Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Green Synthesis of a Novel Phytoalexin Derivative: In Silico Profiling, Apoptotic Induction, and Antiproliferative Activity against MCF-7 cells - From Vineyards to Potent Anticancer Drug Molecule

Author(s): Lairikyengbam Deepti Roy and Jyotsna Kumar*

Volume 24, Issue 1, 2024

Published on: 02 November, 2023

Page: [66 - 76] Pages: 11

DOI: 10.2174/0118715206277144231031071220

Price: $65

conference banner
Abstract

Background: Resveratrol's structural similarity to commercialized anti-breast cancer medications such as Tamoxifen underlines its potential as a promising option for developing successful anti-breast cancer drugs. However, the pharmacokinetic issues associated with resveratrol, such as its low bioavailability, have piqued the attention of researchers in developing novel derivatives.

Methods: A novel phytoalexin derivative, RsvD1, was successfully synthesized using resveratrol extracted from green grape peels as a precursor to investigate its anti-breast cancer efficacy on Estrogen receptor (ER) positive and negative breast cancer cells.

Results: The comparative analysis revealed that RsvD1 exhibited remarkable radical scavenging ability (IC50 = 2.21 μg/mL), surpassing the control, Trolox (IC50 = 6.3 μg/mL). Furthermore, RsvD1 demonstrated enhanced and selective antiproliferative activity against ER-positive MCF-7 cells (IC50 = 20.09 μg/mL) compared to resveratrol, the parent molecule (IC50 = 30.90 μg/mL). Further investigations unveiled that RsvD1 induced apoptosis and DNA damage in MCF-7 cells, leading to cell cycle arrest at the G0/G1 phase after 24 hours of incubation. RTqPCR gene expression analysis indicated that RsvD1 down-regulated the CAXII (ER-dependent) genes. In silico predictions demonstrated that RsvD1 possesses promising potential as a drug candidate due to its drug-like characteristics and favourable ADMET profile. Moreover, molecular docking studies provided insights into the theoretical binding mode between RsvD1 and ERα protein.

Conclusion: The study highlights the therapeutic potential of the synthesized resveratrol derivative, RsvD1, positioning it as a promising scaffold for developing novel analogues with improved therapeutic properties and selectivity, specifically targeting ER+ breast cancer cells. Moreover, the compound's non-cytotoxic yet antiproliferative properties, coupled with its capability to induce programmed cell death and cell cycle arrest, enhance its potential as a highly effective drug candidate. As a result, this paves a promising path for the development of innovative and selective inhibitors targeting ER+ breast cancer with enhanced efficacy.

« Previous
Graphical Abstract

[1]
Alkabban, F.M.; Ferguson, T. Breast Cancer; StatPearls Publishing: Treasure Island, 2023.
[2]
Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[3]
Yang, M.F.; Yao, X.; Chen, L.M.; Gu, J.Y.; Yang, Z.H.; Chen, H.F.; Zheng, X.; Zheng, Z.T. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch. Pharm., 2020, 353(7), 2000044.
[http://dx.doi.org/10.1002/ardp.202000044] [PMID: 32342549]
[4]
Roy, L.D.; Kumar, J.; Jays, J.; Krishnamurthy, G.; Gour, P.; Arland, S.E. Novel resveratrol analogues with aromatic hetero moieties: Designing, one-pot synthesis and in vitro biological evaluation. Farmacia, 2023, 71(1), 130-143.
[http://dx.doi.org/10.31925/farmacia.2023.1.16]
[5]
Chen, F-P.; Chien, M-H. Phytoestrogens induce differential effects on both normal and malignant human breast cells in vitro. Climacteric, 2014, 17(6), 682-691.
[http://dx.doi.org/10.3109/13697137.2014.937688] [PMID: 24978400]
[6]
Wicklow, B.; Wittmeier, K. T′ Jong, G.W. McGavock, J.; Robert, M.; Duhamel, T.; Dolinsky, V.W. Proposed trial: Safety and efficacy of resveratrol for the treatment of non-alcoholic fatty liver disease (NAFLD) and associated insulin resistance in adolescents who are overweight or obese adolescents - rationale and protocol. Biochem. Cell Biol., 2015, 93(5), 522-530.
[http://dx.doi.org/10.1139/bcb-2014-0136] [PMID: 26305052]
[7]
Shi, X.P.; Miao, S.; Wu, Y.; Zhang, W.; Zhang, X.F.; Ma, H.Z.; Xin, H.L.; Feng, J.; Wen, A.D.; Li, Y. Resveratrol sensitizes tamoxifen in antiestrogen-resistant breast cancer cells with epithelial-mesenchymal transition features. Int. J. Mol. Sci., 2013, 14(8), 15655-15668.
[http://dx.doi.org/10.3390/ijms140815655] [PMID: 23896596]
[8]
Oh, W.Y.; Shahidi, F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem., 2018, 261, 267-273.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.085] [PMID: 29739593]
[9]
Turcov, D.; Barna, S.; Profire, L.; Iacob, A.T. Lisă G.; Puițel, A.C.; Zbranca, A.; Suteu, D. Physico-chemical characterization of the antioxidant mixture resveratrol-ferulic acid for applications in dermato-cosmetic products. Farmacia, 2022, 70(3), 410-416.
[http://dx.doi.org/10.31925/farmacia.2022.3.5]
[10]
Schmidt, B.; Ferreira, C.; Alves, P.C.L.; Silva, J.L.; Fialho, E. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci., 2020, 21(15), 5244.
[http://dx.doi.org/10.3390/ijms21155244] [PMID: 32721999]
[11]
Krishnamurthy, G.; Deepti Roy, L.; Kumar, J.; Gour, P.; Arland, S.E.; Prabu, M.; Gr, S.; Mt, S. Study of in-silico admet, molecular docking, and stability potential of synthesized novel tetrazole bearing curcumin derivatives and evaluation of their anticancer potential on panc-1 cell lines. Rasayan J. Chem., 2023, 16(1), 335-354.
[http://dx.doi.org/10.31788/RJC.2023.1618114]
[12]
Krishnamurthy, G.; Deepti Roy, L.; Kumar, J.; Gour, P.; Arland, S.E.; Rehman, N.; Gr, S.; Mt, S.; Shreenivas, M.T. Design, preparation, and in silico study of novel curcumin-biphenyl carbonitrile conjugate as novel anticancer drug molecules. Int. J. Appl. Pharm, 2023, 15(4), 143-159.
[http://dx.doi.org/10.22159/ijap.2023v15i4.45811]
[13]
Roy, L.D.; Kumar, J.; Krishnamurthy, G.; Gour, P.; Arland, S.E.; Rahman, N. Phytogenic one-pot synthesis and spectroscopic characterization of novel mono benzylated resveratrol hybrid molecule using extracted resveratrol from green grape peels: in silico ADMET study and in vitro antitumor activities against breast cancer cells. Curr. Bioact. Compd., 2023, 19(8), e110523216810.
[http://dx.doi.org/10.2174/1573407219666230511150434]
[14]
von Gadow, A.; Joubert, E.; Hansmann, C.F. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), alpha-tocopherol, BHT, and BHA. J. Agric. Food Chem., 1997, 45(3), 632-638.
[http://dx.doi.org/10.1021/jf960281n]
[15]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[16]
BD biosciences. BD biosciences FITC annexin V apoptosis detection kit I (technical data sheet, Catalog no.556547). Available From: https://www.bdbiosciences.com/content/bdb/paths/generate-tds-document.cn.556547.pdf
[17]
Cell Cycle Analysis by Propidium Iodide Staining.
[18]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0] [PMID: 3345800]
[19]
Singh, G.; Kumar, S.; Singh, P. A quick method to isolate RNA from wheat and other carbohydrate-rich seeds. Plant Mol. Biol. Report., 2003, 21(1), 93.
[http://dx.doi.org/10.1007/BF02773401]
[20]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[21]
Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol., 2003, 10(12), 980.
[http://dx.doi.org/10.1038/nsb1203-980] [PMID: 14634627]
[22]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[23]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[24]
De Angelis, M.; De Filippis, B.; Balaha, M.; Giampietro, L.; Miteva, M.T.; De Chiara, G.; Palamara, A.T.; Nencioni, L.; Mollica, A. Nitrostilbenes: Synthesis and biological evaluation as potential anti-Influenza virus agents. Pharmaceuticals, 2022, 15(9), 1061.
[http://dx.doi.org/10.3390/ph15091061] [PMID: 36145282]
[25]
Queiroz, A.N.; Gomes, B.A.Q.; Moraes, W.M., Jr; Borges, R.S. A theoretical antioxidant pharmacophore for resveratrol. Eur. J. Med. Chem., 2009, 44(4), 1644-1649.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.023] [PMID: 18976835]
[26]
Tavares, L.; Alves, P.M.; Ferreira, R.B.; Santos, C.N. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res. Notes, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-0500-4-3] [PMID: 21211020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy