Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Cancer-specific Nanomedicine Delivery Systems and the Role of the Tumor Microenvironment: A Critical Linkage

Author(s): Debarupa Dutta Chakraborty* and Prithviraj Chakraborty

Volume 14, Issue 2, 2024

Published on: 01 November, 2023

Page: [115 - 126] Pages: 12

DOI: 10.2174/0124681873270736231024060618

Price: $65

Abstract

Background: The tumour microenvironment (TME) affects tumour development in a crucial way. Infinite stromal cells and extracellular matrices located in the tumour form complex tissues. The mature TME of epithelial-derived tumours exhibits common features irrespective of the tumour's anatomical locale. TME cells are subjected to hypoxia, oxidative stress, and acidosis, eliciting an extrinsic extracellular matrix (ECM) adjustment initiating responses by neighbouring stromal and immune cells (triggering angiogenesis and metastasis).

Objective: This report delivers challenges associated with targeting the TME for therapeutic purposes, technological advancement attempts to enhance understanding of the TME, and debate on strategies for intervening in the pro-tumour microenvironment to boost curative benefits.

Conclusion: Therapeutic targeting of TME has begun as an encouraging approach for cancer treatment owing to its imperative role in regulating tumour progression and modulating treatment response.

Next »
Graphical Abstract

[1]
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74.
[http://dx.doi.org/10.1186/s12951-018-0398-2] [PMID: 30243297]
[2]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[3]
Chen B, Dai W, He B, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 2017; 7(3): 538-58.
[http://dx.doi.org/10.7150/thno.16684] [PMID: 28255348]
[4]
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[5]
Arneth B. Tumor microenvironment. Medicina 2019; 56(1): 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[6]
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23): 5591-6.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[7]
Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[8]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[9]
Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology 2015; 82(3-4): 142-52.
[http://dx.doi.org/10.1159/000430499] [PMID: 26330355]
[10]
Casey SC, Amedei A, Aquilano K, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35(Suppl)(Suppl.): S199-223.
[http://dx.doi.org/10.1016/j.semcancer.2015.02.007] [PMID: 25865775]
[11]
Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour microenvironment. Int J Cancer 2019; 145(10): 2611-8.
[http://dx.doi.org/10.1002/ijc.32343] [PMID: 30989643]
[12]
Witz IP. The tumor microenvironment: The making of a paradigm. Cancer Microenviron 2009; 2(S1) (Suppl. 1): 9-17.
[http://dx.doi.org/10.1007/s12307-009-0025-8] [PMID: 19701697]
[13]
Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1(1): 46-54.
[http://dx.doi.org/10.1038/35094059] [PMID: 11900251]
[14]
Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer 2018; 18(6): 359-76.
[http://dx.doi.org/10.1038/s41568-018-0006-7] [PMID: 29700396]
[15]
Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev 2008; 18(1): 27-34.
[http://dx.doi.org/10.1016/j.gde.2007.12.006] [PMID: 18282701]
[16]
Laconi E. The evolving concept of tumor microenvironments. BioEssays 2007; 29(8): 738-44.
[http://dx.doi.org/10.1002/bies.20606] [PMID: 17621638]
[17]
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[18]
Li H, Fan X, Houghton J. Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem 2007; 101(4): 805-15.
[http://dx.doi.org/10.1002/jcb.21159] [PMID: 17226777]
[19]
Witz IP. Tumor-microenvironment interactions: Dangerous liaisons. Adv Cancer Res 2008; 100: 203-29.
[http://dx.doi.org/10.1016/S0065-230X(08)00007-9 ] [PMID: 18620097]
[20]
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol 2020; 30(16): R921-5.
[http://dx.doi.org/10.1016/j.cub.2020.06.081] [PMID: 32810447]
[21]
Casey SC, Li Y, Fan AC, Felsher DW. Oncogene withdrawal engages the immune system to induce sustained cancer regression. J Immunother Cancer 2014; 2(1): 24.
[http://dx.doi.org/10.1186/2051-1426-2-24] [PMID: 25089198]
[22]
Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. Front Biosci 2007; 12(8-12): 3468-74.
[http://dx.doi.org/10.2741/2327] [PMID: 17485314]
[23]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-44.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[24]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[25]
Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016; 40: 41-8.
[http://dx.doi.org/10.1016/j.copbio.2016.02.007] [PMID: 26938687]
[26]
Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35: 40-7.
[http://dx.doi.org/10.1016/j.coph.2017.05.004] [PMID: 28577499]
[27]
Whiteside TL. The local tumor microenvironment. In: Kaufman HL, Wolchok JD, Eds. General Principles of Tumor Immunotherapy. Dordrecht: Springer Netherlands 2007; pp. 145-67.
[http://dx.doi.org/10.1007/978-1-4020-6087-8_7]
[28]
Whiteside TL, Vujanovic NL, Herberman RB. Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 1998; 230: 221-44.
[http://dx.doi.org/10.1007/978-3-642-46859-9_13] [PMID: 9586358]
[29]
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2003; 24: 232-3.
[PMID: 12401408]
[30]
Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13(13): 453-61.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[31]
Loukinova E, Dong G, Enamorado-Ayalya I, et al. Growth regulated oncogene-α expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC Receptor-2 dependent mechanism. Oncogene 2000; 19(31): 3477-86.
[http://dx.doi.org/10.1038/sj.onc.1203687] [PMID: 10918606]
[32]
Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm 2020; 1(1): 47-68.
[http://dx.doi.org/10.1002/mco2.6] [PMID: 34766109]
[33]
Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab 2017; 25(5): 1037-43.
[http://dx.doi.org/10.1016/j.cmet.2017.04.004] [PMID: 28467923]
[34]
Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017; 27(11): 863-75.
[http://dx.doi.org/10.1016/j.tcb.2017.06.003] [PMID: 28734735]
[35]
Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney cancer. Cancer Discov 2019; 9(8): 1006-21.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1354 ] [PMID: 31088840]
[36]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[37]
Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[38]
Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 1955; 102(5): 595-600.
[http://dx.doi.org/10.1084/jem.102.5.595] [PMID: 13271674]
[39]
Altman BJ, Stine ZE, Dang CV. Erratum: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer 2016; 16(11): 749.
[http://dx.doi.org/10.1038/nrc.2016.114] [PMID: 28704361]
[40]
Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983; 63(2): 547-605.
[http://dx.doi.org/10.1152/physrev.1983.63.2.547] [PMID: 6132422]
[41]
Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74-88.
[http://dx.doi.org/10.1038/s41568-019-0216-7] [PMID: 31686003]
[42]
Hatzivassiliou G, Zhao F, Bauer DE, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8(4): 311-21.
[http://dx.doi.org/10.1016/j.ccr.2005.09.008] [PMID: 16226706]
[43]
Corbet C, Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat Rev Cancer 2017; 17(10): 577-93.
[http://dx.doi.org/10.1038/nrc.2017.77] [PMID: 28912578]
[44]
Choi SYC, Collins CC, Gout PW, Wang Y. Cancer‐generated lactic acid: A regulatory, immunosuppressive metabolite? J Pathol 2013; 230(4): 350-5.
[http://dx.doi.org/10.1002/path.4218] [PMID: 23729358]
[45]
Parks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 13(9): 611-23.
[http://dx.doi.org/10.1038/nrc3579] [PMID: 23969692]
[46]
Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci 2019; 44(2): 153-66.
[http://dx.doi.org/10.1016/j.tibs.2018.10.011] [PMID: 30473428]
[47]
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157.
[http://dx.doi.org/10.1186/s12943-019-1089-9] [PMID: 31711497]
[48]
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11(6): 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[49]
Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018; 7(1): 10.
[http://dx.doi.org/10.1038/s41389-017-0011-9] [PMID: 29362402]
[50]
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559-63.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
[51]
Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140.
[http://dx.doi.org/10.3390/ijms20246140] [PMID: 31817513]
[52]
Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol 2020; 1232: 131-43.
[http://dx.doi.org/10.1007/978-3-030-34461-0_18] [PMID: 31893404]
[53]
Hatfield SM, Kjaergaard J, Lukashev D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 2015; 7(277): 277ra30.
[http://dx.doi.org/10.1126/scitranslmed.aaa1260] [PMID: 25739764]
[54]
Hasmim M, Messai Y, Ziani L, et al. Critical role of tumor microenvironment in shaping NK Cell functions: Implication of hypoxic stress. Front Immunol 2015; 6: 482.
[http://dx.doi.org/10.3389/fimmu.2015.00482] [PMID: 26441986]
[55]
Parodi M, Raggi F, Cangelosi D, et al. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol 2018; 9: 2358.
[http://dx.doi.org/10.3389/fimmu.2018.02358] [PMID: 30459756]
[56]
Lee JH, Elly C, Park Y, Liu YC. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 2015; 42(6): 1062-74.
[http://dx.doi.org/10.1016/j.immuni.2015.05.016] [PMID: 26084024]
[57]
Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36-50.
[http://dx.doi.org/10.1016/j.cmet.2019.06.001] [PMID: 31269428]
[58]
Liu C, Chikina M, Deshpande R, et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity 2019; 51(2): 381-397.e6.
[http://dx.doi.org/10.1016/j.immuni.2019.06.017] [PMID: 31350177]
[59]
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108-19.
[http://dx.doi.org/10.1038/s41590-017-0022-x] [PMID: 29348500]
[60]
Zhang J, Lu Y, Pienta KJ. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 2010; 102(8): 522-8.
[http://dx.doi.org/10.1093/jnci/djq044] [PMID: 20233997]
[61]
Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol 2018; 9: 1230.
[http://dx.doi.org/10.3389/fphar.2018.01230] [PMID: 30429787]
[62]
Chen F, Zhuang X, Lin L, et al. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med 2015; 13(1): 45.
[http://dx.doi.org/10.1186/s12916-015-0278-7] [PMID: 25857315]
[63]
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2014; 21(4): 345-57.
[http://dx.doi.org/10.1111/micc.12107] [PMID: 24267154]
[64]
Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314(1): 15-23.
[http://dx.doi.org/10.1007/s00441-003-0745-x] [PMID: 12883993]
[65]
Kang E, Shin JW. Pericyte-targeting drug delivery and tissue engineering. Int J Nanomedicine 2016; 11: 2397-406.
[http://dx.doi.org/10.2147/IJN.S105274] [PMID: 27313454]
[66]
Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 2017; 171: 30-42.
[http://dx.doi.org/10.1016/j.pharmthera.2016.11.008 ] [PMID: 27916653]
[67]
Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res 2015; 166: 193-226.
[http://dx.doi.org/10.1007/978-3-319-16555-4_9] [PMID: 25895870]
[68]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[69]
Bremnes RM, Dønnem T, Al-Saad S, et al. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011; 6(1): 209-17.
[http://dx.doi.org/10.1097/JTO.0b013e3181f8a1bd ] [PMID: 21107292]
[70]
Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15(6): 366-81.
[http://dx.doi.org/10.1038/s41571-018-0007-1] [PMID: 29651130]
[71]
Hughes CCW. Endothelial???stromal interactions in angiogenesis. Curr Opin Hematol 2008; 15(3): 204-9.
[http://dx.doi.org/10.1097/MOH.0b013e3282f97dbc ] [PMID: 18391786]
[72]
Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300-5.
[http://dx.doi.org/10.1091/mbc.e10-03-0251] [PMID: 21160071]
[73]
Xiong GF, Xu R. Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat 2016; 2(9): 357-64.
[http://dx.doi.org/10.20517/2394-4722.2016.08]
[74]
Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: The mechanics of cancer progression and aggression. Front Cell Dev Biol 2018; 6: 17.
[http://dx.doi.org/10.3389/fcell.2018.00017] [PMID: 29541636]
[75]
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4(2): 165-78.
[http://dx.doi.org/10.1242/dmm.004077] [PMID: 21324931]
[76]
Reid SE, Kay EJ, Neilson LJ, et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 2017; 36(16): 2373-89.
[http://dx.doi.org/10.15252/embj.201694912] [PMID: 28694244]
[77]
Holback H, Yeo Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011; 28(8): 1819-30.
[http://dx.doi.org/10.1007/s11095-010-0360-y] [PMID: 21213021]
[78]
Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci 2017; 18(5): 979.
[http://dx.doi.org/10.3390/ijms18050979] [PMID: 28471401]
[79]
Quail DF, Joyce JA. Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res 2017; 23(4): 876-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0133 ] [PMID: 27895033]
[80]
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114: 206-21.
[http://dx.doi.org/10.1016/j.addr.2017.04.010] [PMID: 28449873]
[81]
Pankova D, Chen Y, Terajima M, et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol Cancer Res 2016; 14(3): 287-95.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0307 ] [PMID: 26631572]
[82]
Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015; 36: 13-22.
[http://dx.doi.org/10.1016/j.ceb.2015.06.004] [PMID: 26183445]
[83]
Zhang B, Hu Y, Pang Z. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol 2017; 8: 952.
[http://dx.doi.org/10.3389/fphar.2017.00952] [PMID: 29311946]
[84]
Scallan J, Huxley VH, Korthuis RJ. Capillary fluid exchange: Regulation, functions, and pathology. San Rafael, CA: Morgan & Claypool Life Sciences 2010.
[85]
Omidi Y, Barar J. Targeting tumor microenvironment: Crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts 2014; 4(2): 55-67.
[PMID: 25035848]
[86]
Lunt SJ, Fyles A, Hill RP, Milosevic M. Interstitial fluid pressure in tumors: Therapeutic barrier and biomarker of angiogenesis. Future Oncol 2008; 4(6): 793-802.
[http://dx.doi.org/10.2217/14796694.4.6.793] [PMID: 19086846]
[87]
Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol Rev 2012; 92(3): 1005-60.
[http://dx.doi.org/10.1152/physrev.00037.2011] [PMID: 22811424]
[88]
Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing pressure in tumors: What do we know so far and where do we go from here? A review. Cancer Res 2014; 74(10): 2655-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3696 ] [PMID: 24778418]
[89]
Stylianopoulos T. The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 2017; 139(2): 021004.
[http://dx.doi.org/10.1115/1.4034991] [PMID: 27760260]
[90]
Baronzio G, Schwartz L, Kiselevsky M, et al. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res 2012; 32(2): 405-14.
[PMID: 22287726]
[91]
Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 2012; 7(6): e40006.
[http://dx.doi.org/10.1371/journal.pone.0040006] [PMID: 22768196]
[92]
Yu T, Liu K, Wu Y, et al. High interstitial fluid pressure promotes tumor cell proliferation and invasion in oral squamous cell carcinoma. Int J Mol Med 2013; 32(5): 1093-100.
[http://dx.doi.org/10.3892/ijmm.2013.1496] [PMID: 24043259]
[93]
Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5: 115.
[http://dx.doi.org/10.3389/fonc.2015.00115] [PMID: 26075182]
[94]
Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153: 107-24.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.006 ] [PMID: 26073310]
[95]
Wu M, Frieboes HB, McDougall SR, Chaplain MAJ, Cristini V, Lowengrub J. The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. J Theor Biol 2013; 320: 131-51.
[http://dx.doi.org/10.1016/j.jtbi.2012.11.031] [PMID: 23220211]
[96]
Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 2006; 4(2): 61-70.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0002 ] [PMID: 16513837]
[97]
Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies. Annu Rev Chem Biomol Eng 2011; 2(1): 281-98.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114300] [PMID: 22432620]
[98]
Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018; 4(4): 292-319.
[http://dx.doi.org/10.1016/j.trecan.2018.02.005] [PMID: 29606314]
[99]
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug Delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27(10): 2225-38.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437 ] [PMID: 27547843]
[100]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[101]
Aggarwal S. Targeted cancer therapies. Nat Rev Drug Discov 2010; 9(6): 427-8.
[http://dx.doi.org/10.1038/nrd3186] [PMID: 20514063]
[102]
Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834: 188-96.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[103]
Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019; 51(1): 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[104]
Yang KQ, Liu Y, Huang QH, et al. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer 2017; 17(1): 878.
[http://dx.doi.org/10.1186/s12885-017-3879-z]
[105]
Nandi P, Girish GV, Majumder M, Xin X, Tutunea-Fatan E, Lala PK. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer 2017; 17(1): 11.
[http://dx.doi.org/10.1186/s12885-016-3018-2] [PMID: 28056899]
[106]
Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 2017; 108(10): 1921-6.
[http://dx.doi.org/10.1111/cas.13336] [PMID: 28763139]
[107]
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20(3): 174-86.
[http://dx.doi.org/10.1038/s41568-019-0238-1] [PMID: 31980749]
[108]
Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465-72.
[http://dx.doi.org/10.1038/s41416-019-0648-6] [PMID: 31831859]
[109]
Nwosu ZC, Piorońska W, Battello N, et al. Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine 2020; 54: 102699.
[http://dx.doi.org/10.1016/j.ebiom.2020.102699] [PMID: 32330875]
[110]
Gupta SK, Singh P, Ali V, Verma M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol Rev 2020; 14(2): 448.
[http://dx.doi.org/10.4081/oncol.2020.448] [PMID: 32676170]
[111]
Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev 2021; 121(6): 3297-351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[112]
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nat Rev Urol 2020; 17(5): 292-307.
[http://dx.doi.org/10.1038/s41585-020-0298-8] [PMID: 32203305]
[113]
Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019; 19(10): 587-602.
[http://dx.doi.org/10.1038/s41568-019-0186-9] [PMID: 31492927]
[114]
Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: From micro- and nanotechnologies to computational and mathematical modeling. Chem Rev 2021; 121(6): 3352-89.
[http://dx.doi.org/10.1021/acs.chemrev.0c00356] [PMID: 33152247]
[115]
Frame FM, Noble AR, Klein S, et al. Tumor heterogeneity and therapy resistance-implications for future treatments of prostate cancer. J Cancer Metastasis Treat 2017; 3(12): 302-14.
[http://dx.doi.org/10.20517/2394-4722.2017.34]
[116]
Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 2014; 13(12): 877.
[http://dx.doi.org/10.1038/nrd4507] [PMID: 25435204]
[117]
Govers TM, Hessels D, Vlaeminck-Guillem V, et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: A comparative modeling study. Prostate Cancer Prostatic Dis 2019; 22(1): 101-9.
[http://dx.doi.org/10.1038/s41391-018-0076-3] [PMID: 30127462]
[118]
Walter FM, Emery JD, Mendonca S, et al. Symptoms and patient factors associated with longer time to diagnosis for colorectal cancer: Results from a prospective cohort study. Br J Cancer 2016; 115(5): 533-41.
[http://dx.doi.org/10.1038/bjc.2016.221] [PMID: 27490803]
[119]
Vine MF, Calingaert B, Berchuck A, Schildkraut JM. Characterization of prediagnostic symptoms among primary epithelial ovarian cancer cases and controls. Gynecol Oncol 2003; 90(1): 75-82.
[http://dx.doi.org/10.1016/S0090-8258(03)00175-6 ] [PMID: 12821345]
[120]
Umar AA, Atabo SM. A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat & Physiol 2019; 6(5): 175-83.
[121]
Koss LG. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 1989; 261(5): 737-43.
[http://dx.doi.org/10.1001/jama.1989.03420050087046 ] [PMID: 2642983]
[122]
Greegor DH. Occult blood testing for detection of asymptomatic colon cancer. Cancer 1971; 28(1): 131-4.
[http://dx.doi.org/10.1002/1097-0142(197107)28:1<131:AID-CNCR2820280125>3.0.CO;2-I] [PMID: 5110619]
[123]
Holmström B, Johansson M, Bergh A, Stenman UH, Hallmans G, Stattin P. Prostate specific antigen for early detection of prostate cancer: Longitudinal study. BMJ 2009; 339(sep24 1): b3537.
[http://dx.doi.org/10.1136/bmj.b3537] [PMID: 19778969]
[124]
Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 2014; 114(12): 6130-78.
[http://dx.doi.org/10.1021/cr200359p] [PMID: 24779710]
[125]
Chang Z, Zhou H, Yang C, et al. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B Mater Biol Med 2020; 8(23): 5019-25.
[http://dx.doi.org/10.1039/D0TB00403K] [PMID: 32393955]
[126]
He S, Li J, Chen M, et al. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int J Nanomedicine 2020; 15: 8451-63.
[http://dx.doi.org/10.2147/IJN.S265134] [PMID: 33149586]
[127]
Stern E, Vacic A, Rajan NK, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol 2010; 5(2): 138-42.
[http://dx.doi.org/10.1038/nnano.2009.353] [PMID: 20010825]
[128]
Dart A. Catching cancer. Nat Rev Cancer 2020; 20(6): 299.
[http://dx.doi.org/10.1038/s41568-020-0268-8] [PMID: 32358522]
[129]
Loynachan CN, Soleimany AP, Dudani JS, et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol 2019; 14(9): 883-90.
[http://dx.doi.org/10.1038/s41565-019-0527-6] [PMID: 31477801]
[130]
Salinas HR, Miyasato DL, Eremina OE, et al. A colorful approach towards developing new nano-based imaging contrast agents for improved cancer detection. Biomater Sci 2021; 9(2): 482-95.
[http://dx.doi.org/10.1039/D0BM01099E] [PMID: 32812951]
[131]
Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat Nanotechnol 2017; 12(12): 1169-75.
[http://dx.doi.org/10.1038/nnano.2017.176] [PMID: 28892102]
[132]
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017; 2(7): 17024.
[http://dx.doi.org/10.1038/natrevmats.2017.24] [PMID: 29075517]
[133]
Liu D, Zhou Z, Wang X, et al. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020; 244: 119979.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119979 ] [PMID: 32200104]
[134]
Bitonto V, Alberti D, Ruiu R, Aime S, Geninatti Crich S, Cutrin JC. L-ferritin: A theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020; 319: 300-10.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.051] [PMID: 31899271]
[135]
Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and nanomaterials-based recent approaches in upgraded targeting and management of cancer: A review. Cancers 2022; 15(1): 162.
[http://dx.doi.org/10.3390/cancers15010162] [PMID: 36612158]
[136]
Liu Y, Ji X, Tong WWL, et al. Engineering multifunctional rnai nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed 2018; 57(6): 1510-3.
[http://dx.doi.org/10.1002/anie.201710144] [PMID: 29276823]
[137]
Yu W, Lin R, He X, et al. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm Sin B 2021; 11(9): 2924-36.
[http://dx.doi.org/10.1016/j.apsb.2021.04.006] [PMID: 34589405]
[138]
Zhang J, Huang L, Ge G, Hu K. Emerging epigenetic‐based nanotechnology for cancer therapy: Modulating the tumor microenvironment. Adv Sci 2023; 10(7): 2206169.
[http://dx.doi.org/10.1002/advs.202206169] [PMID: 36599655]
[139]
Wu P, Han J, Gong Y, Liu C, Yu H, Xie N. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics 2022; 14(10): 1990.
[http://dx.doi.org/10.3390/pharmaceutics14101990 ] [PMID: 36297426]
[140]
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor microenvironment regulation and cancer targeting therapy based on nanoparticles. J Funct Biomater 2023; 14(3): 136.
[http://dx.doi.org/10.3390/jfb14030136] [PMID: 36976060]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy