Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Evaluation of Quercetin's Bioenhancing Effect on Oral Pharmacokinetics of Rosuvastatin in Wistar Rats Using RP-HPLC Method

Author(s): Rachana S. Bhimanwar*, Lata P. Kothapalli and Akshay Khawshi

Volume 22, Issue 4, 2024

Published on: 01 November, 2023

Page: [456 - 465] Pages: 10

DOI: 10.2174/0118715257258735231016112348

Price: $65

Abstract

Background: The absolute oral bioavailability of rosuvastatin (RST), a secondgeneration statin, is low i.e. 20% and only 10% is recovered as metabolite N-desmethy l rosuvistatin. Since it is a hydrophilic statin, RST relies on the organic anion transporting polypeptide- 1B1 (OATP-1B1), as the key mechanism for active transport into hepatocytes. Quercetin (QUE) being a bio enhancer and inhibitor of OATP1B1 can augment the bioavailability and pharmacokinetics of RST.

Objective: The present study includes the development of a simple and validated bioanalytical Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for the estimation of RST and to study the effect of co-administration of QUE as a bio enhancer on its bioavailability.

Method: An analytical column of Kromasil 100, C18 (250 mm × 4.6 mm, 5 μm), was used for chromatographic separationand acetonitrile (ACN): acetic acid buffer pH 3.0 adjusted with glacial acetic acid (55:45 Vol. %) as mobile phase with flow rate 1.0 ml/min monitored at 242 nm. The ACN: methanol (50:50 Vol. %) was employed as the final solvent for extraction. The developed method has been successfully applied in a study on the pharmacokinetics of the drug RST in rats after co-administration of QUE, which was carried out using non-compartmental analysis in order to estimate the blood concentration of the drug.

Results: The pharmacokinetics of RST was found to be altered significantly (highest concentration of RST in the blood (Cmax) = 67.3 ng/ml to 122.2 ng/ml) (p < 0.001), area under curve (AUC)0-t (p < 0.0001) and AUC0-inf (p = 0.0005) when co-administered with QUE at 120 min (tmax).

Conclusion: The results are in accordance with the fact that QUE increases plasma levels in rats through herb-drug interactions.

Animated Abstract
[1]
WHO. The World Health Organisation Report. 2021. Available From: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf
[2]
Olsson, A.G.; McTaggart, F.; Raza, A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc. Drug Rev., 2002, 20(4), 303-328.
[http://dx.doi.org/10.1111/j.1527-3466.2002.tb00099.x] [PMID: 12481202]
[3]
Endo, A. The origin of the statins. Int. Congr. Ser., 2004, 1262, 3-8.
[http://dx.doi.org/10.1016/j.ics.2003.12.099]
[4]
Akira, E. Discovery and Development of Statins. Nat. Prod. Commun., 2017, 12(8)
[5]
Lennernäs, H.; Fager, G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin. Pharmacokinet., 1997, 32(5), 403-425.
[http://dx.doi.org/10.2165/00003088-199732050-00005] [PMID: 9160173]
[6]
Bullano, M.F.; Wertz, D.A.; Yang, G.W.; Kamat, S.; Borok, G.M.; Gandhi, S.; McDonough, K.L.; Willey, V.J. Effect of rosuvastatin compared with other statins on lipid levels and National Cholesterol Education Program goal attainment for low-density lipoprotein cholesterol in a usual care setting. Pharmacotherapy, 2006, 26(4), 469-478.
[http://dx.doi.org/10.1592/phco.26.4.469] [PMID: 16553504]
[7]
Luvai, A.; Mbagaya, W.; Hall, A.S.; Barth, J.H. Rosuvastatin: a review of the pharmacology and clinical effectiveness in cardiovascular disease. Clin. Med. Insights Cardiol., 2012, 6, CMC.S4324..
[http://dx.doi.org/10.4137/CMC.S4324] [PMID: 22442638]
[8]
Martin, P.D.; Warwick, M.J.; Dane, A.L. Metabolism, excretion, and pharmacokinetics of RST in healthy adult males volunteers. Clin. Therapeut., 2003, 25, 2822-2835.
[http://dx.doi.org/10.1016/S0149-2918(03)80336-3] [PMID: 14693307]
[9]
McTaggart, F. Comparative pharmacology of rosuvastatin. Atheroscler. Suppl., 2003, 4(1), 9-14.
[http://dx.doi.org/10.1016/S1567-5688(03)00004-7] [PMID: 12714032]
[10]
Simonson, S.; Raza, A.; Martin, P.D.; Mitchell, P.D.; Jarcho, J.A.; Brown, C.D.; Windass, A.S.; Schneck, D.W. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther., 2004, 76(2), 167-177.
[http://dx.doi.org/10.1016/j.clpt.2004.03.010] [PMID: 15289793]
[11]
Martin, P.D.; Mitchell, P.D.; Schneck, D.W. Pharmacodynamic effects and pharmacokinetics of a new HMG-CoA reductase inhibitor, rosuvastatin, after morning or evening administration in healthy volunteers. Br. J. Clin. Pharmacol., 2002, 54(5), 472-477.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01688.x] [PMID: 12445025]
[12]
Balakumar, K.; Raghavan, C.V. selvan, N.T.; prasad, R.H.; Abdu, S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces, 2013, 112, 337-343.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.025] [PMID: 24012665]
[13]
Dudhipala, N.; Veerabrahma, K. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation. Eur. J. Pharm. Biopharm., 2017, 110, 47-57.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.022] [PMID: 27810472]
[14]
Beg, S.; Raza, K.; Kumar, R.; Chadha, R.; Katare, O.P.; Singh, B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Advances, 2016, 6(10), 8173-8187.
[http://dx.doi.org/10.1039/C5RA24278A]
[15]
Rizwanullah, M.; Amin, S.; Ahmad, J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target., 2017, 25(1), 58-74.
[http://dx.doi.org/10.1080/1061186X.2016.1191080] [PMID: 27186665]
[16]
Tatiraju, D.V.; Bagade, V.B.; Karambelkar, P.J.; Jadhav, V.M.; Kadam, V. Natural bioenhancers: An overview. J. Pharmacogn. Phytochem., 2013, 2, 55-60.
[17]
Dudhatra, G.B.; Modi, S.K.; Awale, M.M. Comprehensive review on Pharmacotherapeutics of herbal bio-enhancers. Scienti. World J, 2012, 12, 1-33.
[http://dx.doi.org/10.1100/2012/637953]
[18]
Javed, S.; Ahsan, W.; Kohli, K. The concept of bio-enhancers in bioavailability enhancement of drugs–a patent review. J of Sci Letters, 2016, 1, 143-165.
[19]
Wu, L.X.; Guo, C.X.; Chen, W.Q.; Yu, J.; Qu, Q.; Chen, Y.; Tan, Z.R.; Wang, G.; Fan, L.; Li, Q.; Zhang, W.; Zhou, H.H. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: An in vitro and in vivo assessment. Br. J. Clin. Pharmacol., 2012, 73(5), 750-757.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04150.x] [PMID: 22114872]
[20]
Mohos, V.; Fliszár-Nyúl, E.; Ungvári, O.; Kuffa, K.; Needs, P.W.; Kroon, P.A.; Telbisz, Á.; Özvegy-Laczka, C.; Poór, M. Inhibitory Effects of Quercetin and Its Main Methyl, Sulfate, and Glucuronic Acid Conjugates on Cytochrome P450 Enzymes, and on OATP, BCRP and MRP2 Transporters. Nutrients, 2020, 12(8), 2306.
[http://dx.doi.org/10.3390/nu12082306]
[21]
Bhimanwar, R.; Kothapalli, L.; Khawshi, A. Quercetin as Natural Bioavailability Modulator: An Overview. Research Journal of Pharmacy and Technology, 2020, 13(4), 2045-2052.
[http://dx.doi.org/10.5958/0974-360X.2020.00368.6]
[22]
Maalik, A.; Khan, F.A.; Mumtaz, A.; Mehmood, A.; Azhar, S.; Atif, M.; Karim, S.; Altaf, Y.; Tariq, I. Pharmacological applications of Quercetin and its derivatives : A short review. Trop. J. Pharm. Res., 2014, 13(9), 1561.
[http://dx.doi.org/10.4314/tjpr.v13i9.26]
[23]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[24]
Dajas, F.; Abin-Carriquiry, J.A.; Arredondo, F.; Blasina, F.; Echeverry, C.; Martínez, M.; Rivera, F.; Vaamonde, L.; Lucía, V. Quercetin in brain diseases: Potential and limits. Neurochem. Int., 2015, 89, 140-148.
[http://dx.doi.org/10.1016/j.neuint.2015.07.002] [PMID: 26160469]
[25]
Tatiraju, V.; Bagade, B.; Karambelkar, J.; Jadhav, M. Kadam. Natural enhancers: An overview. J. Pharmacogn. Phytochem., 2013, 2, 55-60.
[26]
Qu, Q.; Qu, J.; Han, L.; Zhan, M.; Wu, L.; Zhang, Y.; Zhang, W.; Zhou, H. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro. Acta Pharmacol. Sin., 2014, 35(5), 685-696.
[http://dx.doi.org/10.1038/aps.2013.202] [PMID: 24786236]
[27]
Wong, C.C.; Akiyama, Y.; Abe, T.; Lippiat, J.D.; Orfila, C.; Williamson, G. Carrier-mediated transport of quercetin conjugates: Involvement of organic anion transporters and organic anion transporting polypeptides. Biochem. Pharmacol., 2012, 84(4), 564-570.
[http://dx.doi.org/10.1016/j.bcp.2012.05.011] [PMID: 22634047]
[28]
Lee, J.H.; Shin, Y.J.; Oh, J.H.; Lee, Y.J. Pharmacokinetic interactions of clopidogrel with quercetin, telmisartan, and cyclosporine A in rats and dogs. Arch. Pharm. Res., 2012, 35(10), 1831-1837.
[http://dx.doi.org/10.1007/s12272-012-1017-7] [PMID: 23139136]
[29]
Cermak, R.; Wein, S.; Wolffram, S.; Langguth, P. Effects of the flavonol quercetin on the bioavailability of simvastatin in pigs. Eur. J. Pharm. Sci., 2009, 38(5), 519-524.
[http://dx.doi.org/10.1016/j.ejps.2009.09.018] [PMID: 19804821]
[30]
Hsiu, S.L.; Hou, Y.C.; Wang, Y.H.; Tsao, C.W.; Su, S.F.; Chao, P.D.L. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats. Life Sci., 2002, 72(3), 227-235.
[http://dx.doi.org/10.1016/S0024-3205(02)02235-X] [PMID: 12427482]
[31]
Sanaee, F.; Valente Neves, D.; Lanchote, V.L.; Jamali, F. Pharmacokinetics of nebivolol in the rat: Low oral absorption, loss in the gut and systemic stereoselectivity. Biopharm. Drug Dispos., 2013, 34(6), 312-320.
[http://dx.doi.org/10.1002/bdd.1847] [PMID: 23625744]
[32]
Shin, S.; Choi, J.; Li, X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int. J. Pharm., 2006, 313(1-2), 144-149.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.028] [PMID: 16516418]
[33]
Sarika, N.; Yogesh, P. Optimization of ex vivo permeability characteristics of berberine in presence of quercetin using 32 full factorial design. J. Appl. Pharm. Sci., 2019, 9(1), 73-82.
[http://dx.doi.org/10.7324/JAPS.2019.90111]
[34]
Chakraborty, M.; Ahmed, M.G.; Bhattacharjee, A. Effect of quercetin on myocardial potency of curcumin against ischemia reperfusion induced myocardial toxicity. Synergy, 2018, 7, 25-29.
[http://dx.doi.org/10.1016/j.synres.2018.09.001]
[35]
Zhao, Q.; Wei, J.; Zhang, H. Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica, 2019, 49(5), 563-568.
[http://dx.doi.org/10.1080/00498254.2018.1478168] [PMID: 29768080]
[36]
Jia, F.F.; Tan, Z.R.; McLeod, H.L.; Chen, Y.; Ou-Yang, D.S.; Zhou, H.H. Effects of quercetin on pharmacokinetics of cefprozil in Chinese-Han male volunteers. Xenobiotica, 2016, 46(10), 896-900.
[http://dx.doi.org/10.3109/00498254.2015.1132792] [PMID: 26928207]
[37]
Mai, N.; Petra, S. The Influence of Single-Dose and Short-Term Administration of quercetin on the Pharmacokinetics of Midazolam in Humans. J of Pharmaceu. Sci, 2015, 104, 3199-3207.
[38]
Sujatha, S. Cidd, i V. Altered Pharmacokinetics and Pharmacodynamics of Glimepiride by the concomitant use of Quercetin in diabetic rats: PK/PD modeling. J. Pharm. Res., 2015, 9, 525-530.
[39]
Babu, P.R.; Babu, K.N.; Peter, P.L.H.; Rajesh, K.; Babu, P.J. Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models. Drug Dev. Ind. Pharm., 2013, 39(6), 873-879.
[http://dx.doi.org/10.3109/03639045.2012.707209] [PMID: 22817837]
[40]
DiCenzo, R.; Frerichs, V.; Larppanichpoonphol, P.; Predko, L.; Chen, A.; Reichman, R.; Morris, M. Effect of quercetin on the plasma and intracellular concentrations of saquinavir in healthy adults. Pharmacotherapy, 2006, 26(9), 1255-1261.
[http://dx.doi.org/10.1592/phco.26.9.1255] [PMID: 16945047]
[41]
Kim, K.A.; Park, P.W.; Kim, H.K.; Ha, J.M.; Park, J.Y. Effect of quercetin on the pharmacokinetics of rosiglitazone, a CYP2C8 substrate, in healthy subjects. J. Clin. Pharmacol., 2005, 45(8), 941-946.
[http://dx.doi.org/10.1177/0091270005278407] [PMID: 16027405]
[42]
Choi, J.S.; Li, X. Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin to rabbits. Int. J. Pharm., 2005, 297(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.004] [PMID: 15907592]
[43]
Choi, J.S.; Han, H.K. The effect of quercetin on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rabbits. J. Pharm. Pharmacol., 2010, 56(12), 1537-1542.
[http://dx.doi.org/10.1211/0022357044814] [PMID: 15563760]
[44]
Smith, N.F.; Figg, W.D.; Sparreboom, A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Exp Opi on Drug Metabol & Toxi, 2005, 1, 429-245.
[45]
Ho, R.H.; Tirona, R.G.; Leake, B.F.; Glaeser, H.; Lee, W.; Lemke, C.J.; Wang, Y.; Kim, R.B. Drug and bile acid transporters in rosuvastatin hepatic uptake: Function, expression, and pharmacogenetics. Gastroenterology, 2006, 130(6), 1793-1806.
[http://dx.doi.org/10.1053/j.gastro.2006.02.034] [PMID: 16697742]
[46]
Moussaba, H.; Mahmoudst, M. A validated RP-HPLC method for the determination of RST in presence of sacubitril/valsartan in rat plasma: Application to in vivo evaluation of OATP-mediated drug interaction potential between RST and sacubitril/valsartan. Microchem. J., 2018, 143, 31-38.
[http://dx.doi.org/10.1016/j.microc.2018.07.021]
[47]
Vijayapandi, P. Simple Method for Animal Dose Calculation in Preclinical Research. EC Pharmacol and Toxicol., 2020, 8, 01-02.
[48]
Bahia, M.; Hanaa, M. A validated RP-HPLC method for the determination of rosuvastatin in presence of sacubitril/valsartan in rat plasma: Application to in vivo evaluation of OATP-mediated drug interaction potential between rosuvastatin and sacubitril/valsartan. Microchem J., 2018, 2018, 01-22.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy