Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Energy-efficient Approach to Multicomponent Reaction for the Synthesis of Therapeutically Relevant Heterocycles

Author(s): Ritwik Roy, Rahul Kumar, Md. Nurul Ansari, Gauri S. Deshmukh, Animesh Kumar Rai, Garima Tripathi and Abhijeet Kumar*

Volume 27, Issue 20, 2023

Published on: 01 November, 2023

Page: [1762 - 1778] Pages: 17

DOI: 10.2174/0113852728264863231017071522

Price: $65

conference banner
Abstract

Multi-component reactions have been used as an important synthetic strategy for the synthesis of diverse varieties of therapeutically useful heterocyclic scaffolds. High atom economy, one-pot reaction, and involvement of synthetically simple steps are some of the interesting features that make MCRs greener compared to conventional methods. The development of environmentally benign and eco-friendly synthetic methods has been a very demanding area of research in the past few decades. In particular, the development of energyefficient methods has attracted the attention of the research community due to heavy dependence on non-renewable energy resources, which is depleting fast. Therefore, the present review has highlighted the multi-component reactions developed under the energy efficient protocol, which mainly include the reactions developed under the microwave, ultra-sonication, mechanochemical, and photochemical reaction conditions for the synthesis of therapeutically relevant heterocycles.

Graphical Abstract

[1]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[2]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[3]
Tripathi, G.; Kumar, A.; Rajkhowa, S.; Tiwari, V.K. Synthesis of Biologically Relevant Heterocyclic Skeletons under Solvent-Free Condition. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2021; pp. 421-459.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00013-3]
[4]
Kumar, A.; Singh, A.K.; Tripathi, G. Phytochemicals as potential curative agents against viral infection: A review. Curr. Org. Chem., 2020, 24(20), 2356-2366.
[http://dx.doi.org/10.2174/1385272824999200910093524]
[5]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry, 3rd ed; , 2010.
[6]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[7]
Rezaei, A.; Ghorbani-Choghamarani, A.; Tahmasbi, B. Synthesis and characterization of nickel metal-organic framework including 4,6-diamino-2-mercaptopyrimidine and its catalytic application in organic reactions. Catal. Lett., 2023, 153(7), 2005-2017.
[http://dx.doi.org/10.1007/s10562-022-04135-8]
[8]
Tiwari, V.K.; Kumar, A.; Rajkhowa, S.; Tripathi, G.; Singh, A.K. Green Solvents: Application in Organic Synthesis. In: Green Chemistry: Introduction, Application and Scope; , 2022; pp. 79-11.
[9]
Oliver Kappe, C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev., 2008, 37(6), 1127-1139.
[http://dx.doi.org/10.1039/b803001b] [PMID: 18497926]
[10]
Vinod, K.A.K.S. Green Chemistry: Introduction; Application and Scope, 2022.
[11]
Mandal, B. Alternate energy sources for sustainable organic synthesis. ChemistrySelect, 2019, 4(28), 8301-8310.
[http://dx.doi.org/10.1002/slct.201901653]
[12]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[13]
Moseley, J.D.; Kappe, C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem., 2011, 13(4), 794-806.
[http://dx.doi.org/10.1039/c0gc00823k]
[14]
Fairoosa, J.; Saranya, S.; Radhika, S.; Anilkumar, G. Recent advances in microwave assisted multicomponent reactions. ChemistrySelect, 2020, 5(17), 5180-5197.
[http://dx.doi.org/10.1002/slct.202000683]
[15]
Bosica, G.; Cachia, F.; De Nittis, R.; Mariotti, N. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via a three-component biginelli reaction. Molecules, 2021, 26(12), 3753.
[http://dx.doi.org/10.3390/molecules26123753] [PMID: 34202951]
[16]
Kappe, C.O.; Kumar, D.; Varma, R.S. Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4- dihydropyrimidin-2(1h)-ones using a solventless biginelli condensation protocol. synthesis; Stuttg, 1999, pp. 1799-1803.
[17]
Xavier, A.L.; Simas, A.M.; Falcão, E.P.S.; dos Anjos, J.V. Antinociceptive pyrimidine derivatives: Aqueous multicomponent microwave assisted synthesis. Tetrahedron Lett., 2013, 54(26), 3462-3465.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.099]
[18]
Nakhi, A.; Srinivas, P.T.V.A.; Rahman, M.S.; Kishore, R.; Seerapu, G.P.K.; Lalith Kumar, K.; Haldar, D.; Rao, M.V.B.; Pal, M. Amberlite IR-120H catalyzed MCR: Design, synthesis and crystal structure analysis of 1,8-dioxodecahydroacridines as potential inhibitors of sirtuins. Bioorg. Med. Chem. Lett., 2013, 23(6), 1828-1833.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.026] [PMID: 23395632]
[19]
Shi, D.Q.; Shi, J.W.; Yao, H. Three-component one-pot synthesis of polyhydroacrodine derivatives in aqueous media. Synth. Commun., 2009, 39(4), 664-675.
[http://dx.doi.org/10.1080/00397910802431057]
[20]
Murugan, P.; Shanmugasundaram, P.; Ramakrishnan, V.T.; Venkatachalapathy, B.; Srividya, N.; Ramamurthy, P.; Gunasekaran, K.; Velmurugan, D. Synthesis and laser properties of 9-alkyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives. J. Chem. Soc., Perkin Trans. 2, 1998, (4), 999-1004.
[http://dx.doi.org/10.1039/a701401e]
[21]
Faidallah, H.; Al-Shaikh, K.; Sobahi, T.; Khan, K.; Asiri, A. An efficient approach to the synthesis of highly congested 9,10-dihydrophenanthrene-2,4-dicarbonitriles and their biological evaluation as antimicrobial agents. Molecules, 2013, 18(12), 15704-15716.
[http://dx.doi.org/10.3390/molecules181215704] [PMID: 24352023]
[22]
Yadav, U.; Vanjari, Y.; Laxmikeshav, K.; Tokala, R.; Niggula, P.K.; Kumar, M.; Talla, V.; Kamal, A.; Shankaraiah, N. Synthesis and in vitro cytotoxicity evaluation of phenanthrene linked 2,4- thiazolidinediones as potential anticancer agents. Anticancer. Agents Med. Chem., 2021, 21(9), 1127-1140.
[http://dx.doi.org/10.2174/1871520620666200714142931] [PMID: 32664846]
[23]
Zheng, Y.; Liu, Y.; Wang, Q. Collective asymmetric synthesis of (-)-antofine, (-)-cryptopleurine, (-)-tylophorine, and (-)-tylocrebrine with tert-butanesulfinamide as a chiral auxiliary. J. Org. Chem., 2014, 79(8), 3348-3357.
[http://dx.doi.org/10.1021/jo500013e] [PMID: 24679059]
[24]
Kumar, N.P.; Sharma, P.; Reddy, T.S.; Shankaraiah, N.; Bhargava, S.K.; Kamal, A. Microwave-assisted one-pot synthesis of new phenanthrene fused-tetrahydrodibenzo-acridinones as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2018, 151, 173-185.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.069] [PMID: 29609122]
[25]
Fauq, A.H.; Simpson, K.; Maharvi, G.M.; Golde, T.; Das, P. A multigram chemical synthesis of the γ-secretase inhibitor LY411575 and its diastereoisomers. Bioorg. Med. Chem. Lett., 2007, 17(22), 6392-6395.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.062] [PMID: 17897827]
[26]
Mehta, V.P.; Modha, S.G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.A.; Van der Eycken, E. A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: Synthesis and biological evaluation. J. Org. Chem., 2011, 76(8), 2828-2839.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
[27]
Shaabani, A.; Maleki, A.; Mofakham, H.; Moghimi-Rad, J. A novel one-pot pseudo-five-component synthesis of 4,5,6,7-tetrahydro-1H-1,4-diazepine-5-carboxamide derivatives. J. Org. Chem., 2008, 73(10), 3925-3927.
[http://dx.doi.org/10.1021/jo8002612] [PMID: 18393459]
[28]
Mwande-Maguene, G.; Jakhlal, J.; Lekana-Douki, J.B.; Mouray, E.; Bousquet, T.; Pellegrini, S.; Grellier, P.; Ndouo, F.S.T.; Lebibi, J.; Pelinski, L. One-pot microwave-assisted synthesis and antimalarial activity of ferrocenyl benzodiazepines. New J. Chem., 2011, 35(11), 2412-2415.
[http://dx.doi.org/10.1039/c1nj20551j]
[29]
Roggo, B.; Petersen, F.; Delmendo, R.; Jenny, H.B.; Peter, H.H.; Roesel, J. 3-Alkanoyl-5-hydroxymethyl tetronic acid homologues and resistomycin: New inhibitors of HIV-1 protease. I. Fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1994, 47(2), 136-142.
[http://dx.doi.org/10.7164/antibiotics.47.136] [PMID: 8150707]
[30]
Savina, S.A.; Lyubchanskaya, V.M.; Alekseeva, L.M.; Shashkov, A.S.; Granik, V.G. Synthesis of novel furoquinolines and furobenzodiazepines from tetronic acid. Russ. Chem. Bull., 2007, 56(11), 2298-2304.
[http://dx.doi.org/10.1007/s11172-007-0363-y]
[31]
Wang, S.L.; Cheng, C.; Wu, F.Y.; Jiang, B.; Shi, F.; Tu, S.J.; Rajale, T.; Li, G. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67(25), 4485-4493.
[http://dx.doi.org/10.1016/j.tet.2011.05.002] [PMID: 21731115]
[32]
Somei, M.; Yamada, F. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2004, 21(2), 278-311.
[http://dx.doi.org/10.1039/b212257j] [PMID: 15042150]
[33]
Arisawa, M.; Kasaya, Y.; Obata, T.; Sasaki, T.; Nakamura, T.; Araki, T.; Yamamoto, K.; Sasaki, A.; Yamano, A.; Ito, M.; Abe, H.; Ito, Y.; Shuto, S. Design and synthesis of indomethacin analogues that inhibit P-glycoprotein and/or multidrug resistant protein without COX inhibitory activity. J. Med. Chem., 2012, 55(18), 8152-8163.
[http://dx.doi.org/10.1021/jm301084z] [PMID: 22916727]
[34]
Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensäure. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2241-2245.
[http://dx.doi.org/10.1002/cber.188301602141]
[35]
Würtz, S.; Rakshit, S.; Neumann, J.J.; Dröge, T.; Glorius, F. Palladium-catalyzed oxidative cyclization of N-aryl enamines: From anilines to indoles. Angew. Chem. Int. Ed., 2008, 47(38), 7230-7233.
[http://dx.doi.org/10.1002/anie.200802482] [PMID: 18702071]
[36]
Stuart, D.R.; Bertrand-Laperle, M.; Burgess, K.M.N.; Fagnou, K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J. Am. Chem. Soc., 2008, 130(49), 16474-16475.
[http://dx.doi.org/10.1021/ja806955s] [PMID: 19554684]
[37]
Fukuyama, T.; Chen, X.; Peng, G. A novel tin-mediated indole synthesis. J. Am. Chem. Soc., 1994, 116(7), 3127-3128.
[http://dx.doi.org/10.1021/ja00086a054]
[38]
Lin, W.; Zheng, Y.X.; Xun, Z.; Huang, Z.B.; Shi, D.Q. Microwave-assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. ACS Comb. Sci., 2017, 19(11), 708-713.
[http://dx.doi.org/10.1021/acscombsci.7b00126] [PMID: 28985045]
[39]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones(1). Bioorg. Med. Chem. Lett., 1993, 3(2), 225-230.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[40]
Peng, C.; Ren, J.; Xiao, J.A.; Zhang, H.; Yang, H.; Luo, Y. Additive-assisted regioselective 1,3-dipolar cycloaddition of azomethine ylides with benzylideneacetone. Beilstein J. Org. Chem., 2014, 10, 352-360.
[http://dx.doi.org/10.3762/bjoc.10.33] [PMID: 24605156]
[41]
Mali, P.R.; Chandrasekhara Rao, L.; Bangade, V.M.; Shirsat, P.K.; George, S.A. Jagadeesh babu, N.; Meshram, H.M. A convenient and rapid microwave-assisted synthesis of spirooxindoles in aqueous medium and their antimicrobial activities. New J. Chem., 2016, 40(3), 2225-2232.
[http://dx.doi.org/10.1039/C5NJ02126J]
[42]
De, S.; Adhikari, S.; Tilak-Jain, J.; Menon, V.P.; Devasagayam, T.P.A. Antioxidant activity of an aminothiazole compound: Possible mechanisms. Chem. Biol. Interact., 2008, 173(3), 215-223.
[http://dx.doi.org/10.1016/j.cbi.2008.03.011] [PMID: 18466888]
[43]
Narayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S.; Sarojini, B.K. Synthesis of some new 5-(2-substituted-1,3-thiazol-5-yl)-2-hydroxy benzamides and their 2-alkoxy derivatives as possible antifungal agents. Eur. J. Med. Chem., 2004, 39(10), 867-872.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.003] [PMID: 15464620]
[44]
Dawood, K.M.; Abdel-Gawad, H.; Rageb, E.A.; Ellithey, M.; Mohamed, H.A. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg. Med. Chem., 2006, 14(11), 3672-3680.
[http://dx.doi.org/10.1016/j.bmc.2006.01.033] [PMID: 16464601]
[45]
Shiradkar, M.; Suresh Kumar, G.V.; Dasari, V.; Tatikonda, S.; Akula, K.C.; Shah, R. Clubbed triazoles: A novel approach to antitubercular drugs. Eur. J. Med. Chem., 2007, 42(6), 807-816.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.001] [PMID: 17239490]
[46]
Gürsoy, E.; Güzeldemirci, N.U. Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2007, 42(3), 320-326.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.012] [PMID: 17145120]
[47]
Wagare, D.S.; Netankar, P.D.; Shaikh, M.; Farooqui, M.; Durrani, A. Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ. Chem. Lett., 2017, 15(3), 475-479.
[http://dx.doi.org/10.1007/s10311-017-0619-1]
[48]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[49]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[50]
Kulkarni, A.; Török, B. Microwave-assisted multicomponent domino cyclization–aromatization: An efficient approach for the synthesis of substituted quinolines. Green Chem., 2010, 12(5), 875-887.
[http://dx.doi.org/10.1039/c001076f]
[51]
Chao, J.; Terkeltaub, R. A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout. Curr. Rheumatol. Rep., 2009, 11(2), 135-140.
[http://dx.doi.org/10.1007/s11926-009-0019-z] [PMID: 19296886]
[52]
Kow, K.K.; Dolzhenko, A.V. Advances in the synthesis of 1,2,4-triazolo[1,5-a][1,3,5]triazines (5-azapurines) and their biological activity. Heterocycles, 2019, 98, 175-203.
[http://dx.doi.org/10.3987/REV-18-901]
[53]
Lim, F.P.L.; Low, S.T.; Ho, E.L.K.; Halcovitch, N.R.; Tiekink, E.R.T.; Dolzhenko, A.V. A multicomponent reaction of 2-aminoimidazoles: Microwave-assisted synthesis of novel 5-aza-7-deaza-adenines. RSC Advances, 2017, 7(81), 51062-51068.
[http://dx.doi.org/10.1039/C7RA11305F]
[54]
Crum, L.A. Sonoluminescence, sonochemistry, and sonophysics. J. Acoust. Soc. Am., 1994, 95(1), 559-562.
[http://dx.doi.org/10.1121/1.408351]
[55]
Cintas, P.; Luche, J.L. Green chemistry. Green Chem., 1999, 1(3), 115-125.
[http://dx.doi.org/10.1039/a900593e]
[56]
Donohue, S.R.; Halldin, C.; Pike, V.W. A facile and regioselective synthesis of rimonabant through an enamine-directed 1,3-dipolar cycloaddition. Tetrahedron Lett., 2008, 49(17), 2789-2791.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.132]
[57]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D.; Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[58]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[59]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014(16), 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[60]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[61]
Khare, S.P.; Deshmukh, T.R.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3-c]pyrazoles as antifungal and antioxidant agent. Synth. Commun., 2019, 49(19), 2521-2537.
[http://dx.doi.org/10.1080/00397911.2019.1631849]
[62]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch. Pharm. (Weinheim), 2006, 339(8), 456-460.
[http://dx.doi.org/10.1002/ardp.200600057] [PMID: 16795107]
[63]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(3), 708-712.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[64]
Wermuth, C.G. Search for new lead compounds: The example of the chemical and pharmacological dissection of aminopyridazines. J. Heterocycl. Chem., 1998, 35(5), 1091-1100.
[http://dx.doi.org/10.1002/jhet.5570350508]
[65]
Eftekhari-Sis, B.; Vahdati-Khajeh, S. Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. Curr. Chem. Lett., 2013, 2(2), 85-92.
[http://dx.doi.org/10.5267/j.ccl.2013.02.002]
[66]
Reddy, L.A.; Chakraborty, S.; Swapna, R.; Bhalerao, D.; Malakondaiah, G.C.; Ravikumar, M.; Kumar, A.; Reddy, G.S.; Naram, J.; Dwivedi, N.; Roy, A.; Himabindu, V.; Babu, B.; Bhattacharya, A.; Bandichhor, R. Synthesis and process optimization of amtolmetin: An antiinflammatory agent. Org. Process Res. Dev., 2010, 14(2), 362-368.
[http://dx.doi.org/10.1021/op900284w]
[67]
Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett., 2019, 10(3), 389-392.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00579] [PMID: 30891146]
[68]
Pagadala, R.; Anugu, S. Synthesis of polyfunctionalized pyrroles via green chemical methods. J. Heterocycl. Chem., 2018, 55(1), 181-186.
[http://dx.doi.org/10.1002/jhet.3022]
[69]
Fu, L.; Bi, Y.; Wu, Y.; Zhang, S.; Qi, J.; Li, Y.; Lu, X.; Zhang, Z.; Lv, X.; Yan, J.; Gao, G.F.; Li, X. Structure-based tetravalent zanamivir with potent inhibitory activity against drug-resistant influenza viruses. J. Med. Chem., 2016, 59(13), 6303-6312.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00537] [PMID: 27341624]
[70]
Mahal, A.; Duan, M.; Zinad, D.S.; Mohapatra, R.K.; Obaidullah, A.J.; Wei, X.; Pradhan, M.K.; Das, D.; Kandi, V.; Zinad, H.S.; Zhu, Q. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Advances, 2021, 11(3), 1804-1840.
[http://dx.doi.org/10.1039/D0RA07283D] [PMID: 35424082]
[71]
Banitaba, S.H.; Safari, J.; Khalili, S.D. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem., 2013, 20(1), 401-407.
[http://dx.doi.org/10.1016/j.ultsonch.2012.07.007] [PMID: 22939001]
[72]
Khan, E. Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect, 2021, 6(13), 3041-3064.
[http://dx.doi.org/10.1002/slct.202100332]
[73]
Hammoudi, N.E.H.; Benguerba, Y.; Attoui, A.; Hognon, C.; Lemaoui, T.; Sobhi, W.; Benaicha, M.; Badawi, M.; Monari, A. In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives based on QSAR, docking, molecular dynamics and drug-likeness evaluation studies. J. Biomol. Struct. Dyn., 2022, 40(2), 886-902.
[http://dx.doi.org/10.1080/07391102.2020.1819878] [PMID: 32948119]
[74]
Panigrahi, A.; Sharanappa Sherikar, M.; Ramaiah Prabhu, K. ZnBr2 Mediated C−N bond formation using cinnamyl alcohol and 2‐amino pyridines. Eur. J. Org. Chem., 2021, 2021(21), 3054-3058.
[http://dx.doi.org/10.1002/ejoc.202100463]
[75]
Safari, J.; Banitaba, S.H.; Khalili, S.D. Ultrasound-promoted an efficient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: A rapid procedure without catalyst. Ultrason. Sonochem., 2012, 19(5), 1061-1069.
[http://dx.doi.org/10.1016/j.ultsonch.2012.01.005] [PMID: 22342401]
[76]
Chiacchio, M.A.; Iannazzo, D.; Romeo, R.; Giofrè, S.V.; Legnani, L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem., 2020, 26(40), 7166-7195.
[http://dx.doi.org/10.2174/0929867325666180904125400] [PMID: 30182842]
[77]
Yang, J.; Li, Q.; Zhang, J.; Lin, W.; Wang, J.; Wang, Y.; Huang, Z.; Shi, D. Ultrasound-promoted one-pot, four-component synthesis of pyridin-2(1H)-one derivatives. Molecules, 2013, 18(12), 14519-14528.
[http://dx.doi.org/10.3390/molecules181214519] [PMID: 24287988]
[78]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[79]
Do, J.L.; Friščić, T. Mechanochemistry: A force of synthesis. ACS Cent. Sci., 2017, 3(1), 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277] [PMID: 28149948]
[80]
Chuang, C.P.; Chen, K.P. N-Phenacylpyridinium bromides in the one-pot synthesis of 2,3-dihydrofurans. Tetrahedron, 2012, 68(5), 1401-1406.
[http://dx.doi.org/10.1016/j.tet.2011.12.035]
[81]
Zhang, H.; Yang, G.; Chen, J.; Chen, Z. Synthesis of Thiophene Derivatives on Soluble Polymer-Support using Gewald Reaction. Synthesis; Stuttg, 2004, pp. 3055-3059.
[82]
Shearouse, W.; Shumba, M.; Mack, J. A solvent-free, one-step, one-pot gewald reaction for alkyl-aryl ketones via mechanochemistry. Appl. Sci., 2014, 4(2), 171-179.
[http://dx.doi.org/10.3390/app4020171]
[83]
Muthusaravanan, S.; Sasikumar, C.; Devi Bala, B.; Perumal, S. An eco-friendly three-component regio- and stereoselective synthesis of highly functionalized dihydroindeno[1,2-b]pyrroles under grinding. Green Chem., 2014, 16(3), 1297-1304.
[http://dx.doi.org/10.1039/C3GC42150C]
[84]
Haddad, S.; Boudriga, S.; Akhaja, T.N.; Raval, J.P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Rajani, D. A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J. Chem., 2015, 39(1), 520-528.
[http://dx.doi.org/10.1039/C4NJ01008F]
[85]
Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C.F. III Organocatalytic asymmetric assembly reactions: Synthesis of spirooxindoles via organocascade strategies. ACS Catal., 2014, 4(3), 743-762.
[http://dx.doi.org/10.1021/cs401172r]
[86]
Jiang, D.; Dong, S.; Tang, W.; Lu, T.; Du, D. N-heterocyclic carbene-catalyzed formal [3 + 2] annulation of α-bromoenals with 3-aminooxindoles: a stereoselective synthesis of spirooxindole γ-butyrolactams. J. Org. Chem., 2015, 80(22), 11593-11597.
[http://dx.doi.org/10.1021/acs.joc.5b02188] [PMID: 26506021]
[87]
Xu, H.; Liu, H.W.; Lin, H.S.; Wang, G.W. Solvent-free iodine-promoted synthesis of 3,2′-pyrrolinyl spirooxindoles from alkylidene oxindoles and enamino esters under ball-milling conditions. Chem. Commun. (Camb.), 2017, 53(92), 12477-12480.
[http://dx.doi.org/10.1039/C7CC08306H] [PMID: 29105709]
[88]
Howard, J.L.; Nicholson, W.; Sagatov, Y.; Browne, D.L. One-pot multistep mechanochemical synthesis of fluorinated pyrazolones. Beilstein J. Org. Chem., 2017, 13, 1950-1956.
[http://dx.doi.org/10.3762/bjoc.13.189] [PMID: 29062413]
[89]
Gottwald, K.; Seebach, D. Ring opening with kinetic resolution of azlactones by Ti-TADDOLates. Tetrahedron, 1999, 55(3), 723-738.
[http://dx.doi.org/10.1016/S0040-4020(98)01064-3]
[90]
Fahmy, A.F.M.; El-Sayed, A.A.; Hemdan, M.M. Multicomponent synthesis of 4-arylidene-2-phenyl-5(4H)-oxazolones (azlactones) using a mechanochemical approach. Chem. Cent. J., 2016, 10(1), 59.
[http://dx.doi.org/10.1186/s13065-016-0205-9] [PMID: 28316644]
[91]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[92]
Liu, B.; Yin, M.; Gao, H.; Wu, W.; Jiang, H. Synthesis of 2-aminobenzoxazoles and 3-aminobenzoxazines via palladium-catalyzed aerobic oxidation of o-aminophenols with isocyanides. J. Org. Chem., 2013, 78(7), 3009-3020.
[http://dx.doi.org/10.1021/jo400002f] [PMID: 23477617]
[93]
Baeyer, A. Beiträge zur Kenntniss der Harnsäuregruppe. Justus Liebigs Ann. Chem., 1861, 119(1), 126-128.
[http://dx.doi.org/10.1002/jlac.18611190115]
[94]
Zhang, D.; Ye, D.; Feng, E.; Wang, J.; Shi, J.; Jiang, H.; Liu, H. Highly α-selective synthesis of sialyl spirohydantoins by regiospecific domino condensation/O-N acyl migration/N-sialylation of carbodiimides with peracetylated sialic acid. J. Org. Chem., 2010, 75(11), 3552-3557.
[http://dx.doi.org/10.1021/jo100016k] [PMID: 20462259]
[95]
Maddah, B. Highly efficient and rapid synthesis of diverse hydantoin derivatives using nano-ordered ZnO catalyst under mechanochemical ball milling. Q. J. Iran Chem. Commun., 2017, 5, 58-66.
[96]
Konnert, L.; Dimassi, M.; Gonnet, L.; Lamaty, F.; Martinez, J.; Colacino, E. Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins. RSC Advances, 2016, 6(43), 36978-36986.
[http://dx.doi.org/10.1039/C6RA03222B]
[97]
Ismail, M.A.; Brun, R.; Wenzler, T.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines as antiprotozoal agents. J. Med. Chem., 2004, 47(14), 3658-3664.
[http://dx.doi.org/10.1021/jm0400092] [PMID: 15214792]
[98]
Blackburn, C. A three-component solid-phase synthesis of 3-aminoimidazo[1,2-a]azines. Tetrahedron Lett., 1998, 39(31), 5469-5472.
[http://dx.doi.org/10.1016/S0040-4039(98)01113-7]
[99]
Maleki, A.; Javanshir, S.; Naimabadi, M. Facile synthesis of imidazo[1,2-a]pyridines via a one-pot three-component reaction under solvent-free mechanochemical ball-milling conditions. RSC Advances, 2014, 4(57), 30229-30232.
[http://dx.doi.org/10.1039/C3RA43221A]
[100]
Le Droumaguet, C.; Wang, C.; Wang, Q. Fluorogenic click reaction. Chem. Soc. Rev., 2010, 39(4), 1233-1239.
[http://dx.doi.org/10.1039/B901975H] [PMID: 20309483]
[101]
Cook, T.L.; Walker, J.A.; Mack, J. Scratching the catalytic surface of mechanochemistry: A multi-component CuAAC reaction using a copper reaction vial. Green Chem., 2013, 15(3), 617-619.
[http://dx.doi.org/10.1039/c3gc36720g]
[102]
Balalaie, S.; Baoosi, L.; Tahoori, F.; Rominger, F.; Bijanzadeh, H.R. Synthesis of polysubstituted 1,4-dihydropyridines via three-component reaction. Tetrahedron, 2013, 69(2), 738-743.
[http://dx.doi.org/10.1016/j.tet.2012.10.082]
[103]
Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[104]
Geng, X.; Li, S.; Bian, X.; Xie, Z.; Wang, C. TMSCl-catalyzed synthesis of substituted quinolines from arylimines and enolizable aldehydes. Arkivoc, 2008, 2008(14), 50-57.
[http://dx.doi.org/10.3998/ark.5550190.0009.e06]
[105]
Kumar, S.; Sharma, P.; Kapoor, K.K.; Hundal, M.S. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 2008, 64(3), 536-542.
[http://dx.doi.org/10.1016/j.tet.2007.11.008]
[106]
Wu, J.Y.C.; Fong, W.F.; Zhang, J.X.; Leung, C.H.; Kwong, H.L.; Yang, M.S.; Li, D.; Cheung, H.Y. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol., 2003, 473(1), 9-17.
[http://dx.doi.org/10.1016/S0014-2999(03)01946-0] [PMID: 12877932]
[107]
Abdolmohammadi, S.; Balalaie, S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett., 2007, 48(18), 3299-3303.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.135]
[108]
Heravi, M.M.; Sadjadi, S.; Haj, N.M.; Oskooie, H.A.; Bamoharram, F.F. Role of various heteropolyacids in the reaction of 4-hydroxycoumarin, aldehydes and ethylcyanoacetate. Catal. Commun., 2009, 10(13), 1643-1646.
[http://dx.doi.org/10.1016/j.catcom.2009.04.031]
[109]
Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104(1-2), 39-43.
[http://dx.doi.org/10.1007/s10562-005-7433-2]
[110]
Seifi, M.; Sheibani, H. High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Catal. Lett., 2008, 126(3-4), 275-279.
[http://dx.doi.org/10.1007/s10562-008-9603-5]
[111]
Patel, D.S.; Avalani, J.R.; Raval, D.K. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry. J. Saudi Chem. Soc., 2016, 20, S401-S405.
[http://dx.doi.org/10.1016/j.jscs.2012.12.008]
[112]
Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A versatile biologically active heterocyclic scaffold. Molecules, 2023, 28(2), 618.
[http://dx.doi.org/10.3390/molecules28020618] [PMID: 36677676]
[113]
Bajpai, S.; Singh, S.; Srivastava, V. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry. Synth. Commun., 2017, 47(16), 1514-1525.
[http://dx.doi.org/10.1080/00397911.2017.1336244]
[114]
Mandha, S.R.; Siliveri, S.; Alla, M.; Bommena, V.R.; Bommineni, M.R.; Balasubramanian, S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg. Med. Chem. Lett., 2012, 22(16), 5272-5278.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[115]
Parmar, N.J.; Teraiya, S.B.; Patel, R.A.; Talpada, N.P. Tetrabutylammonium hydrogen sulfate mediated domino reaction: Synthesis of novel benzopyran-annulated pyrano[2,3-c]pyrazoles. Tetrahedron Lett., 2011, 52(22), 2853-2856.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.108]
[116]
Dekamin, M.G.; Alikhani, M.; Emami, A.; Ghafuri, H.; Javanshir, S. An efficient catalyst- and solvent-free method for the synthesis of medicinally important dihydropyrano[2,3-c]pyrazole derivatives using ball milling technique. J. Indian Chem. Soc., 2016, 13(3), 591-596.
[http://dx.doi.org/10.1007/s13738-015-0793-7]
[117]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Three-component access to pyrroles promoted by the CAN–silver nitrate system under high-speed vibration milling conditions: A generalization of the Hantzsch pyrrole synthesis. Chem. Commun. (Camb.), 2013, 49(6), 591-593.
[http://dx.doi.org/10.1039/C2CC38099D] [PMID: 23212352]
[118]
Maliga, Z.; Kapoor, T.M.; Mitchison, T.J. Evidence that monastrol is an allosteric inhibitor of the mitotic kinesin Eg5. Chem. Biol., 2002, 9(9), 989-996.
[http://dx.doi.org/10.1016/S1074-5521(02)00212-0] [PMID: 12323373]
[119]
Gartner, M.; Sunder-Plassmann, N.; Seiler, J.; Utz, M.; Vernos, I.; Surrey, T.; Giannis, A. Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. ChemBioChem, 2005, 6(7), 1173-1177.
[http://dx.doi.org/10.1002/cbic.200500005] [PMID: 15912555]
[120]
Kaan, H.Y.K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.O.; Kozielski, F. Structural basis for inhibition of Eg5 by dihydropyrimidines: Stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem., 2010, 53(15), 5676-5683.
[http://dx.doi.org/10.1021/jm100421n] [PMID: 20597485]
[121]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[122]
Guo, H.; Zhu, C.; Li, J.; Xu, G.; Sun, J. Photo-assisted multi-component reactions (MCR): A new entry to 2-pyrimidinethiones. Adv. Synth. Catal., 2014, 356(13), 2801-2806.
[http://dx.doi.org/10.1002/adsc.201400290]
[123]
Al-Said, M.S.; Bashandy, M.S.; Al-qasoumi, S.I.; Ghorab, M.M. Anti-breast cancer activity of some novel 1,2-dihydropyridine, thiophene and thiazole derivatives. Eur. J. Med. Chem., 2011, 46(1), 137-141.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.024] [PMID: 21093116]
[124]
Cosconati, S.; Marinelli, L.; Lavecchia, A.; Novellino, E. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: Model construction and docking calculations. J. Med. Chem., 2007, 50(7), 1504-1513.
[http://dx.doi.org/10.1021/jm061245a] [PMID: 17335186]
[125]
Ghosh, S.; Saikh, F.; Das, J.; Pramanik, A.K. Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. Tetrahedron Lett., 2013, 54(1), 58-62.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.079]
[126]
Ebenezer, O.; Shapi, M.; Tuszynski, J.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 2022, 10(5), 1124.
[http://dx.doi.org/10.3390/biomedicines10051124] [PMID: 35625859]
[127]
Kumar, A.; Rao, M.L.N. Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of 3-trifloxychromone and triarylbismuth. J. Chem. Sci., 2018, 130(12), 165.
[http://dx.doi.org/10.1007/s12039-018-1565-6]
[128]
Gadkari, Y.U.; Hatvate, N.T.; Telvekar, V.N. Concentrated solar radiation-assisted one-pot/multicomponent synthesis of pyranopyrazole derivatives under neat condition. Res. Chem. Intermed., 2021, 47(10), 4245-4255.
[http://dx.doi.org/10.1007/s11164-021-04530-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy