Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders

Author(s): Vanshita Singh, Keshav Bansal*, Hemant Bhati and Meenakshi Bajpai

Volume 25, Issue 9, 2024

Published on: 31 October, 2023

Page: [1182 - 1198] Pages: 17

DOI: 10.2174/0113892010276223231027075527

Price: $65

Abstract

Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 μm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.

Graphical Abstract

[1]
Ali, S.; Shabbir, M.; Shahid, N. The structure of skin and transdermal drug delivery system-a review. Res. J. Pharm. Technol., 2015, 8(2), 103-109.
[http://dx.doi.org/10.5958/0974-360X.2015.00019.0]
[2]
Gupta, J.; Gupta, R. Vanshita. Microneedle technology: An insight into recent advancements and future trends in drug and vaccine delivery. Assay Drug Dev. Technol., 2021, 19(2), 97-114.
[http://dx.doi.org/10.1089/adt.2020.1022] [PMID: 33297823]
[3]
Cevc, G. Drug delivery across the skin. Expert Opin. Investig. Drugs, 1997, 6(12), 1887-1937.
[http://dx.doi.org/10.1517/13543784.6.12.1887] [PMID: 15989590]
[4]
Rosenkrantz, W. Practical applications of topical therapy for allergic, infectious, and seborrheic disorders. Clin. Tech. Small Anim. Pract., 2006, 21(3), 106-116.
[http://dx.doi.org/10.1053/j.ctsap.2006.05.003] [PMID: 16933477]
[5]
Zhou, D.; Zhou, F.; Sheng, S.; Wei, Y.; Chen, X.; Su, J. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov. Today, 2023, 28(3), 103482.
[http://dx.doi.org/10.1016/j.drudis.2022.103482] [PMID: 36584875]
[6]
Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.E. Global burden of skin disease: Inequities and innovations. Curr. Dermatol. Rep., 2017, 6(3), 204-210.
[http://dx.doi.org/10.1007/s13671-017-0192-7] [PMID: 29226027]
[7]
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv., 2006, 13(3), 175-187.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[8]
Wu, Y.; Vazquez-Prada, K.X.; Liu, Y.; Whittaker, A.K.; Zhang, R.; Ta, H.T. Recent advances in the development of theranostic nanoparticles for cardiovascular diseases. Nanotheranostics, 2021, 5(4), 499-514.
[http://dx.doi.org/10.7150/ntno.62730] [PMID: 34367883]
[9]
Hemrajani, C.; Negi, P.; Parashar, A. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed. Pharmacother., 2022, 147, 112633.
[http://dx.doi.org/10.1016/j.biopha.2022.112633] [PMID: 35030434]
[10]
Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol., 2009, 19(6), 371-384.
[http://dx.doi.org/10.1016/S1773-2247(09)50080-9]
[11]
Liu, H.; Geng, Z.; Su, J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracellular Vesicles and Circulating Nucleic Acids, 2022, 3(1), 63-86.
[http://dx.doi.org/10.20517/evcna.2022.04]
[12]
Xu, X.; Liu, H.; Sicheng, W. Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/anti-inflammatory therapy of osteoarthritis. Compos., Part B Eng., 2022, 237.
[13]
Yang, X.; Li, Y.; Liu, X.; He, W.; Huang, Q.; Feng, Q. Nanoparticles and their effects on differentiation of mesenchymal stem cells. Biomaterials Translation, 2020, 1(1), 58-68.
[PMID: 35837661]
[14]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[15]
Agarwal, V.; Bajpai, M. Design, fabrication and characterization of esomeprazole nanocrystals for enhancing the dissolution rate and stability. Recent Pat. Nanotechnol., 2021, 15(2), 165-179.
[http://dx.doi.org/10.2174/1872210514666201016150915] [PMID: 33069204]
[16]
Al Shaal, L.; Shegokar, R.; Müller, R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm., 2011, 420(1), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.018] [PMID: 21871547]
[17]
Lu, Y.; Qi, J.; Dong, X.; Zhao, W.; Wu, W. The in vivo fate of nanocrystals. Drug Discov. Today, 2017, 22(4), 744-750.
[http://dx.doi.org/10.1016/j.drudis.2017.01.003] [PMID: 28088442]
[18]
Zhang, J.; Xie, Z.; Zhang, N.; Zhong, J. Nanosuspension drug delivery system: Preparation, characterization, postproduction processing, dosage form, and application Micro and nano technologies; Elsevier, 2017, pp. 413-443.
[19]
Parmar, P.K.; Wadhawan, J.; Bansal, A.K. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov. Today, 2021, 26(10), 2329-2349.
[http://dx.doi.org/10.1016/j.drudis.2021.07.010] [PMID: 34265460]
[20]
Junghanns, J-U.A.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[21]
Shetea, G.; Jaina, H.; Punja, D.; Prajapata, H.; Akotiyaa, P.; Bansal, A. Stabilizers used in nano-crystal based drug delivery systems. J. Excip. Food Chem., 2014, 1(5), 184-209.
[22]
Colombo, M.; Staufenbiel, S.; Rühl, E.; Bodmeier, R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int. J. Pharm., 2017, 521(1-2), 156-166.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.030] [PMID: 28223247]
[23]
Patzelt, A.; Lademann, J. Drug delivery to hair follicles. Expert Opin. Drug Deliv., 2013, 10(6), 787-797.
[http://dx.doi.org/10.1517/17425247.2013.776038] [PMID: 23530745]
[24]
Müller, R.; Zhai, X.; Romero, G.; Keck, C. Nanocrystals for passive dermal penetration enhancement Percutaneous penetration enhancers chemical methods in penetration enhancement: Nanocarriers; Springer-Verlag Berlin Heidelberg, 2016, pp. 283-295.
[http://dx.doi.org/10.1007/978-3-662-47862-2_18]
[25]
Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement-effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm., 2016, 104, 216-225.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.004] [PMID: 27163241]
[26]
Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release, 2014, 183, 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.030] [PMID: 24667572]
[27]
Patel, V.; Sharma, O.P.; Mehta, T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin. Drug Deliv., 2018, 15(4), 351-368.
[http://dx.doi.org/10.1080/17425247.2018.1444025] [PMID: 29465253]
[28]
Tuomela, A.; Hirvonen, J.; Peltonen, L. Stabilizing agents for drug nanocrystals: Effect on bioavailability. Pharmaceutics, 2016, 8(2), 16.
[http://dx.doi.org/10.3390/pharmaceutics8020016] [PMID: 27213435]
[29]
Saini, J.K.; Kumar, S. Development of nanocrystal formulation with improved dissolution. J. Drug Deliv. Ther., 2018, 8(5), 118-129.
[http://dx.doi.org/10.22270/jddt.v8i5.1946]
[30]
Seweryn, A. Interactions between surfactants and the skin-theory and practice. Adv. Colloid Interface Sci., 2018, 256, 242-255.
[http://dx.doi.org/10.1016/j.cis.2018.04.002] [PMID: 29685575]
[31]
Obeidat, W.M.; Schwabe, K.; Müller, R.H.; Keck, C.M. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2010, 76(1), 56-67.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.001] [PMID: 20452422]
[32]
Pelikh, O.; Hartmann, S.F.; Abraham, A.M.; Keck, C.M. Nanocrystals for Dermal Application BT - Nanocosmetics: From Ideas to Products; Springer International Publishing: Cham, 2019, pp. 161-177.
[http://dx.doi.org/10.1007/978-3-030-16573-4_8]
[33]
Miao, X.; Yang, W.; Feng, T.; Lin, J.; Huang, P. Drug nanocrystals for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(3), e1499.
[http://dx.doi.org/10.1002/wnan.1499] [PMID: 29044971]
[34]
Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm., 2008, 364(1), 64-75.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.023] [PMID: 18721869]
[35]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[36]
Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm., 2013, 453(1), 126-141.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[37]
Chan, H.K.; Kwok, P.C.L. Production methods for nanodrug particles using the bottom-up approach. Adv. Drug Deliv. Rev., 2011, 63(6), 406-416.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
[38]
Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[39]
Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev., 2011, 63(6), 427-440.
[http://dx.doi.org/10.1016/j.addr.2010.12.007] [PMID: 21223990]
[40]
Chen, Z.; Wu, W.; Lu, Y. What is the future for nanocrystal-based drug-delivery systems? Ther. Deliv., 2020, 11(4), 225-229.
[http://dx.doi.org/10.4155/tde-2020-0016] [PMID: 32157960]
[41]
Gigliobianco, M.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics, 2018, 10(3), 134.
[http://dx.doi.org/10.3390/pharmaceutics10030134] [PMID: 30134537]
[42]
Hancock, B.C.; Carlson, G.T.; Ladipo, D.D.; Langdon, B.A.; Mullarney, M.P. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int. J. Pharm., 2002, 241(1), 73-85.
[http://dx.doi.org/10.1016/S0378-5173(02)00133-3] [PMID: 12086723]
[43]
Chogale, M.; Ghodake, V.; Patravale, V. Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics, 2016, 8(3), 26.
[http://dx.doi.org/10.3390/pharmaceutics8030026] [PMID: 27589788]
[44]
Lee, J.; Lee, S.J.; Choi, J.Y.; Yoo, J.Y.; Ahn, C.H. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur. J. Pharm. Sci., 2005, 24(5), 441-449.
[http://dx.doi.org/10.1016/j.ejps.2004.12.010] [PMID: 15784334]
[45]
Kipp, J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[46]
Sawant, K.K.; Patel, M.H.; Patel, K. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro–in vivo evaluations. Drug Dev. Ind. Pharm., 2016, 42(5), 758-768.
[http://dx.doi.org/10.3109/03639045.2015.1104344] [PMID: 26548349]
[47]
Drews, T.O.; Tsapatsis, M. Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Microporous Mesoporous Mater., 2007, 101(1-2), 97-107.
[http://dx.doi.org/10.1016/j.micromeso.2006.10.021]
[48]
Jahangir, M.A.; Imam, S.S.; Muheem, A. Nanocrystals: Characterization overview, applications in drug delivery, and their toxicity concerns. J. Pharm. Innov., 2022, 17(1), 237-248.
[http://dx.doi.org/10.1007/s12247-020-09499-1]
[49]
Khizar, S.; Alrushaid, N.; Alam Khan, F. Nanocarriers based novel and effective drug delivery system. Int. J. Pharm., 2023, 632, 122570.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122570] [PMID: 36587775]
[50]
Liu, Y.; Shuai, S.; Huang, G.; Chen, Y.; Shen, B.; Yue, P. Nanocrystals based mucosal delivery system: Research advances. Drug Dev. Ind. Pharm., 2021, 47(11), 1700-1712.
[http://dx.doi.org/10.1080/03639045.2022.2053985] [PMID: 35287534]
[51]
Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA, 2020, 323(19), 1945-1960.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[52]
Torsekar, R.; Gautam, M. Topical therapies in psoriasis. Indian Dermatol. Online J., 2017, 8(4), 235-245.
[http://dx.doi.org/10.4103/2229-5178.209622] [PMID: 28761838]
[53]
Shahine, Y.; El-Aal, S.A.A.; Reda, A.M. Diosmin nanocrystal gel alleviates imiquimod-induced psoriasis in rats via modulating TLR7,8/NF-κB/micro RNA-31, AKT/mTOR/P70S6K milieu, and Tregs/Th17 balance. Inflammopharmacology, 2023, 31(3), 1341-1359.
[http://dx.doi.org/10.1007/s10787-023-01198-w] [PMID: 37010718]
[54]
Li, L.; Liu, C.; Fu, J. CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int. J. Biol. Macromol., 2023, 243, 125239.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125239] [PMID: 37295696]
[55]
Men, Z.; Su, T.; Tang, Z.; Liang, J.; Shen, T. Tacrolimus nanocrystals microneedle patch for plaque psoriasis. Int. J. Pharm., 2022, 627, 122207.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122207] [PMID: 36122614]
[56]
Tekko, I.A.; Permana, A.D.; Vora, L.; Hatahet, T.; McCarthy, H.O.; Donnelly, R.F. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur. J. Pharm. Sci., 2020, 152, 105469.
[http://dx.doi.org/10.1016/j.ejps.2020.105469] [PMID: 32679177]
[57]
Gowda, B.H.J.; Mohanto, S.; Singh, A. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater. Today Chem., 2023, 27, 101319.
[http://dx.doi.org/10.1016/j.mtchem.2022.101319]
[58]
Rahman, M.A.; Abul Barkat, H.; Harwansh, R.K.; Deshmukh, R. Carbon-based nanomaterials: Carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing. Curr. Pharm. Biotechnol., 2022, 23(12), 1483-1496.
[http://dx.doi.org/10.2174/1389201023666220309152340] [PMID: 35264085]
[59]
Wang, W.; Lu, K.; Yu, C.; Huang, Q.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology, 2019, 17(1), 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[60]
Kotian, V.; Koland, M.; Mutalik, S. Nanocrystal-based topical gels for improving wound healing efficacy of curcumin. Crystals, 2022, 12(11), 1565.
[http://dx.doi.org/10.3390/cryst12111565]
[61]
Afrin, S.; Shahruzzaman, M.; Haque, P. Advanced CNC/PEG/PDMAA Semi-IPN hydrogel for drug delivery management in wound healing. Gels, 2022, 8(6), 340.
[http://dx.doi.org/10.3390/gels8060340] [PMID: 35735684]
[62]
Singh, S.K.; Dwivedi, S.D.; Yadav, K. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicines, 2023, 11(2), 613.
[http://dx.doi.org/10.3390/biomedicines11020613] [PMID: 36831151]
[63]
Hu, Y.; Xiong, Y.; Tao, R. Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing. Biomater. Transl., 2022, 3(3), 188-200.
[PMID: 36654776]
[64]
Lin, H. BoLatai A, Wu N. Application progress of nano silver dressing in the treatment of diabetic foot. Diabetes Metab. Syndr. Obes., 2021, 14, 4145-4154.
[http://dx.doi.org/10.2147/DMSO.S330322] [PMID: 34621128]
[65]
Tong, WY; bin Abdullah, AYK; binti Rozman, NAS Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose, 2018, 25(1), 631-638.
[http://dx.doi.org/10.1007/s10570-017-1562-9]
[66]
Atia, N.M.; Hazzah, H.A.; Gaafar, P.M.E.; Abdallah, O.Y. Diosmin nanocrystal–loaded wafers for treatment of diabetic ulcer: In vitro and in vivo evaluation. J. Pharm. Sci., 2019, 108(5), 1857-1871.
[http://dx.doi.org/10.1016/j.xphs.2018.12.019] [PMID: 30599171]
[67]
Tomić, I.; Miočić, S.; Pepić, I.; Šimić, D.; Filipović-Grčić, J. Efficacy and safety of azelaic acid nanocrystal-loaded in situ hydrogel in the treatment of acne vulgaris. Pharmaceutics, 2021, 13(4), 567.
[http://dx.doi.org/10.3390/pharmaceutics13040567] [PMID: 33923739]
[68]
Tang, X.; Liu, Y.; Yuan, H.; Gao, R. Development of a self-assembled hydrogels based on carboxymethyl chitosan and oxidized hyaluronic acid containing tanshinone extract nanocrystals for enhanced dissolution and acne treatment. Pharmaceuticals, 2022, 15(12), 1534.
[http://dx.doi.org/10.3390/ph15121534] [PMID: 36558985]
[69]
Karakucuk, A.; Tort, S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol., 2020, 25(10), 1216-1225.
[http://dx.doi.org/10.1080/10837450.2020.1805761] [PMID: 32744472]
[70]
Naik, P.P.; Desai, M.B. Basal cell carcinoma: A narrative review on contemporary diagnosis and management. Oncol. Ther., 2022, 10(2), 317-335.
[http://dx.doi.org/10.1007/s40487-022-00201-8] [PMID: 35729457]
[71]
Soni, N.; Jyoti, K.; Jain, U.K.; Katyal, A.; Chandra, R.; Madan, J. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells. Biomed. Pharmacother., 2017, 90, 906-913.
[http://dx.doi.org/10.1016/j.biopha.2017.04.042] [PMID: 28441716]
[72]
Majumdar, A; Dubey, N; Nitin, D Dermal delivery of docetaxel loaded nano liquid crystals for the treatment of skin cancer. Int. J. Appl. Pharm., 2019, 188-1193.
[73]
Santos, A.C.; Morais, F.; Simões, A. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv., 2019, 16(4), 313-330.
[http://dx.doi.org/10.1080/17425247.2019.1585426] [PMID: 30793641]
[74]
Assem, M.; Khowessah, O.M.; Ghorab, D. Nano-crystallization as a tool for the enhancement of beclomethasone dipropionate dermal deposition: Formulation, in vitro characterization and ex vivo study. J. Drug Deliv. Sci. Technol., 2019, 54, 101318.
[http://dx.doi.org/10.1016/j.jddst.2019.101318]
[75]
Esposito, S.; Noviello, S.; Leone, S. Epidemiology and microbiology of skin and soft tissue infections. Curr. Opin. Infect. Dis., 2016, 29(2), 109-115.
[http://dx.doi.org/10.1097/QCO.0000000000000239] [PMID: 26779772]
[76]
Peghin, M.; Ruiz-Camps, I. Recent concepts in fungal involvement in skin and soft tissue infections. Curr. Opin. Infect. Dis., 2022, 35(2), 103-111.
[http://dx.doi.org/10.1097/QCO.0000000000000806] [PMID: 34861654]
[77]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[78]
Pyo, S.M.; Hespeler, D.; Keck, C.M.; Müller, R.H. Dermal miconazole nitrate nanocrystals-formulation development, increased antifungal efficacy & skin penetration. Int. J. Pharm., 2017, 531(1), 350-359.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.108] [PMID: 28855137]
[79]
Kumar, M.; Shanthi, N.; Mahato, A.K.; Soni, S.; Rajnikanth, P.S. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon, 2019, 5(5), e01688.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01688] [PMID: 31193099]
[80]
Permana, A.D.; Paredes, A.J.; Volpe-Zanutto, F.; Anjani, Q.K.; Utomo, E.; Donnelly, R.F. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm., 2020, 154, 50-61.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.025] [PMID: 32649991]
[81]
Harwansh, R.K.; Deshmukh, R. Recent insight into UV-induced oxidative stress and role of herbal bioactives in the management of skin aging. Curr. Pharm. Biotechnol., 2023, 25(1), 14-41.
[PMID: 37102487]
[82]
Thomas, D.R.; Burkemper, N.M. Aging skin and wound healing. Clin. Geriatr. Med., 2013, 29(2), xi-x.
[http://dx.doi.org/10.1016/j.cger.2013.02.001] [PMID: 23571044]
[83]
Sharma, A.; Kuhad, A.; Bhandari, R. Novel nanotechnological approaches for treatment of skin-aging. J. Tissue Viability, 2022, 31(3), 374-386.
[http://dx.doi.org/10.1016/j.jtv.2022.04.010] [PMID: 35550314]
[84]
Corrêa, R.C.G.; Peralta, R.M.; Haminiuk, C.W.I.; Maciel, G.M.; Bracht, A.; Ferreira, I.C.F.R. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 942-957.
[http://dx.doi.org/10.1080/10408398.2016.1233860] [PMID: 27623718]
[85]
Pyo, S.M.; Meinke, M.; Keck, C.; Müller, R. Rutin—increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics, 2016, 3(1), 9.
[86]
Hatahet, T.; Morille, M.; Hommoss, A.; Dorandeu, C.; Müller, R.H.; Bégu, S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur. J. Pharm. Biopharm., 2016, 102, 51-63.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.004] [PMID: 26948977]
[87]
Pérez-Bernal, A.; Muñoz-Pérez, M.A.; Camacho, F. Management of facial hyperpigmentation. Am. J. Clin. Dermatol., 2000, 1(5), 261-268.
[http://dx.doi.org/10.2165/00128071-200001050-00001] [PMID: 11702317]
[88]
Desai, S.R. Hyperpigmentation therapy: a review. J. Clin. Aesthet. Dermatol., 2014, 7(8), 13-17.
[PMID: 25161755]
[89]
Taheri, A.; Mohammadi, M. The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem. Biol. Drug Des., 2015, 86(1), 102-106.
[http://dx.doi.org/10.1111/cbdd.12466] [PMID: 25352376]
[90]
Guo, R.; Lan, Y.; Xue, W. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med., 2017, 11(12), 3544-3555.
[http://dx.doi.org/10.1002/term.2272] [PMID: 28326684]
[91]
Bajpai, SK; Ahuja, S; Chand, N; Bajpai, M Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino rats for wound dressing. Int. J. Biol. Macromol., 2017, 104(Pt A), 1012-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.096] [PMID: 28666832]
[92]
Liu, X.; Yang, K.; Chang, M.; Wang, X.; Ren, J. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr. Polym., 2020, 240, 116289.
[http://dx.doi.org/10.1016/j.carbpol.2020.116289] [PMID: 32475570]
[93]
Permana, A.D.; Utami, R.N.; Layadi, P. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm., 2021, 602, 120623.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120623] [PMID: 33892058]
[94]
Terea, H.; Selloum, D.; Rebiai, A.; Bouafia, A.; Ben, M.O. Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: effects on antibacterial and antifungal activities; Biomass Convers. Biorefinery, 2023.
[95]
Parmar, P.K.; Sharma, N.; Wasil Kabeer, S.; Rohit, A.; Bansal, A.K. Nanocrystal-based gel of apremilast ameliorates imiquimod-induced psoriasis by suppressing inflammatory responses. Int. J. Pharm., 2022, 622, 121873.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121873] [PMID: 35640806]
[96]
Kumar, A.; Valamla, B.; Thakor, P.; Chary, P.S.; Rajana, N.; Mehra, N.K. Development and evaluation of nanocrystals loaded hydrogel for topical application. J. Drug Deliv. Sci. Technol., 2022, 74, 103503.
[http://dx.doi.org/10.1016/j.jddst.2022.103503]
[97]
Parmar, P.K.; Bansal, A.K. Novel nanocrystal-based formulations of apremilast for improved topical delivery. Drug Deliv. Transl. Res., 2021, 11(3), 966-983.
[http://dx.doi.org/10.1007/s13346-020-00809-1] [PMID: 32588281]
[98]
Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Cetina Čižmek, B.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm., 2019, 563, 249-258.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.016] [PMID: 30965120]
[99]
So, B.R.; Yeo, H.J.; Lee, J.J.; Jung, Y.H.; Jung, S.K. Cellulose nanocrystal preparation from Gelidium amansii and analysis of its anti-inflammatory effect on the skin in vitro and in vivo. Carbohydr. Polym., 2021, 254, 117315.
[http://dx.doi.org/10.1016/j.carbpol.2020.117315] [PMID: 33357878]
[100]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm., 2011, 420(1), 141-146.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.026] [PMID: 21884768]
[101]
Zhai, X.; Lademann, J.; Keck, C.M.; Müller, R.H. Nanocrystals of medium soluble actives—Novel concept for improved dermal delivery and production strategy. Int. J. Pharm., 2014, 470(1-2), 141-150.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.060] [PMID: 24813782]
[102]
Abdelghany, S.; Tekko, I.A.; Vora, L.; Larrañeta, E.; Permana, A.D.; Donnelly, R.F. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics, 2019, 11(7), 308.
[http://dx.doi.org/10.3390/pharmaceutics11070308] [PMID: 31269648]
[103]
Pireddu, R.; Caddeo, C.; Valenti, D. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf. B Biointerfaces, 2016, 143, 64-70.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.026] [PMID: 26998867]
[104]
Ghosh, I.; Michniak-Kohn, B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin-a case study. AAPS PharmSciTech, 2013, 14(3), 1108-1117.
[http://dx.doi.org/10.1208/s12249-013-9995-4] [PMID: 23824877]
[105]
Oktay, A.N.; Ilbasmis-Tamer, S.; Han, S.; Uludag, O.; Celebi, N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur. J. Pharm. Sci., 2020, 155, 105548.
[http://dx.doi.org/10.1016/j.ejps.2020.105548] [PMID: 32937211]
[106]
Mortenson, M; Pierce, D K; Blythe, D Novel gold-based nanocrystal for medical treatment, and electrochemical production method for the gold-based nanocrystal. JP6703052B2, 2023.
[107]
David, A; Bryce, A R D; Anthony, L Novel gold-based nanocrystals. AU2021200463B2, 2022.
[108]
Pan, Junyou Include the device of nanocrystal. CN106887522B, 2018.
[109]
Lucy, B. Modified wound dressings. AU2017244116B2, 2023.
[110]
Thomas, C; Shikha, P B; Tian, H; Thomas, B; Leland, R V T Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof. US20190169224A1, 2021.
[111]
Ashijett, S S; Bhapatgotami, M S; Gokalesai, A S Antimycotic and antibacterium prodrug based on conjugate. CN103857440B, 2018.
[112]
Winston, Z O N G; Pawel, W N; Ben, C; Askew, J K Therapeutic compounds and uses thereof. US10966987B2, 2021.
[113]
Pan, J. Nanocrystals in devices. JP5882318B2, 2016.
[114]
Neeta, G. Topical pharmaceutical composition comprising nanonized silver sulfadiazine. US9433580B2, 2016.
[115]
Shrinivas, M P; Geena, M Topical pharmaceutical compositions comprising minoxidil. WO2014122436A1, 2014.
[116]
Karsten, P. Calcipotriol monohydrate nanocrystals. WO2011076208A2, 2012.
[117]
Keith, J; Robert, L; Mei, Y; Holly, M; Roland, F Delivery of drug nanoparticles and methods of use thereof. WO2017049083A3, 2017.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy