et al. Enhancement of solubility, dissolution and bioavailability of ibuprofen in solid dispersion systems. Chem Pharm Bull 2008; 56(4): 569-74.
[http://dx.doi.org/10.1248/cpb.56.569] [PMID: 18379109]
[17]
Okur NÜ, Yozgatli V, Okur ME. In vitro-in vivo evaluation of tetrahydrozoline-loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev Res 2020; 81(6): 716-27.
[http://dx.doi.org/10.1002/ddr.21677] [PMID: 32359095]
[18]
Zhu L, Ao J, Li P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: In vitro and in vivo evaluation. Drug Des Devel Ther 2015; 9: 3943-9.
[PMID: 26251573]
[19]
Shen T, Yang Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des Devel Ther 2021; 15: 2099-107.
[http://dx.doi.org/10.2147/DDDT.S308448] [PMID: 34040348]
[20]
Maulvi FA, Mangukiya MA, Patel PA, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: In vitro and in vivo evaluation. J Mater Sci Mater Med 2016; 27(6): 113.
[http://dx.doi.org/10.1007/s10856-016-5724-3] [PMID: 27178036]
[21]
Wu B, Feng J, Zeng T, et al. Flurbiprofen loaded thermosensitive nanohydrogel for ophthalmic anti-inflammatory therapy. J Drug Deliv Sci Technol 2022; 70: 103253.
[http://dx.doi.org/10.1016/j.jddst.2022.103253]
[22]
Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006; 3(2): 275-87.
[http://dx.doi.org/10.1517/17425247.3.2.275] [PMID: 16506953]
[23]
McKenzie B, Kay G. Eye gels for ophthalmic delivery. Expert Rev Ophthalmol 2015; 10(2): 127-33.
[http://dx.doi.org/10.1586/17469899.2015.1015993]
[24]
Destruel PL, Zeng N, Maury M, Mignet N, Boudy V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond. Drug Discov Today 2017; 22(4): 638-51.
[http://dx.doi.org/10.1016/j.drudis.2016.12.008] [PMID: 28017837]
[25]
Hodges MG, Keane-Myers AM. Classification of ocular allergy. Curr Opin Allergy Clin Immunol 2007; 7(5): 424-8.
[http://dx.doi.org/10.1097/ACI.0b013e3282ef6937] [PMID: 17873583]
[26]
Calder VL, Lackie PM. Basic science and pathophysiology of Ocular allergy. Curr Allergy Asthma Rep 2004; 4(4): 326-31.
[http://dx.doi.org/10.1007/s11882-004-0079-0] [PMID: 15175149]
[27]
Friberg TR. Seminars in ophthalmology. Semin Ophthalmol 1999; 14(1): 1.
[http://dx.doi.org/10.3109/08820539909056056]
[28]
Kubaisi B, Syeda S, Foster CS, et al. Ocular allergy: An updated review. J Allergy Immunol 2017; 1: 1-8.
[29]
Chen JJ, Applebaum DS, Sun GS, Pflugfelder SC. Atopic keratoconjunctivitis: A review. J Am Acad Dermatol 2014; 70(3): 569-75.
[http://dx.doi.org/10.1016/j.jaad.2013.10.036] [PMID: 24342754]
[30]
Lai Y, Sundar G, Ray M. Surgical treatment outcome of medically refractory huge giant papillary conjunctivitis. Am J Ophthalmol Case Rep 2017; 8: 22-4.
[http://dx.doi.org/10.1016/j.ajoc.2017.09.002] [PMID: 29260110]
[31]
Singhal D, Sahay P, Maharana PK, Raj N, Sharma N, Titiyal JS. Vernal Keratoconjunctivitis. Surv Ophthalmol 2019; 64(3): 289-311.
[http://dx.doi.org/10.1016/j.survophthal.2018.12.001] [PMID: 30550738]
[32]
Kimchi N, Bielory L. The allergic eye: Recommendations about pharmacotherapy and recent therapeutic agents. Curr Opin Allergy Clin Immunol 2020; 20(4): 414-20.
[http://dx.doi.org/10.1097/ACI.0000000000000669] [PMID: 32558665]
[33]
Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the ocular surface. Ocul Surf 2018; 16(2): 198-205.
[http://dx.doi.org/10.1016/j.jtos.2018.03.001] [PMID: 29510225]
[34]
Das AV, Basu S. Environmental and air pollution factors affecting allergic eye disease in children and adolescents in India. Int J Environ Res Public Health 2021; 18(11): 5611.
[http://dx.doi.org/10.3390/ijerph18115611] [PMID: 34073993]
[35]
Hwang M, Han S, Seo JW, Jeon KJ, Lee HS. Traffic-related particulate matter aggravates ocular allergic inflammation by mediating dendritic cell maturation. J Toxicol Environ Health A 2021; 84(16): 661-73.
[http://dx.doi.org/10.1080/15287394.2021.1922111] [PMID: 33998398]
[36]
Miyazaki D, Fukagawa K, Fukushima A, et al. Association of air pollution with severe ocular allergic inflammatory diseases. World Allergy Organ J 2020; 13(8): 100401.
[http://dx.doi.org/10.1016/j.waojou.2020.100401]
[37]
Leonardi A, Lanier B. Urban eye allergy syndrome: A new clinical entity? Curr Med Res Opin 2008; 24(8): 2295-302.
[http://dx.doi.org/10.1185/03007990802222774] [PMID: 18593516]
[38]
Chang CJ, Yang HH, Chang CA, Tsai HY. Relationship between air pollution and outpatient visits for nonspecific conjunctivitis. Invest Ophthalmol Vis Sci 2012; 53(1): 429-33.
[http://dx.doi.org/10.1167/iovs.11-8253] [PMID: 22205603]
[39]
Bourcier T, Viboud C, Cohen JC, et al. Effects of air pollution and climatic conditions on the frequency of ophthalmological emergency examinations. Br J Ophthalmol 2003; 87(7): 809-11.
[http://dx.doi.org/10.1136/bjo.87.7.809] [PMID: 12812873]
[40]
Bielory L, Lien KW, Bigelsen S. Efficacy and tolerability of newer antihistamines in the treatment of allergic conjunctivitis. Drugs 2005; 65(2): 215-28.
[http://dx.doi.org/10.2165/00003495-200565020-00004] [PMID: 15631542]
[41]
Hong J, Zhong T, Li H, et al. Ambient air pollution, weather changes and outpatient visits for allergic conjunctivitis: A retrospective registry study. Sci Rep 2016; 6(1): 23858.
[http://dx.doi.org/10.1038/srep23858] [PMID: 27033635]
[42]
Bhagat PR, Bhatt RB, Bhagat RG, Deshpande K. Allergic conjunctivitis – Does urbanization influence? J Evol Med Dent Sci 2013; 2(38): 7280-7.
[http://dx.doi.org/10.14260/jemds/1294]
[43]
Mimura T, Usui T, Mori M, Funatsu H, Noma H, Amano S. Rapid immunochromatographic measurement of specific tear immunoglobulin E in moderate to severe cases of allergic conjunctivitis with Immfast Check J1 in the spring. Cornea 2011; 30(5): 524-7.
[http://dx.doi.org/10.1097/ICO.0b013e3181f23932] [PMID: 21045641]
[44]
Mashige KP. Ocular allergy. Health SA 2017; 22: 112-22.
[http://dx.doi.org/10.1016/j.hsag.2016.07.001]
[45]
Bielory L. Update on ocular allergy treatment. Expert Opin Pharmacother 2002; 3(5): 541-53.
[http://dx.doi.org/10.1517/14656566.3.5.541] [PMID: 11996633]
[46]
Leonardi A. Emerging drugs for ocular allergy. Expert Opin Emerg Drugs 2005; 10(3): 505-20.
[http://dx.doi.org/10.1517/14728214.10.3.505] [PMID: 16083326]
[47]
Račić A, Čalija B, Milić J, et al. Formulation of olopatadine hydrochloride viscous eye drops – physicochemical, biopharmaceutical and efficacy assessment using in vitro and in vivo approaches. Eur J Pharm Sci 2021; 166: 105906.
[http://dx.doi.org/10.1016/j.ejps.2021.105906] [PMID: 34118409]
[48]
Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126: 113-26.
[http://dx.doi.org/10.1016/j.addr.2017.12.017] [PMID: 29288733]
[49]
Chandrasekaran R, Thailambal VG. The influence of calcium ions, acetate and l-glycerate groups on the gellan double-helix. Carbohydr Polym 1990; 12(4): 431-42.
[http://dx.doi.org/10.1016/0144-8617(90)90092-7]
[50]
Swift T, Swanson L, Geoghegan M, Rimmer S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 2016; 12(9): 2542-9.
[http://dx.doi.org/10.1039/C5SM02693H] [PMID: 26822456]
[51]
Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001; 73(2-3): 205-11.
[http://dx.doi.org/10.1016/S0168-3659(01)00279-6] [PMID: 11516498]
[52]
Almeida H, Amaral MH, Lobão P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview. Expert Opin Drug Deliv 2013; 10(9): 1223-37.
[http://dx.doi.org/10.1517/17425247.2013.796360] [PMID: 23688342]
[53]
Nisha Shetty G, Charyulu RN. A study on stability and in vivo drug release of naphazoline and antazoline in situ gelling systems for ocular delivery. Int J Pharma Bio Sci 2013; 4: 161-71.
[54]
Güven UM, Berkman MS, Şenel B, Yazan Y. Development and in vitro/in vivo evaluation of thermo-sensitive in situ gelling systems for ocular allergy. Braz J Pharm Sci 2019; 55: e17511.
[http://dx.doi.org/10.1590/s2175-97902019000117511]
[55]
Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. Int J Pharm 2019; 554: 264-75.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.016] [PMID: 30423418]
[56]
Regu VPR, Behera D, Sunkara SP, et al. Ocular delivery of metformin for sustained release and in vivo efficacy. J Pharm Sci 2023; 112(9): 2494-505.
[http://dx.doi.org/10.1016/j.xphs.2023.04.002] [PMID: 37031863]
[57]
Administration USF and D. Inactive ingredient search for approved drug products (homepage on the internet). US food and drug administration. 2020. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm (Accessed on 2022 Mar 30).
[58]
Noecker R. Effects of common ophthalmic preservatives on ocular health. Adv Ther 2001; 18(5): 205-15.
[http://dx.doi.org/10.1007/BF02853166] [PMID: 11783457]
[59]
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016; 1(12): 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[60]
Fathi M, Barar J, Aghanejad A, Omidi Y. Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 2015; 5(4): 159-64.
[http://dx.doi.org/10.15171/bi.2015.31] [PMID: 26929918]
[61]
Wen J, Al Galloni M, Yin N, et al. Liposomes and Niosomes. Emulsion-based systems for delivery of food active compounds: Formation, application, health and safety. John Wiley & Sons 2018; pp. 263-92.
[http://dx.doi.org/10.1002/9781119247159.ch10]
[62]
Chen X, Li X, Zhou Y, et al. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: Preparation, characterization, and in vivo evaluation. J Biomater Appl 2012; 27(4): 391-402.
[http://dx.doi.org/10.1177/0885328211406563] [PMID: 21750179]
[63]
Mofidfar M, Abdi B, Ahadian S, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607: 120924.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120924] [PMID: 34324989]
[64]
Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci 2008; 85(8): E715-25.
[http://dx.doi.org/10.1097/OPX.0b013e3181824dc4] [PMID: 18677227]
[65]
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med 2022; 8: 787644.
[http://dx.doi.org/10.3389/fmed.2021.787644] [PMID: 35155469]
[66]
Deepthi S, Jose J. Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis. Int Ophthalmol 2019; 39(6): 1355-66.
[http://dx.doi.org/10.1007/s10792-018-0955-6] [PMID: 29922978]
[67]
Ross M, Hicks EA, Rambarran T, Sheardown H. Thermo-sensitivity and erosion of chitosan crosslinked poly[N-isopropylacrylamide-co-(acrylic acid)-co-(methyl methacrylate)] hydrogels for application to the inferior fornix. Acta Biomater 2022; 141: 151-63.
[http://dx.doi.org/10.1016/j.actbio.2022.01.043] [PMID: 35081434]
[68]
Choi S, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: A review. Materials 2018; 11(7): 1125-45.
[http://dx.doi.org/10.3390/ma11071125] [PMID: 29966397]
[69]
Moreddu R, Vigolo D, Yetisen AK. Contact lens technology: From fundamentals to applications. Adv Healthc Mater 2019; 8(15): 1900368.
[http://dx.doi.org/10.1002/adhm.201900368] [PMID: 31183972]
[70]
Zhang J, Qian S, Chen L, et al. Antifouling and antibacterial zwitterionic hydrogels as soft contact lens against ocular bacterial infections. Eur Polym J 2022; 167: 111037.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111037]
[71]
Venkatesh S, Sizemore SP, Byrne ME. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics. Biomaterials 2007; 28(4): 717-24.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.007] [PMID: 17007923]
[72]
Patil AV, Mahajan HS. Modified pea starch based ocular films of azelastine hydrochloride: Development and characterization. Carbohydr Polym Technol Appl 2021; 2: 100078.
[http://dx.doi.org/10.1016/j.carpta.2021.100078]
[73]
Nguyen DCT, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Pharmaceutical-loaded contact lenses as an ocular drug delivery system: A review of critical lens characterization methodologies with reference to ISO standards. Cont Lens Anterior Eye 2021; 44(6): 101487.
[http://dx.doi.org/10.1016/j.clae.2021.101487] [PMID: 34353748]
[74]
Dandagi PM, Manvi FV, Patil MB, et al. Development and evaluation of ocular films of cromolyn sodium. Indian J Pharm Sci 2004; 66: 309-12.
[75]
Polat HK, Bozdağ Pehlivan S, Özkul C, et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585: 119552.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119552] [PMID: 32569814]
[76]
Sahoo S, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[77]
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019; 24(8): 1524-38.
[http://dx.doi.org/10.1016/j.drudis.2019.05.006] [PMID: 31102733]
[78]
Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 2010; 7(2): 576-85.
[http://dx.doi.org/10.1021/mp900279c] [PMID: 20163167]
[79]
Ibrahim Bekraki A. Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment. Nanotechnology Based Approaches for Tuberculosis Treatment. Academic Press 2020; pp. 107-22.
[http://dx.doi.org/10.1016/B978-0-12-819811-7.00007-2]
[80]
Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv 2016; 23(4): 1075-91.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[81]
Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. J Control Release 2000; 63(1-2): 135-40.
[http://dx.doi.org/10.1016/S0168-3659(99)00192-3] [PMID: 10640587]
[82]
Bartelds R, Nematollahi MH, Pols T, et al. Niosomes, an alternative for liposomal delivery. PLoS One 2018; 13(4): e0194179.
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[83]
Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: An approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in- vivo pharmacodynamic study. Drug Deliv 2019; 26(1): 509-21.
[http://dx.doi.org/10.1080/10717544.2019.1609622] [PMID: 31090464]
[84]
Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv 2021; 18(1): 55-71.
[http://dx.doi.org/10.1080/17425247.2020.1822322] [PMID: 32903034]
[85]
Aparajay P, Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2022; 168: 106052.
[http://dx.doi.org/10.1016/j.ejps.2021.106052] [PMID: 34740786]
[86]
Eid HM, Naguib IA, Alsantali RI, Alsalahat I, Hegazy AM. Novel chitosan-coated niosomal formulation for improved management of bacterial conjunctivitis: A highly permeable and efficient ocular nanocarrier for azithromycin. J Pharm Sci 2021; 110(8): 3027-36.
[http://dx.doi.org/10.1016/j.xphs.2021.04.020] [PMID: 33940026]
[87]
El-Sayed MM, Hussein AK, Sarhan HA, Mansour HF. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor. Drug Dev Ind Pharm 2017; 43(6): 902-10.
[http://dx.doi.org/10.1080/03639045.2016.1272120] [PMID: 27977311]
[88]
Yasamineh S, Yasamineh P, Ghafouri Kalajahi H, et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 2022; 624: 121878.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121878] [PMID: 35636629]
[89]
Lu H, Zhang S, Wang J, Chen Q. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr 2021; 8: 783831.
[http://dx.doi.org/10.3389/fnut.2021.783831] [PMID: 34926557]
[90]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[91]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[92]
Güven UM, Başaran E. In vitro-in vivo evaluation of olopatadine incorporated chitosan nanoparticles for the treatment of ocular allergy. J Drug Deliv Sci Technol 2021; 64: 102518.
[http://dx.doi.org/10.1016/j.jddst.2021.102518]
[93]
Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: A promising system in novel drug delivery. Chem Pharm Bull 2010; 58(11): 1423-30.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[94]
Güven UM, Yenilmez E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: Nanosuspension formulation and in vitro-in vivo evaluation. J Drug Deliv Sci Technol 2019; 51: 506-12.
[http://dx.doi.org/10.1016/j.jddst.2019.03.016]
[95]
Mellert W, Deckardt K, Gembardt C, Hildebrand B, Schulte S. Carcinogenicity and chronic toxicity of copovidone (Kollidon VA 64) in Wistar rats and Beagle dogs. Food Chem Toxicol 2004; 42(10): 1573-87.
[http://dx.doi.org/10.1016/j.fct.2004.05.003] [PMID: 15304304]
[96]
Cong M, Wu Z, Xu X, et al. Novel oleyl amine-modified polymannuronic acid micelle loading tacrolimus for therapy of allergic conjunctivitis. Int J Biol Macromol 2017; 104(Pt A): 862-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.064] [PMID: 28655660]
[97]
Shah R, Eldridge D, Palombo E, et al. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Physiol Sci 2014; 25: 59-75.
[98]
Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 1999; 47(2): 125-32.
[http://dx.doi.org/10.1016/S0939-6411(98)00074-5] [PMID: 10234536]
[99]
Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56(9): 1257-72.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[100]
Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol 2016; 85: 258-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[101]
Aher S, Singh RP, Kumar M. Preparation and characterization of nano structured lipid carriers for ocular bacterial infection. J Pharm Res Int 2021; 33: 8-23.
[http://dx.doi.org/10.9734/jpri/2021/v33i40A32215]
[102]
Sun K, Hu K. Preparation and characterization of tacrolimus-loaded SLNs in situ gel for ocular drug delivery for the treatment of immune conjunctivitis. Drug Des Devel Ther 2021; 15: 141-50.
[http://dx.doi.org/10.2147/DDDT.S287721] [PMID: 33469266]
[103]
Ezzati Nazhad Dolatabadi J, Azami A, Mohammadi A, et al. Formulation, characterization and cytotoxicity evaluation of ketotifen-loaded nanostructured lipid carriers. J Drug Deliv Sci Technol 2018; 46: 268-73.
[http://dx.doi.org/10.1016/j.jddst.2018.05.017]
[104]
El-Emam GA, Girgis GNS, Hamed MF, El-Azeem Soliman OA, Abd El Gawad AEGH. Formulation and pathohistological study of mizolastine-solid lipid nanoparticles-loaded ocular hydrogels. Int J Nanomedicine 2021; 16: 7775-99.
[http://dx.doi.org/10.2147/IJN.S335482] [PMID: 34853513]
[105]
Agarwal P, Huang D, Thakur SS, et al. Nanotechnology for ocular drug delivery. Design of Nanostructures for Versatile Therapeutic Applications. 2018; pp. 137-88.
[http://dx.doi.org/10.1016/B978-0-12-813667-6.00004-8]
[106]
Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomedicine 2009; 5(4): 394-401.
[http://dx.doi.org/10.1016/j.nano.2009.02.003] [PMID: 19341814]
[107]
Ahmed S, Amin MM, Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023; 24(2): 66.
[http://dx.doi.org/10.1208/s12249-023-02516-9] [PMID: 36788150]
[108]
Lin KT, Wang A, Nguyen AB, Iyer J, Tran SD. Recent advances in hydrogels: Ophthalmic applications in cell delivery, vitreous substitutes, and ocular adhesives. Biomedicines 2021; 9(9): 1203.
[http://dx.doi.org/10.3390/biomedicines9091203] [PMID: 34572389]
[109]
Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, Ramanauskiene K. Formulation of ocular in situ gels with lithuanian royal jelly and their biopharmaceutical evaluation in vitro. Molecules 2021; 26(12): 3552.
[http://dx.doi.org/10.3390/molecules26123552] [PMID: 34200887]
[110]
Patel S, Tutchenko L. The refractive index of the human cornea: A review. Cont Lens Anterior Eye 2019; 42(5): 575-80.
[http://dx.doi.org/10.1016/j.clae.2019.04.018] [PMID: 31064697]
[111]
Park W, Nguyen VP, Jeon Y, et al. Biodegradable silicon nanoneedles for ocular drug delivery. Sci Adv 2022; 8(13): eabn1772.
[http://dx.doi.org/10.1126/sciadv.abn1772] [PMID: 35353558]
[112]
Bundoc VG, Keane-Myers A. Animal models of ocular allergy. Curr Opin Allergy Clin Immunol 2003; 3(5): 375-9.
[http://dx.doi.org/10.1097/00130832-200310000-00010] [PMID: 14501438]
[113]
Sebbag L, Mochel JP. An eye on the dog as the scientist’s best friend for translational research in ophthalmology: Focus on the ocular surface. Med Res Rev 2020; 40(6): 2566-604.
[http://dx.doi.org/10.1002/med.21716] [PMID: 32735080]
[114]
Mishra GP, Tamboli V, Jwala J, Mitra AK. Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. Recent Pat Inflamm Allergy Drug Discov 2011; 5(1): 26-36.
[http://dx.doi.org/10.2174/187221311794474883] [PMID: 21171952]
[115]
Labib BA, Chigbu DI. Therapeutic targets in allergic conjunctivitis. Pharmaceuticals 2022; 15(5): 547.
[http://dx.doi.org/10.3390/ph15050547] [PMID: 35631374]
[116]
Bielory L. Ocular allergy treatment. Immunol Allergy Clin North Am 2008; 28(1): 189-224, vii.
[http://dx.doi.org/10.1016/j.iac.2007.12.001] [PMID: 18282552]
[117]
Patel DS, Arunakirinathan M, Stuart A, Angunawela R. Allergic eye disease. BMJ 2017; 359: j4706.
[http://dx.doi.org/10.1136/bmj.j4706] [PMID: 29097360]
[118]
Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin 1992; 10(3): 505-12.
[http://dx.doi.org/10.1016/S0733-8635(18)30318-8] [PMID: 1617809]
[119]
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16(10): 885-906.
[http://dx.doi.org/10.1080/17425255.2020.1803278] [PMID: 32729364]
[120]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[121]
Raslan OA, Ozturk A, Pham N, Chang J, Strong EB, Bobinski M. Comprehensive review of cross-sectional imaging of the nasolacrimal drainage apparatus: What radiologists need to know. AJR Am J Roentgenol 2019; 213(6): 1331-40.
[http://dx.doi.org/10.2214/AJR.19.21507] [PMID: 31483141]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy