Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Cardioprotective Role of Tinospora cordifolia against Trimethylamine-N-Oxide and Glucose Induced Stress in Rat Cardiomyocytes

Author(s): Shivani Singhal and Vibha Rani*

Volume 22, Issue 4, 2024

Published on: 27 October, 2023

Page: [475 - 494] Pages: 20

DOI: 10.2174/0118715257270512231013064533

Price: $65

Abstract

Background: Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility.

Material and Methods: In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays.

Results: The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent.

Conclusion: Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.

[1]
De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links. Front. Endocrinol., 2018, 9, 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[2]
Thomas, D.D.; Corkey, B.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: An early indicator of metabolic dysfunction. J. Endocr. Soc., 2019, 3(9), 1727-1747.
[http://dx.doi.org/10.1210/js.2019-00065] [PMID: 31528832]
[3]
Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med., 2017, 5(16), 326.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[4]
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy. Circ. Res., 2018, 122(4), 624-638.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[5]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[6]
Pizzinat, N.; Copin, N.; Vindis, C.; Parini, A.; Cambon, C. Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 359(5), 428-431.
[http://dx.doi.org/10.1007/PL00005371] [PMID: 10498294]
[7]
Kaludercic, N.; Carpi, A.; Menabò, R.; Di Lisa, F.; Paolocci, N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(7), 1323-1332.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.010] [PMID: 20869994]
[8]
Kaludercic, N.; Di Lisa, F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front. Cardiovasc. Med., 2020, 7, 12.
[http://dx.doi.org/10.3389/fcvm.2020.00012] [PMID: 32133373]
[9]
Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther., 2008, 88(11), 1322-1335.
[http://dx.doi.org/10.2522/ptj.20080008] [PMID: 18801863]
[10]
Prandi, F.R.; Evangelista, I.; Sergi, D.; Palazzuoli, A.; Romeo, F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: Molecular abnormalities and phenotypical variants. Heart Fail. Rev., 2022, 28(3), 597-606.
[http://dx.doi.org/10.1007/s10741-021-10200-y] [PMID: 35001338]
[11]
Agarwal, A.; Jadhav, P.; Deshmukh, Y. Prescribing pattern and efficacy of anti-diabetic drugs in maintaining optimal glycemic levels in diabetic patients. J. Basic Clin. Pharm., 2014, 5(3), 79-83.
[http://dx.doi.org/10.4103/0976-0105.139731] [PMID: 25278671]
[12]
Pogátsa, G. What kind of cardiovascular alterations could be influenced positively by oral antidiabetic agents? Diabetes Res. Clin. Pract., 1996, 31(Suppl.), S27-S31.
[http://dx.doi.org/10.1016/0168-8227(96)01227-2] [PMID: 8864638]
[13]
Borghetti, G.; von Lewinski, D.; Eaton, D.M.; Sourij, H.; Houser, S.R.; Wallner, M. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control. Front. Physiol., 2018, 9, 1514.
[http://dx.doi.org/10.3389/fphys.2018.01514] [PMID: 30425649]
[14]
Anand, S.S.; Hawkes, C.; de Souza, R.J.; Mente, A.; Dehghan, M.; Nugent, R.; Zulyniak, M.A.; Weis, T.; Bernstein, A.M.; Krauss, R.M.; Kromhout, D.; Jenkins, D.J.A.; Malik, V.; Martinez-Gonzalez, M.A.; Mozaffarian, D.; Yusuf, S.; Willett, W.C.; Popkin, B.M. Food consumption and its impact on cardiovascular disease: Importance of solutions focused on the globalized food system. J. Am. Coll. Cardiol., 2015, 66(14), 1590-1614.
[http://dx.doi.org/10.1016/j.jacc.2015.07.050] [PMID: 26429085]
[15]
Lim, D.W.; Wang, J.H. Gut Microbiome: The interplay of an “Invisible Organ” with herbal medicine and its derived compounds in chronic metabolic disorders. Int. J. Environ. Res. Public Health, 2022, 19(20), 13076.
[http://dx.doi.org/10.3390/ijerph192013076] [PMID: 36293657]
[16]
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[17]
Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients, 2019, 11(12), 2862.
[http://dx.doi.org/10.3390/nu11122862] [PMID: 31766592]
[18]
Li, X.; Geng, J.; Zhao, J.; Ni, Q.; Zhao, C.; Zheng, Y.; Chen, X.; Wang, L. Trimethylamine N-Oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome. Front. Physiol., 2019, 10, 866.
[http://dx.doi.org/10.3389/fphys.2019.00866] [PMID: 31354519]
[19]
Skye, S.M.; Zhu, W.; Romano, K.A.; Guo, C.J.; Wang, Z.; Jia, X.; Kirsop, J.; Haag, B.; Lang, J.M.; DiDonato, J.A.; Tang, W.H.W.; Lusis, A.J.; Rey, F.E.; Fischbach, M.A.; Hazen, S.L. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res., 2018, 123(10), 1164-1176.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313142] [PMID: 30359185]
[20]
Bean, L.D.; Wing, J.J.; Harris, R.E.; Smart, S.M.; Raman, S.V.; Milks, M.W. Transferrin predicts trimethylamine-N-oxide levels and is a potential biomarker of cardiovascular disease. BMC Cardiovasc. Disord., 2022, 22(1), 209.
[http://dx.doi.org/10.1186/s12872-022-02644-3] [PMID: 35538408]
[21]
Zheng, Y.; He, J.Q. Pathogenic mechanisms of trimethylamine N-oxide-induced atherosclerosis and cardiomyopathy. Curr. Vasc. Pharmacol., 2022, 20(1), 29-36.
[http://dx.doi.org/10.2174/1570161119666210812152802] [PMID: 34387163]
[22]
Janeiro, M.; Ramírez, M.; Milagro, F.; Martínez, J.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients, 2018, 10(10), 1398.
[http://dx.doi.org/10.3390/nu10101398] [PMID: 30275434]
[23]
Constantino-Jonapa, L.A.; Espinoza-Palacios, Y.; Escalona-Montaño, A.R.; Hernández-Ruiz, P.; Amezcua-Guerra, L.M.; Amedei, A.; Aguirre-García, M.M. Contribution of Trimethylamine N-Oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines, 2023, 11(2), 431.
[http://dx.doi.org/10.3390/biomedicines11020431] [PMID: 36830968]
[24]
Rizvi, M.K.; Rabail, R.; Munir, S.; Inam-Ur-Raheem, M.; Qayyum, M.M.N.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Astounding health benefits of Jamun (Syzygium cumini) toward metabolic syndrome. Molecules, 2022, 27(21), 7184.
[http://dx.doi.org/10.3390/molecules27217184] [PMID: 36364010]
[25]
El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 2020, 10(2), 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[26]
Kumar, S.; Singh, N.; Singh, A.; Singh, N.; Sinha, R. Use of Curcuma longa L. extract to stain various tissue samples for histological studies. Ayu, 2014, 35(4), 447-451.
[http://dx.doi.org/10.4103/0974-8520.159027] [PMID: 26195911]
[27]
Tesfaye, A. Revealing the therapeutic uses of garlic (Allium sativum) and its potential for drug discovery. ScientificWorldJournal, 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/8817288] [PMID: 35002548]
[28]
Dwivedi, S.; Chopra, D. Revisiting Terminalia arjuna-an ancient cardiovascular drug. J. Tradit. Complement. Med., 2014, 4(4), 224-231.
[http://dx.doi.org/10.4103/2225-4110.139103] [PMID: 25379463]
[29]
Cohen, M. Tulsi-Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[30]
Ghosh, S.; Saha, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life, 2012, 31(4), 151-159.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[31]
Singhal, S.; Rani, V. Study to explore plant-derived trimethylamine lyase enzyme inhibitors to address gut dysbiosis. Appl. Biochem. Biotechnol., 2022, 194(1), 99-123.
[http://dx.doi.org/10.1007/s12010-021-03747-x] [PMID: 34822060]
[32]
Ali, H.; Dixit, S. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal, 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/376216] [PMID: 24379740]
[33]
Abubakar, A.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci., 2020, 12(1), 1-10.
[http://dx.doi.org/10.4103/jpbs.JPBS_175_19] [PMID: 32801594]
[34]
Redfern, J.; Kinninmonth, M.; Burdass, D.; Verran, J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Microbiol. Biol. Educ., 2014, 15(1), 45-46.
[http://dx.doi.org/10.1128/jmbe.v15i1.656] [PMID: 24839520]
[35]
Garg, P.; Garg, R. Qualitative and quantitative analysis of leaves and stem of Tinospora cordifolia in different solvent extract. J. Drug Deliv. Ther., 2018, 8(5-s), 259-264.
[http://dx.doi.org/10.22270/jddt.v8i5-s.1967]
[36]
Madhu, M.; Sailaja, V.; Satyadev, T.N.V.S.S.; Satyanarayana, M.V. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. J. Pharmacogn. Phytochem., 2016, 5(2), 25-29.
[37]
Fardiyah, Q. Suprapto; Kurniawan, F.; Ersam, T.; Slamet, A.; Suyanta, Preliminary phytochemical screening and fluorescence characterization of several medicinal plants extract from east java Indonesia. IOP Conf. Series Mater. Sci. Eng., 2020, 833(1), 012008.
[http://dx.doi.org/10.1088/1757-899X/833/1/012008]
[38]
Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc., 2007, 2(4), 875-877.
[http://dx.doi.org/10.1038/nprot.2007.102] [PMID: 17446889]
[39]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[40]
Ghate, N.; Chaudhuri, D.; Mandal, N. In vitro assessment of Tinospora cordifolia stem for its antioxidant, free radical scavenging and DNA protective potentials. Int. J. Pharm. Biol. Sci., 2013, 4, 373-388.
[41]
Murphy, D.L.; Karoum, F.; Pickar, D.; Cohen, R.M.; Lipper, S.; Mellow, A.M.; Tariot, P.N.; Sunderland, T. Differential trace amine alterations in individuals receiving acetylenic inhibitors of MAO-A (clorgyline) or MAO-B (selegiline and pargyline). J. Neural Transm. Suppl., 1998, 52, 39-48.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_5] [PMID: 9564606]
[42]
Geha, R.M.; Chen, K.; Wouters, J.; Ooms, F.; Shih, J.C. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J. Biol. Chem., 2002, 277(19), 17209-17216.
[http://dx.doi.org/10.1074/jbc.M110920200] [PMID: 11861643]
[43]
Shwetha, J.S. Tahareen; Dsouza, M. Antioxidant and anti-inflammatory activity of Tinospora cordifolia using in vitro models. J. Chem. Biol. Phys. Sci., 2016, 6, 497-512.
[44]
Polu, P.R.; Nayanbhirama, U.; Khan, S.; Maheswari, R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd). BMC Complement. Altern. Med., 2017, 17(1), 457.
[http://dx.doi.org/10.1186/s12906-017-1953-3] [PMID: 28893230]
[45]
Atale, N.; Saxena, S.; Nirmala, J.G.; Narendhirakannan, R.T.; Mohanty, S.; Rani, V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach. Appl. Biochem. Biotechnol., 2017, 181(3), 1140-1154.
[http://dx.doi.org/10.1007/s12010-016-2274-6] [PMID: 27734287]
[46]
Imtiyaj Khan, M.; Sri Harsha, P.S.C.; Giridhar, P.; Ravishankar, G.A. Pigment identification, antioxidant activity, and nutrient composition of Tinospora cordifolia (willd.) Miers ex Hook. f & Thoms fruit. Int. J. Food Sci. Nutr., 2011, 62(3), 239-249.
[http://dx.doi.org/10.3109/09637486.2010.529069] [PMID: 21155657]
[47]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS One, 2015, 10(7), e0132175.
[http://dx.doi.org/10.1371/journal.pone.0132175] [PMID: 26147722]
[48]
Jain, A.; Rani, V. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts. Mol. Cell. Biochem., 2018, 442(1-2), 81-96.
[http://dx.doi.org/10.1007/s11010-017-3195-6] [PMID: 28929270]
[49]
Watkins, S.J.; Borthwick, G.M.; Arthur, H. M. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell. Dev. Biol. Anim., 2011, 47(2), 125-131.
[http://dx.doi.org/10.1007/s11626-010-9368-1] [PMID: 21082279]
[50]
Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev., 2005, 11, 127-152.
[http://dx.doi.org/10.1016/S1387-2656(05)11004-7] [PMID: 16216776]
[51]
Atale, N.; Mishra, C.B.; Kohli, S.; Mongre, R.K.; Prakash, A.; Kumari, S.; Yadav, U.C.S.; Jeon, R.; Rani, V. Anti-inflammatory effects of S. cumini seed extract on gelatinase-B (MMP-9) regulation against hyperglycemic cardiomyocyte stress. Oxid. Med. Cell. Longev., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/8839479] [PMID: 33747350]
[52]
Atale, N.; Gupta, S.; Yadav, U.C.S.; Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc., 2014, 255(1), 7-19.
[http://dx.doi.org/10.1111/jmi.12133] [PMID: 24831993]
[53]
Baskić, D.; Popović, S.; Ristić, P.; Arsenijević, N. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int., 2006, 30(11), 924-932.
[http://dx.doi.org/10.1016/j.cellbi.2006.06.016] [PMID: 16895761]
[54]
Jain, A.; Rani, V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci., 2018, 205, 97-106.
[http://dx.doi.org/10.1016/j.lfs.2018.05.021] [PMID: 29752960]
[55]
Atale, N.; Chakraborty, M.; Mohanty, S.; Bhattacharya, S.; Nigam, D.; Sharma, M.; Rani, V. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovasc. Toxicol., 2013, 13(3), 278-289.
[http://dx.doi.org/10.1007/s12012-013-9207-1] [PMID: 23512199]
[56]
Lee, S.O.; Joo, S.H.; Kwak, A.W.; Lee, M.H.; Seo, J.H.; Cho, S.S.; Yoon, G.; Chae, J.I.; Shim, J.H. Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomol. Ther., 2021, 29(6), 658-666.
[http://dx.doi.org/10.4062/biomolther.2021.143] [PMID: 34642263]
[57]
Zhang, L.; Liu, Y.; Li, J.Y.; Li, L.Z.; Zhang, Y.L.; Gong, H.Y.; Cui, Y. Protective effect of rosamultin against H 2 O 2-induced oxidative stress and apoptosis in H9c2 cardiomyocytes. Oxid. Med. Cell. Longev., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/8415610] [PMID: 30116494]
[58]
Dziedzic, A.; Kubina, R.; Kabała-Dzik, A.; Tanasiewicz, M. Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells (Detroit 562) by caffeic acid and caffeic acid phenethyl ester derivative. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/6793456] [PMID: 28167973]
[59]
Khan, A.; Gillis, K.; Clor, J.; Tyagarajan, K. Simplified evaluation of apoptosis using the Muse cell analyzer. Postepy Biochem., 2012, 58(4), 492-496.
[PMID: 23662443]
[60]
Srivastava, V.; Wani, M.Y.; Al-Bogami, A.S.; Ahmad, A. Piperidine based 1,2,3-triazolylacetamide derivatives induce cell cycle arrest and apoptotic cell death in Candida auris. J. Adv. Res., 2021, 29, 121-135.
[http://dx.doi.org/10.1016/j.jare.2020.11.002] [PMID: 33842010]
[61]
Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J., 2021, 20, 301-319.
[http://dx.doi.org/10.17179/excli2020-3239] [PMID: 33746664]
[62]
Dandamudi, S.; Slusser, J.; Mahoney, D.W.; Redfield, M.M.; Rodeheffer, R.J.; Chen, H.H. The prevalence of diabetic cardiomyopathy: A population-based study in Olmsted County, Minnesota. J. Card. Fail., 2014, 20(5), 304-309.
[http://dx.doi.org/10.1016/j.cardfail.2014.02.007] [PMID: 24576788]
[63]
Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.; Novellino, E. Effects of grape pomace polyphenolic extract (Taurisolo®) in reducing TMAO serum levels in humans: Preliminary results from a randomized, placebo-controlled, cross-over study. Nutrients, 2019, 11(1), 139.
[http://dx.doi.org/10.3390/nu11010139] [PMID: 30634687]
[64]
Yan, S.F.; Ramasamy, R.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev. Mol. Med., 2009, 11, e9.
[http://dx.doi.org/10.1017/S146239940900101X] [PMID: 19278572]
[65]
Younus, H.; Anwar, S. Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int. J. Health Sci., 2016, 10(2), 247-263.
[http://dx.doi.org/10.12816/0048818] [PMID: 27103908]
[66]
Fishman, S.L.; Sonmez, H.; Basman, C.; Singh, V.; Poretsky, L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol. Med., 2018, 24(1), 59.
[http://dx.doi.org/10.1186/s10020-018-0060-3]
[67]
Hirai, T.; Fujiyoshi, K.; Yamada, S.; Matsumoto, T.; Kikuchi, J.; Ishida, K.; Ishida, M.; Yamaoka-Tojo, M.; Inomata, T.; Shigeta, K.; Tojo, T. Advanced glycation end products are associated with diabetes status and physical functions in patients with cardiovascular disease. Nutrients, 2022, 14(15), 3032.
[http://dx.doi.org/10.3390/nu14153032] [PMID: 35893886]
[68]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 2019, 11(9), 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[69]
Kulbacka, J.; Saczko, J.; Chwiłkowska, A. Oxidative stress in cells damage processes. Pol. Merkuriusz Lek., 2009, 27(157), 44-47.
[PMID: 19650429]
[70]
Valaei, K.; Taherkhani, S.; Arazi, H.; Suzuki, K. Cardiac oxidative stress and the therapeutic approaches to the intake of antioxidant supplements and physical activity. Nutrients, 2021, 13(10), 3483.
[http://dx.doi.org/10.3390/nu13103483] [PMID: 34684484]
[71]
Hamedifard, Z.; Farrokhian, A.; Reiner, Ž.; Bahmani, F.; Asemi, Z.; Ghotbi, M.; Taghizadeh, M. The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Lipids Health Dis., 2020, 19(1), 112.
[http://dx.doi.org/10.1186/s12944-020-01298-4] [PMID: 32466773]
[72]
Geng, X.; Ding, Y.; Shen, J.; Rastogi, R. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen. Res., 2019, 14(6), 948-953.
[http://dx.doi.org/10.4103/1673-5374.250568] [PMID: 30761998]
[73]
Signorelli, S.S.; Anzaldi, M.; Libra, M.; Navolanic, P.M.; Malaponte, G.; Mangano, K.; Quattrocchi, C.; Di Marco, R.; Fiore, V.; Neri, S. Plasma levels of inflammatory biomarkers in peripheral arterial disease. Angiology, 2016, 67(9), 870-874.
[http://dx.doi.org/10.1177/0003319716633339] [PMID: 26888895]
[74]
Kaludercic, N.; Mialet-Perez, J.; Paolocci, N.; Parini, A.; Di Lisa, F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol., 2014, 73, 34-42.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.032] [PMID: 24412580]
[75]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[76]
Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep., 2021, 11(1), 10041.
[http://dx.doi.org/10.1038/s41598-021-89437-4] [PMID: 33976317]
[77]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[78]
Chowdhury, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘ Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn., 2021, 39(17), 6792-6809.
[http://dx.doi.org/10.1080/07391102.2020.1803968] [PMID: 32762511]
[79]
Upadhyay, A.; Kumar, K.; Kumar, A.; Mishra, H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res., 2010, 1(2), 112-121.
[http://dx.doi.org/10.4103/0974-7788.64405] [PMID: 20814526]
[80]
Sharma, P.; Dwivedee, B.P.; Bisht, D.; Dash, A.K.; Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon, 2019, 5(9), e02437.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[81]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[82]
Zordoky, B.N.M.; El-Kadi, A.O.S. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J. Pharmacol. Toxicol. Methods, 2007, 56(3), 317-322.
[http://dx.doi.org/10.1016/j.vascn.2007.06.001] [PMID: 17662623]
[83]
Lama, S.; Monda, V.; Rizzo, M.R.; Dacrema, M.; Maisto, M.; Annunziata, G.; Tenore, G.C.; Novellino, E.; Stiuso, P. Cardioprotective effects of taurisolo® in cardiomyoblast H9c2 cells under high-glucose and trimethylamine n-oxide treatment via de novo sphingolipid synthesis. Oxid. Med. Cell. Longev., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/2961406] [PMID: 33273998]
[84]
Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.; Tsao, P. Diabetic cardiovascular disease induced by oxidative stress. Int. J. Mol. Sci., 2015, 16(10), 25234-25263.
[http://dx.doi.org/10.3390/ijms161025234] [PMID: 26512646]
[85]
Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M.K. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal., 2007, 9(1), 49-89.
[http://dx.doi.org/10.1089/ars.2007.9.49] [PMID: 17115887]
[86]
Boccellino, M.; Galasso, G.; Ambrosio, P.; Stiuso, P.; Lama, S.; Di Zazzo, E.; Schiavon, S.; Vecchio, D.; D’ambrosio, L.; Quagliuolo, L.; Feola, A.; Frati, G.; Di Domenico, M. H9c2 Cardiomyocytes under hypoxic stress: biological effects mediated by sentinel downstream targets. Oxid. Med. Cell. Longev., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6874146] [PMID: 34630851]
[87]
Witek, P.; Korga, A.; Burdan, F.; Ostrowska, M.; Nosowska, B.; Iwan, M.; Dudka, J. The effect of a number of H9C2 rat cardiomyocytes passage on repeatability of cytotoxicity study results. Cytotechnology, 2016, 68(6), 2407-2415.
[http://dx.doi.org/10.1007/s10616-016-9957-2] [PMID: 26946144]
[88]
Zembruski, N.C.L.; Stache, V.; Haefeli, W.E.; Weiss, J. 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Anal. Biochem., 2012, 429(1), 79-81.
[http://dx.doi.org/10.1016/j.ab.2012.07.005] [PMID: 22796502]
[89]
Lertworasirikul, T.; Bunyaratvej, A. A rapid measurement of apoptosis-associated light scatter changes using a hematology analyzer. Cytometry, 2000, 42(3), 215-217.
[http://dx.doi.org/10.1002/1097-0320(20000615)42:3<215::AID-CYTO8>3.0.CO;2-3] [PMID: 10861695]
[90]
Shanmugham, M.; Bellanger, S.; Leo, C.H. Gut-derived metabolite, Trimethylamine-N-oxide (TMAO) in cardio-metabolic diseases: detection, mechanism, and potential therapeutics. Pharmaceuticals (Basel), 2023, 16(4), 504.
[http://dx.doi.org/10.3390/ph16040504] [PMID: 37111261]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy