Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro

Author(s): Jie Zhao, Mi Han, Yange Tian, Peng Zhao, Xuefang Liu, Haoran Dong, Suxiang Feng and Jiansheng Li*

Volume 25, Issue 11, 2024

Published on: 31 October, 2023

Page: [1466 - 1477] Pages: 12

DOI: 10.2174/0113892010257526231019143524

Price: $65

conference banner
Abstract

Background: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. N-acetylcysteine (NAC) is well known for its antioxidant properties, along with potential protective effects on COPD. However, the molecular mechanism of NAC against the apoptosis of alveolar epithelial cells (AECs) in COPD remains unclear.

Objective: This study aimed to explore the anti-apoptosis effect of NAC in COPD mice and alveolar epithelial cells.

Methods: In the present study, the mouse model of COPD was established by cigarette smoke (CS), and mouse alveolar epithelial (MLE-12) cells were treated with cigarette smoke extract (CSE). TdT-mediated dUTP nick-end labeling (TUNEL) assay, reverse transcription polymerase chain reaction (RT-PCR), and western blot were performed to evaluate the effects of NAC on apoptosis, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Meanwhile, Lbuthionine- sulfoximine (BSO), a glutathione (GSH) inhibitor, was used to uncover the mechanism of COPD treatment by NAC.

Results: We found that NAC pretreatment could attenuate the protein levels of apoptosis, ER stress, and mitochondrial dysfunction-related genes caused by CS in vivo. Meanwhile, CSE could decrease MLE-12 cell viability, which was prevented by apoptosis inhibitor ZVAD-FMK but not necroptosis inhibitor necrostatin-1. Pretreatment of MLE-12 cells with NAC increased cellular GSH levels, inhibited cellular and mitochondrial reactive oxygen species (ROS) accumulation, and decreased protein level of apoptosis, ER stress, and mitochondrial dysfunction-related genes. Moreover, experiment results showed that BSO could completely reverse the beneficial effects of NAC.

Conclusion: Our study confirmed that NAC can attenuate CS-induced AEC apoptosis via alleviating ROS-mediated ER stress and mitochondrial dysfunction pathway, and the mechanism was found to be related to replenishing the cellular GSH content.

Graphical Abstract

[1]
Labaki, W.W.; Rosenberg, S.R. Chronic obstructive pulmonary disease. Ann. Intern. Med., 2020, 173(3), ITC17-ITC32.
[http://dx.doi.org/10.7326/AITC202008040] [PMID: 32745458]
[2]
Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet, 2017, 389(10082), 1931-1940.
[http://dx.doi.org/10.1016/S0140-6736(17)31222-9] [PMID: 28513453]
[3]
Wang, C.; Zhou, J.; Wang, J.; Li, S.; Fukunaga, A.; Yodoi, J.; Tian, H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct. Target. Ther., 2020, 5(1), 248.
[http://dx.doi.org/10.1038/s41392-020-00345-x] [PMID: 33110061]
[4]
Hadzic, S.; Wu, C.Y.; Avdeev, S.; Weissmann, N.; Schermuly, R.T.; Kosanovic, D. Lung epithelium damage in COPD – An unstoppable pathological event? Cell. Signal., 2020, 68, 109540.
[http://dx.doi.org/10.1016/j.cellsig.2020.109540] [PMID: 31953012]
[5]
Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5730395] [PMID: 29599897]
[6]
Kluchová, Z.; Petrášová, D.; Joppa, P.; Dorková, Z. Tkáčová, R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol. Res., 2007, 56(1), 51-56.
[http://dx.doi.org/10.33549/physiolres.930884] [PMID: 16497100]
[7]
Sauler, M.; Bazan, I.S.; Lee, P.J. Cell death in the lung: The apoptosis-necroptosis axis. Annu. Rev. Physiol., 2019, 81(1), 375-402.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114320] [PMID: 30485762]
[8]
Kosmider, B.; Messier, E.M.; Chu, H.W.; Mason, R.J. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One, 2011, 6(12), e26059.
[http://dx.doi.org/10.1371/journal.pone.0026059] [PMID: 22163265]
[9]
Sun, X.; Feng, X.; Zheng, D.; Li, A.; Li, C.; Li, S.; Zhao, Z. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clin. Sci., 2019, 133(13), 1523-1536.
[http://dx.doi.org/10.1042/CS20190331] [PMID: 31270147]
[10]
Yokohori, N.; Aoshiba, K.; Nagai, A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest, 2004, 125(2), 626-632.
[http://dx.doi.org/10.1378/chest.125.2.626] [PMID: 14769747]
[11]
Siganaki, M.; Koutsopoulos, A.V.; Neofytou, E.; Vlachaki, E.; Psarrou, M.; Soulitzis, N.; Pentilas, N.; Schiza, S.; Siafakas, N.M.; Tzortzaki, E.G. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir. Res., 2010, 11(1), 46.
[http://dx.doi.org/10.1186/1465-9921-11-46] [PMID: 20423464]
[12]
Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S.; Sharma, P.; Zeki, A.A.; Ghavami, S. The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life, 2020, 11(1), 1.
[http://dx.doi.org/10.3390/life11010001] [PMID: 33374938]
[13]
Kelsen, S.G.; Duan, X.; Ji, R.; Perez, O.; Liu, C.; Merali, S. Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach. Am. J. Respir. Cell Mol. Biol., 2008, 38(5), 541-550.
[http://dx.doi.org/10.1165/rcmb.2007-0221OC] [PMID: 18079489]
[14]
Somborac-Bačura, A.; van der Toorn, M.; Franciosi, L.; Slebos, D.J.; Žanić-Grubišić T.; Bischoff, R.; van Oosterhout, A.J.M. Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp. Physiol., 2013, 98(1), 316-325.
[http://dx.doi.org/10.1113/expphysiol.2012.067249] [PMID: 22848082]
[15]
Zhang, L.; Wang, W.; Zhu, B.; Wang, X. Epithelial mitochondrial dysfunction in lung disease. Adv. Exp. Med. Biol., 2017, 1038, 201-217.
[http://dx.doi.org/10.1007/978-981-10-6674-0_14] [PMID: 29178078]
[16]
Guan, R.; Cai, Z.; Wang, J.; Ding, M.; Li, Z.; Xu, J.; Li, Y.; Li, J.; Yao, H.; Liu, W.; Qian, J.; Deng, B.; Tang, C.; Sun, D.; Lu, W. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging, 2019, 11(24), 11844-11864.
[http://dx.doi.org/10.18632/aging.102454] [PMID: 31881011]
[17]
Heard, K.; Green, J. Acetylcysteine therapy for acetaminophen poisoning. Curr. Pharm. Biotechnol., 2012, 13(10), 1917-1923.
[http://dx.doi.org/10.2174/138920112802273146] [PMID: 22352734]
[18]
Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014, 141(2), 150-159.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.006] [PMID: 24080471]
[19]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[20]
Cai, S.; Chen, P.; Zhang, C.; Chen, J.B.; Wu, J. Oral N -acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology, 2009, 14(3), 354-359.
[http://dx.doi.org/10.1111/j.1440-1843.2009.01511.x] [PMID: 19341424]
[21]
Messier, E.M.; Day, B.J.; Kleeberger, S.R.; Tuder, R.M.; Bowler, R.P.; Chu, H.W.; Mason, R.J.; Kosmider, B.; Kosmider, B. N-acetylcysteine protects murine alveolar type II cells from cigarette smoke injury in a nuclear erythroid 2-related factor-2-independent manner. Am. J. Respir. Cell Mol. Biol., 2013, 48(5), 559-567.
[http://dx.doi.org/10.1165/rcmb.2012-0295OC] [PMID: 23492188]
[22]
Sun, J.; Bao, J.; Shi, Y.; Zhang, B.; Yuan, L.; Li, J.; Zhang, L.; Sun, M.; Zhang, L.; Sun, W. Effect of simvastatin on MMPs and TIMPs in cigarette smoke-induced rat COPD model. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 717-724.
[http://dx.doi.org/10.2147/COPD.S110520] [PMID: 28260878]
[23]
Tagawa, Y.; Hiramatsu, N.; Kasai, A.; Hayakawa, K.; Okamura, M.; Yao, J.; Kitamura, M. Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic. Biol. Med., 2008, 45(1), 50-59.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.003] [PMID: 18394432]
[24]
Nyunoya, T.; Mebratu, Y.; Contreras, A.; Delgado, M.; Chand, H.S.; Tesfaigzi, Y. Molecular processes that drive cigarette smoke-induced epithelial cell fate of the lung. Am. J. Respir. Cell Mol. Biol., 2014, 50(3), 471-482.
[http://dx.doi.org/10.1165/rcmb.2013-0348TR] [PMID: 24111585]
[25]
Hodge, S.; Hodge, G.; Holmes, M.; Reynolds, P.N. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur. Respir. J., 2005, 25(3), 447-454.
[http://dx.doi.org/10.1183/09031936.05.00077604] [PMID: 15738287]
[26]
Zhang, D.W.; Shao, J.; Lin, J.; Zhang, N.; Lu, B.J.; Lin, S.C.; Dong, M.Q.; Han, J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938), 332-336.
[http://dx.doi.org/10.1126/science.1172308] [PMID: 19498109]
[27]
He, S.; Wang, L.; Miao, L.; Wang, T.; Du, F.; Zhao, L.; Wang, X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009, 137(6), 1100-1111.
[http://dx.doi.org/10.1016/j.cell.2009.05.021] [PMID: 19524512]
[28]
Wang, Y.; Liu, J.; Zhou, J.S.; Huang, H.Q.; Li, Z.Y.; Xu, X.C.; Lai, T.W.; Hu, Y.; Zhou, H.B.; Chen, H.P.; Ying, S.M.; Li, W.; Shen, H.H.; Chen, Z.H. MTOR suppresses cigarette smoke-induced epithelial cell death and airway inflammation in chronic obstructive pulmonary disease. J. Immunol., 2018, 200(8), 2571-2580.
[http://dx.doi.org/10.4049/jimmunol.1701681] [PMID: 29507104]
[29]
Xuan, L.; Shi, J.; Yao, C.; Bai, J.; Qu, F.; Zhang, J.; Hou, Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol. Sin., 2014, 35(6), 779-791.
[http://dx.doi.org/10.1038/aps.2014.17] [PMID: 24747163]
[30]
Lin, X.X.; Yang, X.F.; Jiang, J.X.; Zhang, S.J.; Guan, Y.; Liu, Y.N.; Sun, Y.H.; Xie, Q.M. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol. Mech. Methods, 2014, 24(8), 575-583.
[http://dx.doi.org/10.3109/15376516.2014.956909] [PMID: 25134437]
[31]
Mizumura, K.; Cloonan, S.M.; Nakahira, K.; Bhashyam, A.R.; Cervo, M.; Kitada, T.; Glass, K.; Owen, C.A.; Mahmood, A.; Washko, G.R.; Hashimoto, S.; Ryter, S.W.; Choi, A.M.K. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest., 2014, 124(9), 3987-4003.
[http://dx.doi.org/10.1172/JCI74985] [PMID: 25083992]
[32]
Dastghaib, S.; Kumar, P.S.; Aftabi, S.; Damera, G.; Dalvand, A.; Sepanjnia, A.; Kiumarsi, M.; Aghanoori, M.R.; Sohal, S.S.; Ande, S.R.; Alizadeh, J.; Mokarram, P.; Ghavami, S.; Sharma, P.; Zeki, A.A. Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 29-38.
[http://dx.doi.org/10.1165/rcmb.2019-0235TR] [PMID: 32915643]
[33]
Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 421-438.
[http://dx.doi.org/10.1038/s41580-020-0250-z] [PMID: 32457508]
[34]
Kenche, H.; Baty, C.J.; Vedagiri, K.; Shapiro, S.D.; Blumental-Perry, A. Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J., 2013, 27(3), 965-977.
[http://dx.doi.org/10.1096/fj.12-216234] [PMID: 23169770]
[35]
Yuan, T.; Luo, B.; Wei, T.; Zhang, L.; He, B.; Niu, R. Salubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2α signaling pathway. Arch. Med. Res., 2012, 43(7), 522-529.
[http://dx.doi.org/10.1016/j.arcmed.2012.10.002] [PMID: 23072721]
[36]
Lin, F.; Liao, C.; Sun, Y.; Zhang, J.; Lu, W.; Bai, Y.; Liao, Y.; Li, M.; Ni, X.; Hou, Y.; Qi, Y.; Chen, Y. Hydrogen sulfide Inhibits cigarette smoke-induced endoplasmic reticulum stress and apoptosis in bronchial epithelial cells. Front. Pharmacol., 2017, 8, 675.
[http://dx.doi.org/10.3389/fphar.2017.00675] [PMID: 29033840]
[37]
Logue, S.E.; Cleary, P.; Saveljeva, S.; Samali, A. New directions in ER stress-induced cell death. Apoptosis, 2013, 18(5), 537-546.
[http://dx.doi.org/10.1007/s10495-013-0818-6] [PMID: 23430059]
[38]
Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J., 2016, 283(14), 2640-2652.
[http://dx.doi.org/10.1111/febs.13598] [PMID: 26587781]
[39]
Haji, G.; Wiegman, C.H.; Michaeloudes, C.; Patel, M.S.; Curtis, K.; Bhavsar, P.; Polkey, M.I.; Adcock, I.M.; Chung, K.F. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir. Res., 2020, 21(1), 262.
[http://dx.doi.org/10.1186/s12931-020-01527-5] [PMID: 33046036]
[40]
Zeng, H.; Shi, Z.; Kong, X.; Chen, Y.; Zhang, H.; Peng, H.; Luo, H.; Chen, P. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema. Exp. Biol. Med., 2016, 241(8), 808-816.
[http://dx.doi.org/10.1177/1535370216635759] [PMID: 26924842]
[41]
Hu, W.; Xie, J.; Zhao, J.; Xu, Y.; Yang, S.; Ni, W. Involvement of Bcl-2 family in apoptosis and signal pathways induced by cigarette smoke extract in the human airway smooth muscle cells. DNA Cell Biol., 2009, 28(1), 13-22.
[http://dx.doi.org/10.1089/dna.2008.0782] [PMID: 19090673]
[42]
Yen, Y.P.; Tsai, K.S.; Chen, Y.W.; Huang, C.F.; Yang, R.S.; Liu, S.H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol., 2012, 86(6), 923-933.
[http://dx.doi.org/10.1007/s00204-012-0864-9] [PMID: 22622864]
[43]
Park, E.; Yu, K.H.; Kim, D.K.; Kim, S.; Sapkota, K.; Kim, S.J.; Kim, C.S.; Chun, H.S. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food Chem. Toxicol., 2014, 67, 1-9.
[http://dx.doi.org/10.1016/j.fct.2014.02.015] [PMID: 24556569]
[44]
Zhang, L.; Zhu, Z.; Liu, J.; Zhu, Z.; Hu, Z. Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J. Recept. Signal Transduct. Res., 2014, 34(5), 396-400.
[http://dx.doi.org/10.3109/10799893.2014.908916] [PMID: 24734887]
[45]
Pan, X.; Wu, X.; Yan, D.; Peng, C.; Rao, C.; Yan, H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol. Lett., 2018, 288, 55-64.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.002] [PMID: 29426002]
[46]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy