Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Development of DNA Gyrase Inhibitors: An Update

Author(s): Poonam Piplani*, Ajay Kumar, Akanksha Kulshreshtha, Tamanna Vohra and Vritti Piplani

Volume 24, Issue 10, 2024

Published on: 31 October, 2023

Page: [1001 - 1030] Pages: 30

DOI: 10.2174/0113895575264264230921080718

Price: $65

conference banner
Abstract

Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.

Next »
Graphical Abstract

[1]
Singh, S.B. Confronting the challenges of discovery of novel antibacterial agents. Bioorg. Med. Chem. Lett., 2014, 24(16), 3683-3689.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.053] [PMID: 25017034]
[2]
Admassie, M. Current review on molecular and phenotypic mechanism of bacterial resistance to antibiotic. Sci. J. Cli. Med., 2018, 7(2), 13.
[http://dx.doi.org/10.11648/j.sjcm.20180702.11]
[3]
Lande, L.; George, J.; Plush, T. Mycobacterium avium complex pulmonary disease. Curr. Opin. Infect. Dis., 2018, 31(2), 199-207.
[http://dx.doi.org/10.1097/QCO.0000000000000437] [PMID: 29346118]
[4]
Smith, P.A.; Koehler, M.F.T.; Girgis, H.S.; Yan, D.; Chen, Y.; Chen, Y.; Crawford, J.J.; Durk, M.R.; Higuchi, R.I.; Kang, J.; Murray, J.; Paraselli, P.; Park, S.; Phung, W.; Quinn, J.G.; Roberts, T.C.; Rougé, L.; Schwarz, J.B.; Skippington, E.; Wai, J.; Xu, M.; Yu, Z.; Zhang, H.; Tan, M.W.; Heise, C.E. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561(7722), 189-194.
[http://dx.doi.org/10.1038/s41586-018-0483-6] [PMID: 30209367]
[5]
Gordeev, M.F.; Yuan, Z.Y. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J. Med. Chem., 2014, 57(11), 4487-4497.
[http://dx.doi.org/10.1021/jm401931e] [PMID: 24694071]
[6]
Barker, K.F. Antibiotic resistance: A current perspective. Br. J. Clin. Pharmacol., 1999, 48(2), 109-124.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00997.x] [PMID: 10417485]
[7]
Baldwin, S.L.; Larsen, S.E.; Ordway, D.; Cassell, G.; Coler, R.N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl. Trop. Dis., 2019, 13(2), e0007083.
[http://dx.doi.org/10.1371/journal.pntd.0007083] [PMID: 30763316]
[8]
Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science, 2017, 355(6327), 826-830.
[http://dx.doi.org/10.1126/science.aaj2191] [PMID: 28183996]
[9]
Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial resistance to antimicrobial agents. Antibiotics, 2021, 10(5), 593.
[http://dx.doi.org/10.3390/antibiotics10050593] [PMID: 34067579]
[10]
Aragaw, W.W.; Cotroneo, N.; Stokes, S.; Pucci, M.; Critchley, I.; Gengenbacher, M.; Dick, T. In vitro resistance against DNA gyrase inhibitor SPR719 in Mycobacterium avium and Mycobacterium abscessus. Microbiol. Spectr., 2022, 10(1), e01321-e21.
[http://dx.doi.org/10.1128/spectrum.01321-21] [PMID: 35019671]
[11]
Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur. J. Intern. Med., 2022, 99, 7-12.
[http://dx.doi.org/10.1016/j.ejim.2022.01.029] [PMID: 35074246]
[12]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[13]
Škedelj, V.; Tomašić, T.; Mašič, L.P.; Zega, A. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J. Med. Chem., 2011, 54(4), 915-929.
[http://dx.doi.org/10.1021/jm101121s] [PMID: 21235241]
[14]
Petchiappan, A.; Chatterji, D. Antibiotic resistance: Current perspectives. ACS Omega, 2017, 2(10), 7400-7409.
[http://dx.doi.org/10.1021/acsomega.7b01368] [PMID: 30023551]
[15]
Annunziato, G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci., 2019, 20(23), 5844.
[http://dx.doi.org/10.3390/ijms20235844] [PMID: 31766441]
[16]
Kaushik, V.; Sharma, S.; Tiwari, M.; Tiwari, V. Antipersister strategies against stress induced bacterial persistence. Microb. Pathog., 2022, 164, 105423.
[http://dx.doi.org/10.1016/j.micpath.2022.105423] [PMID: 35092834]
[17]
Nguyen, D.; Joshi-Datar, A.; Lepine, F.; Bauerle, E.; Olakanmi, O.; Beer, K.; McKay, G.; Siehnel, R.; Schafhauser, J.; Wang, Y.; Britigan, B.E.; Singh, P.K. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 2011, 334(6058), 982-986.
[http://dx.doi.org/10.1126/science.1211037] [PMID: 22096200]
[18]
Högberg, L.D.; Heddini, A.; Cars, O. The global need for effective antibiotics: Challenges and recent advances. Trends Pharmacol. Sci., 2010, 31(11), 509-515.
[http://dx.doi.org/10.1016/j.tips.2010.08.002] [PMID: 20843562]
[19]
Stokes, S.S.; Vemula, R.; Pucci, M.J. Advancement of GyrB inhibitors for treatment of infections caused by Mycobacterium tuberculosis and non-tuberculous mycobacteria. ACS Infect. Dis., 2020, 6(6), 1323-1331.
[http://dx.doi.org/10.1021/acsinfecdis.0c00025] [PMID: 32183511]
[20]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(3), 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[21]
Schoeffler, A.J.; Berger, J.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys., 2008, 41(1), 41-101.
[http://dx.doi.org/10.1017/S003358350800468X] [PMID: 18755053]
[22]
Kathiravan, M.K.; Khilare, M.M.; Nikoomanesh, K.; Chothe, A.S.; Jain, K.S. Topoisomerase as target for antibacterial and anticancer drug discovery. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 419-435.
[http://dx.doi.org/10.3109/14756366.2012.658785] [PMID: 22380774]
[23]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[24]
Reuß, D.R.; Faßhauer, P.; Mroch, P.J.; Ul-Haq, I.; Koo, B.M.; Pöhlein, A.; Gross, C.A.; Daniel, R.; Brantl, S.; Stülke, J. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Res., 2019, 47(10), 5231-5242.
[http://dx.doi.org/10.1093/nar/gkz260] [PMID: 30957856]
[25]
Chen, M.; Beck, W.T. DNA topoisomerase II expression, stability, and phosphorylation in two VM-26-resistant human leukemic CEM sublines. Oncol. Res., 1995, 7(2), 103-111.
[PMID: 7579726]
[26]
Perez, J.; Lupala, C.; Gomez-Gutierrez, P. Designing type II topoisomerase inhibitors: A molecular modeling approach. Curr. Top. Med. Chem., 2013, 14(1), 40-50.
[http://dx.doi.org/10.2174/1568026613666131113150046] [PMID: 24236727]
[27]
Manjunatha, U.H.; Maxwell, A.; Nagaraja, V. A monoclonal antibody that inhibits mycobacterial DNA gyrase by a novel mechanism. Nucleic Acids Res., 2005, 33(10), 3085-3094.
[http://dx.doi.org/10.1093/nar/gki622] [PMID: 15930158]
[28]
Heddle, J.; Maxwell, A. Quinolone-binding pocket of DNA gyrase. Role of GyrB. Antimicrob. Agents Chemother., 2002, 46(6), 1805-1815.
[http://dx.doi.org/10.1128/AAC.46.6.1805-1815.2002] [PMID: 12019094]
[29]
Bahng, S.; Mossessova, E.; Nurse, P.; Marians, K.J. Mutational analysis of Escherichia coli topoisomerase IV. III. Identification of a region of parE involved in covalent catalysis. J. Biol. Chem., 2000, 275(6), 4112-4117.
[http://dx.doi.org/10.1074/jbc.275.6.4112] [PMID: 10660571]
[30]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm., 2018, 351(9), 1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[31]
Zhang, G.F.; Zhang, S.; Pan, B.; Liu, X.; Feng, L.S. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur. J. Med. Chem., 2018, 143, 710-723.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.082] [PMID: 29220792]
[32]
Suaifan, G.A.R.Y.; Mohammed, A.A.M. Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? Bioorg. Med. Chem., 2019, 27(14), 3005-3060.
[http://dx.doi.org/10.1016/j.bmc.2019.05.038] [PMID: 31182257]
[33]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.; Brown, K.K.; Lewis, C.J.; May, E.W.; Saunders, M.R.; Singh, O.; Spitzfaden, C.E.; Shen, C.; Shillings, A.; Theobald, A.J.; Wohlkonig, A.; Pearson, N.D.; Gwynn, M.N. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[http://dx.doi.org/10.1038/nature09197] [PMID: 20686482]
[34]
Idowu, T.; Ammeter, D.; Rossong, H.; Zhanel, G.G.; Schweizer, F. Homodimeric tobramycin adjuvant repurposes novobiocin as an effective antibacterial agent against Gram-negative bacteria. J. Med. Chem., 2019, 62(20), 9103-9115.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00876] [PMID: 31557020]
[35]
Mbaba, M.; Mabhula, A.N.; Boel, N.; Edkins, A.L.; Isaacs, M.; Hoppe, H.C.; Khanye, S.D. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity. J. Inorg. Biochem., 2017, 172, 88-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.04.014] [PMID: 28441548]
[36]
Wetzel, C.; Lonneman, M.; Wu, C. Polypharmacological drug actions of recently FDA approved antibiotics. Eur. J. Med. Chem., 2021, 209, 112931.
[http://dx.doi.org/10.1016/j.ejmech.2020.112931] [PMID: 33127170]
[37]
Bielenica, A.; Drzewiecka-Antonik, A.; Rejmak, P.; Stefańska, J.; Koliński, M.; Kmiecik, S.; Lesyng, B.; Włodarczyk, M.; Pietrzyk, P.; Struga, M. Synthesis, structural and antimicrobial studies of type II topoisomerase-targeted copper(II) complexes of 1,3-disubstituted thiourea ligands. J. Inorg. Biochem., 2018, 182, 61-70.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.005] [PMID: 29499458]
[38]
Avgoulas, D.I.; Katsipis, G.; Halevas, E.; Geromichalou, E.G.; Geromichalos, G.D.; Pantazaki, A.A. Unraveling the binding mechanism of an Oxovanadium(IV): Curcumin complex on albumin, DNA and DNA gyrase by in vitro and in silico studies and evaluation of its hemocompatibility. J. Inorg. Biochem., 2021, 221, 111402.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111402] [PMID: 33975249]
[39]
Aycan, T.; Öztürk, F.; Doruk, T.; Demir, S.; Fidan, M.; Paşaoğlu, H. Synthesis, structural, spectral and antimicrobial activity studies of copper-nalidixic acid complex with 1,10-phenanthroline: DFT and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 241, 118639.
[http://dx.doi.org/10.1016/j.saa.2020.118639] [PMID: 32629397]
[40]
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem., 2009, 17(9), 3229-3256.
[http://dx.doi.org/10.1016/j.bmc.2009.02.050] [PMID: 19299148]
[41]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[42]
Hofny, H.A.; Mohamed, M.F.A.; Gomaa, H.A.M.; Abdel-Aziz, S.A.; Youssif, B.G.M.; El-koussi, N.A.; Aboraia, A.S. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg. Chem., 2021, 112, 104920.
[http://dx.doi.org/10.1016/j.bioorg.2021.104920] [PMID: 33910078]
[43]
Manjunatha, K.; Poojary, B.; Lobo, P.L.; Fernandes, J.; Kumari, N.S. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem., 2010, 45(11), 5225-5233.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.039] [PMID: 20828888]
[44]
Allaka, T.R.; Kummari, B.; Polkam, N.; Kuntala, N.; Chepuri, K.; Anireddy, J.S. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Mol. Divers., 2022, 26(3), 1581-1596.
[http://dx.doi.org/10.1007/s11030-021-10287-3] [PMID: 34341943]
[45]
Tale, R.H.; Rodge, A.H.; Hatnapure, G.D.; Keche, A.P. The novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea: Synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation. Bioorg. Med. Chem. Lett., 2011, 21(15), 4648-4651.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.062] [PMID: 21737269]
[46]
Desai, N.C.; Vaghani, H.V.; Jethawa, A.M.; Khedkar, V.M. In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents. Arch. Pharm., 2021, 354(10), 2100134.
[http://dx.doi.org/10.1002/ardp.202100134] [PMID: 34169569]
[47]
Frejat, F.O.A.; Cao, Y.; Zhai, H.; Abdel-Aziz, S.A.; Gomaa, H.A.M.; Youssif, B.G.M.; Wu, C. Novel 1,2,4-oxadiazole/pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity. Arab. J. Chem., 2022, 15(1), 103538.
[http://dx.doi.org/10.1016/j.arabjc.2021.103538]
[48]
Liu, H.; Xia, D.G.; Chu, Z.W.; Hu, R.; Cheng, X.; Lv, X.H. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase Inhibitors: Design, synthesis, and antibacterial activity. Bioorg. Chem., 2020, 100, 103907.
[http://dx.doi.org/10.1016/j.bioorg.2020.103907] [PMID: 32413631]
[49]
Mamidala, S.; Peddi, S.R.; Aravilli, R.K.; Jilloju, P.C.; Manga, V.; Vedula, R.R. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J. Mol. Struct., 2021, 1225, 129114.
[http://dx.doi.org/10.1016/j.molstruc.2020.129114]
[50]
Fayed, E.A.; Nosseir, E.S.; Atef, A.; El-Kalyoubi, S.A. In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors. Mol. Divers., 2022, 26(1), 341-363.
[http://dx.doi.org/10.1007/s11030-021-10224-4] [PMID: 33895960]
[51]
Srivastava, S.; Bimal, D.; Bohra, K.; Singh, B.; Ponnan, P.; Jain, R.; Varma-Basil, M.; Maity, J.; Thirumal, M.; Prasad, A.K. Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl-/-coumarinyl-1,2,3-triazole. Eur. J. Med. Chem., 2018, 150, 268-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.067] [PMID: 29529504]
[52]
Mayer, C.; Janin, Y.L. Non-quinolone inhibitors of bacterial type IIA topoisomerases: A feat of bioisosterism. Chem. Rev., 2014, 114(4), 2313-2342.
[http://dx.doi.org/10.1021/cr4003984] [PMID: 24313284]
[53]
Jakopin, Ž.; Ilaš, J.; Barančoková, M.; Brvar, M.; Tammela, P.; Sollner Dolenc, M.; Tomašič, T.; Kikelj, D. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors. Eur. J. Med. Chem., 2017, 130, 171-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.046] [PMID: 28246042]
[54]
Jukič, M.; Ilaš, J.; Brvar, M.; Kikelj, D.; Cesar, J.; Anderluh, M. Linker-switch approach towards new ATP binding site inhibitors of DNA gyrase B. Eur. J. Med. Chem., 2017, 125, 500-514.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.040] [PMID: 27689732]
[55]
Liu, H.; Chu, Z.W.; Xia, D.G.; Cao, H.Q.; Lv, X.H. Discovery of novel multi-substituted benzo-indole pyrazole schiff base derivatives with antibacterial activity targeting DNA gyrase. Bioorg. Chem., 2020, 99, 103807.
[http://dx.doi.org/10.1016/j.bioorg.2020.103807] [PMID: 32272364]
[56]
Roszkowski, P.; Szymańska-Majchrzak, J.; Koliński, M.; Kmiecik, S.; Wrzosek, M.; Struga, M.; Szulczyk, D. Novel tetrazole-based antimicrobial agents targeting clinical bacteria strains: Exploring the inhibition of Staphylococcus aureus DNA Topoisomerase IV and Gyrase. Int. J. Mol. Sci., 2021, 23(1), 378.
[http://dx.doi.org/10.3390/ijms23010378] [PMID: 35008805]
[57]
D’souza, A.; Kumar, P.; Kumar, A.; Rai, S.M.; Nayak, P. Synthesis, In silico and antibacterial activity studies of substituted dihydro-1, 2-oxazole benzopyran-2-one hybrids. Synthesis, 2021, 33(35A)
[58]
McGarry, D.H.; Cooper, I.R.; Walker, R.; Warrilow, C.E.; Pichowicz, M.; Ratcliffe, A.J.; Salisbury, A.M.; Savage, V.J.; Moyo, E.; Maclean, J.; Smith, A.; Charrier, C.; Stokes, N.R.; Lindsay, D.M.; Kerr, W.J. Design, synthesis and antibacterial properties of pyrimido[4,5-b]indol-8-amine inhibitors of DNA gyrase. Bioorg. Med. Chem. Lett., 2018, 28(17), 2998-3003.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.049] [PMID: 30122228]
[59]
Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett., 2018, 9(3), 244-249.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00514] [PMID: 29541368]
[60]
Szulczyk, D.; Dobrowolski, M.A.; Roszkowski, P.; Bielenica, A.; Stefańska, J.; Koliński, M.; Kmiecik, S.; Jóźwiak, M.; Wrzosek, M.; Olejarz, W.; Struga, M. Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA topoisomerase IV and gyrase affinity evaluation supported by molecular docking studies. Eur. J. Med. Chem., 2018, 156, 631-640.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.041] [PMID: 30031974]
[61]
Tomašič, T.; Barančoková, M.; Zidar, N.; Ilaš, J.; Tammela, P.; Kikelj, D. Design, synthesis, and biological evaluation of 1-ethyl-3-(thiazol-2-yl)urea derivatives as Escherichia coli DNA gyrase inhibitors. Arch. Pharm., 2018, 351(1), 1700333.
[http://dx.doi.org/10.1002/ardp.201700333] [PMID: 29239018]
[62]
Chu, M.J.; Wang, W.; Ren, Z.L.; Liu, H.; Cheng, X.; Mo, K.; Wang, L.; Tang, F.; Lv, X.H. Discovery of novel triazole-containing pyrazole ester derivatives as potential antibacterial agents. Molecules, 2019, 24(7), 1311.
[http://dx.doi.org/10.3390/molecules24071311] [PMID: 30987179]
[63]
Thalji, R.K.; Raha, K.; Andreotti, D.; Checchia, A.; Cui, H.; Meneghelli, G.; Profeta, R.; Tonelli, F.; Tommasi, S.; Bakshi, T.; Donovan, B.T.; Howells, A.; Jain, S.; Nixon, C.; Quinque, G.; McCloskey, L.; Bax, B.D.; Neu, M.; Chan, P.F.; Stavenger, R.A. Structure-guided design of antibacterials that allosterically inhibit DNA gyrase. Bioorg. Med. Chem. Lett., 2019, 29(11), 1407-1412.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.029] [PMID: 30962087]
[64]
Salem, M.A.; Ragab, A.; Askar, A.A.; El-Khalafawy, A.; Makhlouf, A.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. Eur. J. Med. Chem., 2020, 188, 111977.
[http://dx.doi.org/10.1016/j.ejmech.2019.111977] [PMID: 31927313]
[65]
Salem, M.A.; Ragab, A.; El-Khalafawy, A.; Makhlouf, A.H.; Askar, A.A.; Ammar, Y.A. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors. Bioorg. Chem., 2020, 96, 103619.
[http://dx.doi.org/10.1016/j.bioorg.2020.103619] [PMID: 32036161]
[66]
Alzahrani, A.Y.; Ammar, Y.A.; Salem, M.A.; Abu-Elghait, M.; Ragab, A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3‐[(1 H ‐pyrazol‐3‐yl)imino]indolin‐2‐one derivatives as DNA gyrase inhibitors. Arch. Pharm., 2022, 355(1), 2100266.
[http://dx.doi.org/10.1002/ardp.202100266] [PMID: 34747519]
[67]
Kaur, H.; Singh, J.; Narasimhan, B. Indole hybridized diazenyl derivatives: Synthesis, antimicrobial activity, cytotoxicity evaluation and docking studies. BMC Chem., 2019, 13(1), 65.
[http://dx.doi.org/10.1186/s13065-019-0580-0] [PMID: 31384812]
[68]
Kashyap, A.; Singh, P.K.; Silakari, O. In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis. Tuberculosis, 2018, 112, 83-88.
[http://dx.doi.org/10.1016/j.tube.2018.08.005] [PMID: 30205973]
[69]
Sanna, G.; Madeddu, S.; Giliberti, G.; Piras, S.; Struga, M.; Wrzosek, M.; Kubiak-Tomaszewska, G.; Koziol, A.; Savchenko, O.; Lis, T.; Stefanska, J.; Tomaszewski, P.; Skrzycki, M.; Szulczyk, D. Synthesis and biological evaluation of novel indole-derived thioureas. Molecules, 2018, 23(10), 2554.
[http://dx.doi.org/10.3390/molecules23102554] [PMID: 30301264]
[70]
Brown-Elliott, B.A.; Rubio, A.; Wallace, R.J., Jr In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrob. Agents Chemother., 2018, 62(11), e01503-e01518.
[http://dx.doi.org/10.1128/AAC.01503-18] [PMID: 30126964]
[71]
Basarab, G.S.; Hill, P.J.; Garner, C.E.; Hull, K.; Green, O.; Sherer, B.A.; Dangel, P.B.; Manchester, J.I.; Bist, S.; Hauck, S.; Zhou, F.; Uria-Nickelsen, M.; Illingworth, R.; Alm, R.; Rooney, M.; Eakin, A.E. Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099). J. Med. Chem., 2014, 57(14), 6060-6082.
[http://dx.doi.org/10.1021/jm500462x] [PMID: 24959892]
[72]
Eakin, A.E.; Green, O.; Hales, N.; Walkup, G.K.; Bist, S.; Singh, A.; Mullen, G.; Bryant, J.; Embrey, K.; Gao, N.; Breeze, A.; Timms, D.; Andrews, B.; Uria-Nickelsen, M.; Demeritt, J.; Loch, J.T., III; Hull, K.; Blodgett, A.; Illingworth, R.N.; Prince, B.; Boriack-Sjodin, P.A.; Hauck, S.; MacPherson, L.J.; Ni, H.; Sherer, B. Pyrrolamide DNA gyrase inhibitors: Fragment-based nuclear magnetic resonance screening to identify antibacterial agents. Antimicrob. Agents Chemother., 2012, 56(3), 1240-1246.
[http://dx.doi.org/10.1128/AAC.05485-11] [PMID: 22183167]
[73]
Ushiyama, F.; Amada, H.; Takeuchi, T.; Tanaka-Yamamoto, N.; Kanazawa, H.; Nakano, K.; Mima, M.; Masuko, A.; Takata, I.; Hitaka, K.; Iwamoto, K.; Sugiyama, H.; Ohtake, N. Lead identification of 8-(methylamino)-2-oxo-1, 2-dihydroquinoline derivatives as DNA gyrase inhibitors: Hit-to-lead generation involving thermodynamic evaluation. ACS Omega, 2020, 5(17), 10145-10159.
[http://dx.doi.org/10.1021/acsomega.0c00865] [PMID: 32391502]
[74]
El-Shershaby, M.H.; El-Gamal, K.M.; Bayoumi, A.H.; El-Adl, K.; Ahmed, H.E.A.; Abulkhair, H.S. Synthesis, antimicrobial evaluation, DNA gyrase inhibition and in silico pharmacokinetic studies of novel quinoline derivatives. Arch. Pharm., 2021, 354(2), 2000277.
[http://dx.doi.org/10.1002/ardp.202000277] [PMID: 33078877]
[75]
Towle, T.R.; Kulkarni, C.A.; Oppegard, L.M.; Williams, B.P.; Picha, T.A.; Hiasa, H.; Kerns, R.J. Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase. Bioorg. Med. Chem. Lett., 2018, 28(10), 1903-1910.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.085] [PMID: 29661533]
[76]
Mermer, A.; Faiz, O.; Demirbas, A.; Demirbas, N.; Alagumuthu, M.; Arumugam, S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg. Chem., 2019, 85, 308-318.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.009] [PMID: 30654222]
[77]
Xu, K.; He, S.; Chen, S.; Qiu, G.; Shi, J.; Liu, X.; Wu, X.; Zhang, J.; Tang, W. Free radical rearrangement synthesis and microbiological evaluation of novel 2-sulfoether-4-quinolone scaffolds as potential antibacterial agents. Eur. J. Med. Chem., 2018, 154, 144-154.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.021] [PMID: 29787914]
[78]
Saleh, N.M.; Moemen, Y.S.; Mohamed, S.H.; Fathy, G.; Ahmed, A.A.S.; Al-Ghamdi, A.A.; Ullah, S.; El Sayed, I.E.T. Experimental and molecular docking studies of cyclic diphenyl phosphonates as DNA gyrase inhibitors for fluoroquinolone-resistant pathogens. Antibiotics, 2022, 11(1), 53.
[http://dx.doi.org/10.3390/antibiotics11010053] [PMID: 35052930]
[79]
Shi, C.; Zhang, Y.; Wang, T.; Lu, W.; Zhang, S.; Guo, B.; Chen, Q.; Luo, C.; Zhou, X.; Yang, Y. Design, synthesis, and biological evaluation of novel DNA gyrase-inhibiting spiropyrimidinetriones as potent antibiotics for treatment of infections caused by multidrug-resistant gram-positive bacteria. J. Med. Chem., 2019, 62(6), 2950-2973.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01750] [PMID: 30698430]
[80]
Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Lynch, J.P., III; Karlowsky, J.A. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs, 2019, 79(3), 271-289.
[http://dx.doi.org/10.1007/s40265-019-1055-2] [PMID: 30712199]
[81]
Food, U.; Administration, D. FDA approves new antibacterial drug to treat complicated urinary tract infections as part of ongoing efforts to address antimicrobial resistance; , 2019. Available From https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-complicated-urinary-tract-infections-part-ongoing-efforts
[82]
Lamut, A.; Cruz, C.D.; Skok, Ž.; Barančoková, M.; Zidar, N.; Zega, A.; Mašič, L.P.; Ilaš, J.; Tammela, P.; Kikelj, D.; Tomašič, T. Design, synthesis and biological evaluation of novel DNA gyrase inhibitors and their siderophore mimic conjugates. Bioorg. Chem., 2020, 95, 103550.
[http://dx.doi.org/10.1016/j.bioorg.2019.103550] [PMID: 31911309]
[83]
Skok, Ž.; Barančoková, M.; Benek, O.; Cruz, C.D.; Tammela, P.; Tomašič, T.; Zidar, N.; Mašič, L.P.; Zega, A.; Stevenson, C.E.M.; Mundy, J.E.A.; Lawson, D.M.; Maxwell, A.; Kikelj, D.; Ilaš, J. Exploring the chemical space of benzothiazole-based DNA gyrase B inhibitors. ACS Med. Chem. Lett., 2020, 11(12), 2433-2440.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00416] [PMID: 33329764]
[84]
Abd El-Aleam, R.H.; George, R.F.; Hassan, G.S.; Abdel-Rahman, H.M. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg. Chem., 2020, 94, 103411.
[http://dx.doi.org/10.1016/j.bioorg.2019.103411] [PMID: 31711767]
[85]
Ghannam, I.A.Y.; Abd El-Meguid, E.A.; Ali, I.H.; Sheir, D.H.; El Kerdawy, A.M. Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg. Chem., 2019, 93, 103373.
[http://dx.doi.org/10.1016/j.bioorg.2019.103373] [PMID: 31698294]
[86]
Huang, B.; Zhang, Y. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov. Today, 2022, 27(7), 1936-1944.
[http://dx.doi.org/10.1016/j.drudis.2022.02.007] [PMID: 35182736]
[87]
Heide, L. New aminocoumarin antibiotics as gyrase inhibitors. Int. J. Med. Microbiol., 2014, 304(1), 31-36.
[http://dx.doi.org/10.1016/j.ijmm.2013.08.013] [PMID: 24079980]
[88]
Theobald, U.; Schimana, J.; Fiedler, H.P. Microbial growth and production kinetics of streptomyces antibioticus Tü 6040. Antonie van Leeuwenhoek, 2000, 78(3/4), 307-313.
[http://dx.doi.org/10.1023/A:1010282818272] [PMID: 11386353]
[89]
Gradišar, H.; Pristovšek, P.; Plaper, A.; Jerala, R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J. Med. Chem., 2007, 50(2), 264-271.
[http://dx.doi.org/10.1021/jm060817o] [PMID: 17228868]
[90]
Duan, F.; Li, X.; Cai, S.; Xin, G.; Wang, Y.; Du, D.; He, S.; Huang, B.; Guo, X.; Zhao, H.; Zhang, R.; Ma, L.; Liu, Y.; Du, Q.; Wei, Z.; Xing, Z.; Liang, Y.; Wu, X.; Fan, C.; Ji, C.; Zeng, D.; Chen, Q.; He, Y.; Liu, X.; Huang, W. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. J. Med. Chem., 2014, 57(9), 3707-3714.
[http://dx.doi.org/10.1021/jm401685f] [PMID: 24588790]
[91]
Patel, K.; Tyagi, C.; Goyal, S.; Jamal, S.; Wahi, D.; Jain, R.; Bharadvaja, N.; Grover, A. Identification of chebulinic acid as potent natural inhibitor of M. tuberculosis DNA gyrase and molecular insights into its binding mode of action. Comput. Biol. Chem., 2015, 59(Pt A), 37-47.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.09.006] [PMID: 26410242]
[92]
Edwards, M.J.; Flatman, R.H.; Mitchenall, L.A.; Stevenson, C.E.M.; Le, T.B.K.; Clarke, T.A.; McKay, A.R.; Fiedler, H.P.; Buttner, M.J.; Lawson, D.M.; Maxwell, A. A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science, 2009, 326(5958), 1415-1418.
[http://dx.doi.org/10.1126/science.1179123] [PMID: 19965760]
[93]
Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr; America, I.D.S. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of America. Clin. Infect. Dis., 2008, 46(2), 155-164.
[http://dx.doi.org/10.1086/524891] [PMID: 18171244]
[94]
Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[96]
Kong, Q.; Yang, Y. Recent advances in antibacterial agents. Bioorg. Med. Chem. Lett., 2021, 35, 127799.
[http://dx.doi.org/10.1016/j.bmcl.2021.127799] [PMID: 33476772]
[97]
Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial astrains: Latest research developments and future perspectives. Molecules, 2021, 26(9), 2671.
[http://dx.doi.org/10.3390/molecules26092671] [PMID: 34063264]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy