Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Strategic and Innovative Roles of lncRNAs Regulated by Naturally-Derived Small Molecules in Cancer Therapy

In Press, (this is not the final "Version of Record"). Available online 26 October, 2023
Author(s): Ayşe Hale Alkan, Mine Ensoy and Demet Cansaran-Duman*
Published on: 26 October, 2023

DOI: 10.2174/0109298673264372230919102758

Price: $95

Abstract

In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.

[1]
Stewart, B. W.; Wild, C. P. World Cancer Report 2014; WHO Press: Lyon, 2014.
[2]
Worldwide cancer data. World Cancer Research Fund International. Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/(accessed May 19, 2023)
[3]
Worldwide cancer incidence statistics. Cancer Research UK. Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence(accessed May 19, 2023)
[4]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[5]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[6]
Yan, L.; Shen, J.; Wang, J.; Yang, X.; Dong, S.; Lu, S. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology. Dose Response, 2020, 18(3), 1559325820936161.
[http://dx.doi.org/10.1177/1559325820936161] [PMID: 32699536]
[7]
Liu, X.Y.; Zhang, Q.; Guo, J.; Zhang, P.; Liu, H.; Tian, Z.B.; Zhang, C.P.; Li, X.Y. The role of circular rnas in the drug resistance of cancers. Front. Oncol., 2022, 11, 790589.
[http://dx.doi.org/10.3389/fonc.2021.790589] [PMID: 35070998]
[8]
Lichota, A.; Gwozdzinski, K. Anti-cancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[9]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[10]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anti-cancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12] [PMID: 26594645]
[11]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[12]
Cansaran-Duman, D.; Tanman, Ü.; Yangın, S.; Atakol, O. The comparison of miRNAs that respond to anti-breast cancer drugs and usnic acid for the treatment of breast cancer. Cytotechnology, 2020, 72(6), 855-872.
[http://dx.doi.org/10.1007/s10616-020-00430-7] [PMID: 33128199]
[13]
Beck, H.; Härter, M.; Haß, B.; Schmeck, C.; Baerfacker, L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory. Drug Discov. Today, 2022, 27(6), 1560-1574.
[http://dx.doi.org/10.1016/j.drudis.2022.02.015] [PMID: 35202802]
[14]
Seca, A.; Pinto, D. Plant secondary metabolites as anti-cancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[15]
Evans, A. E.; Farber, S.; Brunet, S.; Marlano, P. J.; Johnson, W. Vincristine in the treatment of acute leukemia in children. Cancer, 1963, 16, 1302-1306.
[16]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[17]
Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13.
[http://dx.doi.org/10.1007/s13659-020-00293-7] [PMID: 33389713]
[18]
Sun, G.; Rong, D.; Li, Z.; Sun, G.; Wu, F.; Li, X.; Cao, H.; Cheng, Y.; Tang, W.; Sun, Y. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges. Front. Cell Dev. Biol., 2021, 9, 694363.
[http://dx.doi.org/10.3389/fcell.2021.694363] [PMID: 34568317]
[19]
Ngo, H.X.; Garneau-Tsodikova, S. What are the drugs of the future? MedChemComm, 2018, 9(5), 757-758.
[http://dx.doi.org/10.1039/C8MD90019A] [PMID: 30108965]
[20]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[21]
Xicota, L.; De Toma, I.; Maffioletti, E.; Pisanu, C.; Squassina, A.; Baune, B.T.; Potier, M.C.; Stacey, D.; Dierssen, M. Recommendations for pharmacotranscriptomic profiling of drug response in CNS disorders. Eur. Neuropsychopharmacol., 2022, 54, 41-53.
[http://dx.doi.org/10.1016/j.euroneuro.2021.10.005] [PMID: 34743061]
[22]
Yu, A.M.; Choi, Y.H.; Tu, M.J. RNA drugs and RNA targets for small molecules: Principles, progress, and challenges. Pharmacol. Rev., 2020, 72(4), 862-898.
[http://dx.doi.org/10.1124/pr.120.019554] [PMID: 32929000]
[23]
Mollocana-Lara, E.C.; Ni, M.; Agathos, S.N.; Gonzales-Zubiate, F.A. The infinite possibilities of RNA therapeutics. J. Ind. Microbiol. Biotechnol., 2021, 48(9-10), kuab063.
[http://dx.doi.org/10.1093/jimb/kuab063] [PMID: 34463324]
[24]
Li, Y.; Kong, D.; Wang, Z.; Sarkar, F.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research. Pharm. Res., 2010, 27(6), 1027-1041.
[http://dx.doi.org/10.1007/s11095-010-0105-y] [PMID: 20306121]
[25]
Qian, Y.; Shi, L.; Luo, Z. Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front. Med., 2020, 7, 612393.
[http://dx.doi.org/10.3389/fmed.2020.612393] [PMID: 33330574]
[26]
Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277.
[http://dx.doi.org/10.1016/j.molmed.2018.01.001] [PMID: 29449148]
[27]
Hanna, J.; Hossain, G.S.; Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet., 2019, 10(MAY), 478.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]
[28]
Lu, T.; Wang, Y.; Chen, D.; Liu, J.; Jiao, W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther., 2018, 11, 8045-8052.
[http://dx.doi.org/10.2147/OTT.S178431] [PMID: 30519046]
[29]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2021, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[30]
Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412.
[http://dx.doi.org/10.1083/jcb.201208082] [PMID: 23109665]
[31]
Mercer, T.R.; Munro, T.; Mattick, J.S. The potential of long noncoding RNA therapies. Trends Pharmacol. Sci., 2022, 43(4), 269-280.
[http://dx.doi.org/10.1016/j.tips.2022.01.008] [PMID: 35153075]
[32]
Jiang, M-C.; Ni, J-J.; Cui, W-Y.; Wang, B-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res., 2019, 9(7), 1354-1366.
[PMID: 31392074]
[33]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[34]
Mattick, J.S. The state of long non-coding RNA Biology. Noncoding RNA, 2018, 4(3), 17.
[http://dx.doi.org/10.3390/ncrna4030017] [PMID: 30103474]
[35]
Clark, M.B.; Johnston, R.L.; Inostroza-Ponta, M.; Fox, A.H.; Fortini, E.; Moscato, P.; Dinger, M.E.; Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res., 2012, 22(5), 885-898.
[http://dx.doi.org/10.1101/gr.131037.111] [PMID: 22406755]
[36]
Orafidiya, F.; Deng, L.; Bevan, C.L.; Fletcher, C.E. Crosstalk between long non coding RNAs, microRNAs and DNA damage repair in prostate cancer: New therapeutic opportunities? Cancers, 2022, 14(3), 755.
[http://dx.doi.org/10.3390/cancers14030755] [PMID: 35159022]
[37]
Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.; Yang, Y.A.; Chakravarti, D.; Mo, Y.Y.; Yu, J. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep., 2015, 13(1), 209-221.
[http://dx.doi.org/10.1016/j.celrep.2015.08.069] [PMID: 26411689]
[38]
Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; Jenkins, R.B.; Triche, T.J.; Malik, R.; Bedenis, R.; McGregor, N.; Ma, T.; Chen, W.; Han, S.; Jing, X.; Cao, X.; Wang, X.; Chandler, B.; Yan, W.; Siddiqui, J.; Kunju, L.P.; Dhanasekaran, S.M.; Pienta, K.J.; Feng, F.Y.; Chinnaiyan, A.M. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet., 2013, 45(11), 1392-1398.
[http://dx.doi.org/10.1038/ng.2771] [PMID: 24076601]
[39]
Gu, P.; Chen, X.; Xie, R.; Han, J.; Xie, W.; Wang, B.; Dong, W.; Chen, C.; Yang, M.; Jiang, J.; Chen, Z.; Huang, J.; Lin, T. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol. Ther., 2017, 25(8), 1959-1973.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.016] [PMID: 28487115]
[40]
Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; Schenone, M.; Guttman, M.; Carr, S.A.; Lander, E.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561(7721), 132-136.
[http://dx.doi.org/10.1038/s41586-018-0453-z] [PMID: 30150775]
[41]
Yang, C.; Wu, D.; Gao, L.; Liu, X.; Jin, Y.; Wang, D.; Wang, T.; Li, X. Competing endogenous RNA networks in human cancer: Hypothesis, validation, and perspectives. Oncotarget, 2016, 7(12), 13479-13490.
[http://dx.doi.org/10.18632/oncotarget.7266] [PMID: 26872371]
[42]
Alkan, A.H.; Akgül, B. Endogenous MiRNA sponges. Methods Mol. Biol., 2022, 91-104.
[http://dx.doi.org/10.1007/978-1-0716-1170-8_5]
[43]
Jia, M.; Shi, Y.; Xie, Y.; Li, W.; Deng, J.; Fu, D.; Bai, J.; Ma, Y.; Zuberi, Z.; Li, J.; Li, Z. WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments. Cells, 2021, 11(1), 25.
[http://dx.doi.org/10.3390/cells11010025] [PMID: 35011587]
[44]
Cui, Y.S.; Song, Y.P.; Fang, B.J. The role of long non-coding RNAs in multiple myeloma. Eur. J. Haematol., 2019, 103(1), 3-9.
[http://dx.doi.org/10.1111/ejh.13237] [PMID: 30985973]
[45]
Wang, Y.; Chen, S.; Chen, L.; Wang, Y. Associating lncRNAs with small molecules via bilevel optimization reveals cancer-related lncRNAs. PLOS Comput. Biol., 2019, 15(12), e1007540.
[http://dx.doi.org/10.1371/journal.pcbi.1007540] [PMID: 31877126]
[46]
Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov., 2022, 21(10), 736-762.
[http://dx.doi.org/10.1038/s41573-022-00521-4] [PMID: 35941229]
[48]
Yousefi, H.; Maheronnaghsh, M.; Molaei, F.; Mashouri, L.; Reza Aref, A.; Momeny, M.; Alahari, S.K. Long noncoding RNAs and exosomal lncRNAs: Classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene, 2020, 39(5), 953-974.
[http://dx.doi.org/10.1038/s41388-019-1040-y] [PMID: 31601996]
[49]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[50]
Sanchez Calle, A.; Kawamura, Y.; Yamamoto, Y.; Takeshita, F.; Ochiya, T. Emerging roles of long non-coding RNA in cancer. Cancer Sci., 2018, 109(7), 2093-2100.
[http://dx.doi.org/10.1111/cas.13642] [PMID: 29774630]
[51]
Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; Attardi, L.D.; Regev, A.; Lander, E.S.; Jacks, T.; Rinn, J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3), 409-419.
[http://dx.doi.org/10.1016/j.cell.2010.06.040] [PMID: 20673990]
[52]
Zhang, Y.; Tang, L. The application of lncRNAs in cancer treatment and diagnosis. Recent Patents Anti-cancer Drug Discov., 2018, 13(3), 292-301.
[http://dx.doi.org/10.2174/1574892813666180226121819] [PMID: 29485010]
[53]
Hoon, D. S. B.; Lessard, L. Long Noncoding RNA (LncRNA) as a biomarker and therapeutic marker in cancer. US Patent 9410206B2, 2016.
[54]
Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem., 2018, 87(1), 451-478.
[http://dx.doi.org/10.1146/annurev-biochem-062917-011942] [PMID: 29570352]
[55]
Zhao, R.; Fu, J.; Zhu, L.; Chen, Y.; Liu, B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J. Hematol. Oncol., 2022, 15(1), 14.
[http://dx.doi.org/10.1186/s13045-022-01230-6] [PMID: 35123522]
[56]
Feng, R.; Patil, S.; Zhao, X.; Miao, Z.; Qian, A. RNA therapeutics - Research and clinical advancements. Front. Mol. Biosci., 2021, 8, 710738.
[http://dx.doi.org/10.3389/fmolb.2021.710738] [PMID: 34631795]
[57]
Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997.
[http://dx.doi.org/10.1016/j.biopha.2020.109997] [PMID: 32062550]
[58]
Ren, Y.; Wang, Y.; Zhang, J.; Wang, Q.; Han, L.; Mei, M.; Kang, C. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin. Epigenetics, 2019, 11(1), 29.
[http://dx.doi.org/10.1186/s13148-019-0624-2] [PMID: 30764859]
[59]
Li, Y.; Disney, M.D. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem. Biol., 2018, 13(11), 3065-3071.
[http://dx.doi.org/10.1021/acschembio.8b00827] [PMID: 30375843]
[60]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[61]
Gowhari Shabgah, A.; Hejri Zarifi, S.; Mazloumi Kiapey, S.S.; Ezzatifar, F.; Pahlavani, N.; Soleimani, D.; Mohammadian Haftcheshmeh, S.; Mohammadi, H.; Gholizadeh Navashenaq, J. Curcumin and cancer; are long non-coding RNAs missing link? Prog. Biophys. Mol. Biol., 2021, 164, 63-71.
[http://dx.doi.org/10.1016/j.pbiomolbio.2021.04.001] [PMID: 33894206]
[62]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[63]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[64]
Zhang, Z.; Yi, P.; Tu, C.; Zhan, J.; Jiang, L.; Zhang, F. Curcumin inhibits ERK/c-Jun expressions and phosphorylation against endometrial carcinoma. BioMed Res. Int., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/8912961] [PMID: 32083122]
[65]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[66]
Chen, T.; Zhao, L.; Chen, S.; Zheng, B.; Chen, H.; Zeng, T.; Sun, H.; Zhong, S.; Wu, W.; Lin, X.; Wang, L. The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway. Food Chem. Toxicol., 2020, 137, 111131.
[http://dx.doi.org/10.1016/j.fct.2020.111131] [PMID: 31958483]
[67]
Yu, H.; Xie, Y.; Zhou, Z.; Wu, Z.; Dai, X.; Xu, B. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway. Technol. Cancer Res. Treat., 2019, 18
[http://dx.doi.org/10.1177/1533033819870781] [PMID: 31888414]
[68]
Esmatabadi, M.J.D.; Motamedrad, M.; Sadeghizadeh, M. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine, 2018, 42, 56-65.
[http://dx.doi.org/10.1016/j.phymed.2018.03.022] [PMID: 29655698]
[69]
Shao, J.; Shi, C.J.; Li, Y.; Zhang, F.; Pan, F.; Fu, W.; Zhang, J. LincROR mediates the suppressive effects of curcumin on hepatocellular carcinoma through inactivating Wnt/β-catenin signaling. Front. Pharmacol., 2020, 11, 847.
[http://dx.doi.org/10.3389/fphar.2020.00847] [PMID: 32714183]
[70]
Xu, F.; Ji, Z.; He, L.; Chen, M.; Chen, H.; Feng, Q.; Dong, B.; Yang, X.; Jiang, L.; Jin, R. Downregulation of LINC01021 by curcumin analog Da0324 inhibits gastric cancer progression through activation of p53. Am. J. Transl. Res., 2020, 12(7), 3429-3444.
[PMID: 32774710]
[71]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[72]
Breuss, J.; Atanasov, A.; Uhrin, P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci., 2019, 20(7), 1523.
[http://dx.doi.org/10.3390/ijms20071523] [PMID: 30934670]
[73]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[74]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. anti-cancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[75]
Espinoza, J.L.; Kurokawa, Y.; Takami, A. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev., 2019, 33, 43-52.
[http://dx.doi.org/10.1016/j.blre.2018.07.001] [PMID: 30005817]
[76]
Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 2011, 6(10), e26391.
[http://dx.doi.org/10.1371/journal.pone.0026391] [PMID: 22028869]
[77]
Pyo, I.S.; Yun, S.; Yoon, Y.E.; Choi, J.W.; Lee, S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 2020, 25(20), 4649.
[http://dx.doi.org/10.3390/molecules25204649] [PMID: 33053864]
[78]
Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/9932218] [PMID: 34336123]
[79]
Li, T.; Zhang, X.; Cheng, L.; Li, C.; Wu, Z.; Luo, Y.; Zhou, K.; Li, Y.; Zhao, Q.; Huang, Y. Modulation of lncRNA H19 enhances resveratrol-inhibited cancer cell proliferation and migration by regulating endoplasmic reticulum stress. J. Cell. Mol. Med., 2022, 26(8), 2205-2217.
[http://dx.doi.org/10.1111/jcmm.17242] [PMID: 35166018]
[80]
Cesmeli, S.; Goker Bagca, B.; Caglar, H.O.; Ozates, N.P.; Gunduz, C.; Biray Avci, C. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs. Med. Oncol., 2022, 39(1), 12.
[http://dx.doi.org/10.1007/s12032-021-01611-w] [PMID: 34779924]
[81]
Yang, Q.; Xu, E.; Dai, J.; Liu, B.; Han, Z.; Wu, J.; Zhang, S.; Peng, B.; Zhang, Y.; Jiang, Y. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol. Appl. Pharmacol., 2015, 285(2), 79-88.
[http://dx.doi.org/10.1016/j.taap.2015.04.003] [PMID: 25888808]
[82]
Singh, D.; Gupta, M.; Sarwat, M.; Siddique, H.R. Apigenin in cancer prevention and therapy: A systematic review and meta-analysis of animal models. Crit. Rev. Oncol. Hematol., 2022, 176, 103751.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103751] [PMID: 35752426]
[83]
Singh, D.; Khan, M.A.; Akhtar, K.; Arjmand, F.; Siddique, H.R. Apigenin alleviates cancer drug sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress. Toxicol. Appl. Pharmacol., 2022, 447, 116072.
[http://dx.doi.org/10.1016/j.taap.2022.116072] [PMID: 35613639]
[84]
Shi, C.; Ma, C.; Ren, C.; Li, N.; Liu, X.; Zhang, Y.; Wang, Y.; Li, X.; Lv, P.; Han, C.; Li, X. LINC00629, a KLF10-responsive lncRNA, promotes the anti-cancer effects of apigenin by decreasing Mcl1 stability in oral squamous cell carcinoma. Aging, 2022, 14(22), 9149-9166.
[http://dx.doi.org/10.18632/aging.204396] [PMID: 36445338]
[85]
Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J. Exp. Clin. Cancer Res., 2018, 37(1), 261.
[http://dx.doi.org/10.1186/s13046-018-0929-6] [PMID: 30373602]
[86]
Pan, F.; Zheng, Y.B.; Shi, C.J.; Zhang, F.; Zhang, J.; Fu, W. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. Eur. J. Pharmacol., 2021, 893, 173810.
[http://dx.doi.org/10.1016/j.ejphar.2020.173810] [PMID: 33345859]
[87]
Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits. Molecules, 2022, 27(19), 6474.
[http://dx.doi.org/10.3390/molecules27196474] [PMID: 36235012]
[88]
Du, Q.H.; Peng, C.; Zhang, H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol., 2013, 51(11), 1347-1354.
[http://dx.doi.org/10.3109/13880209.2013.792849] [PMID: 23862567]
[89]
Hu, T.; Fei, Z.; Su, H.; Xie, R.; Chen, L. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol. Appl. Pharmacol., 2019, 371, 55-62.
[http://dx.doi.org/10.1016/j.taap.2019.04.005] [PMID: 30974157]
[90]
Ruan, W.; Li, J.; Xu, Y.; Wang, Y.; Zhao, F.; Yang, X.; Jiang, H.; Zhang, L.; Saavedra, J.M.; Shi, L.; Pang, T. MALAT1 up-regulator polydatin protects brain microvascular integrity and ameliorates stroke through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway. Cell. Mol. Neurobiol., 2019, 39(2), 265-286.
[http://dx.doi.org/10.1007/s10571-018-00646-4] [PMID: 30607811]
[91]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[92]
Gresa-Arribas, N.; Serratosa, J.; Saura, J.; Solà, C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J. Neurochem., 2010, 115(2), 526-536.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06952.x] [PMID: 20722966]
[93]
Wang, J.; Qiu, J.; Dong, J.; Li, H.; Luo, M.; Dai, X.; Zhang, Y.; Leng, B.; Niu, X.; Zhao, S.; Deng, X. Chrysin protects mice from Staphylococcus aureus pneumonia. J. Appl. Microbiol., 2011, 111(6), 1551-1558.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05170.x] [PMID: 21972890]
[94]
Rodríguez-Landa, J.F.; German-Ponciano, L.J.; Puga-Olguín, A.; Olmos-Vázquez, O.J. Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic- and antidepressant-like effects of flavonoid chrysin. Molecules, 2022, 27(11), 3551.
[http://dx.doi.org/10.3390/molecules27113551] [PMID: 35684488]
[95]
Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11(5), 2188-2199.
[http://dx.doi.org/10.3390/ijms11052188] [PMID: 20559509]
[96]
Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105.
[http://dx.doi.org/10.1016/j.bmc.2004.09.013] [PMID: 15519155]
[97]
Salari, N.; Faraji, F.; Jafarpour, S.; Faraji, F.; Rasoulpoor, S.; Dokaneheifard, S.; Mohammadi, M. Anti-cancer activity of chrysin in cancer therapy: A systematic review. Indian J. Surg. Oncol., 2022, 13(4), 681-690.
[http://dx.doi.org/10.1007/s13193-022-01550-6] [PMID: 36687219]
[98]
Sherif, I.O.; Al-Mutabagani, L.A.; Sabry, D.; Elsherbiny, N.M. Antineoplastic activity of chrysin against human hepatocellular carcinoma: New insight on GPC3/SULF2 axis and lncRNA-AF085935 expression. Int. J. Mol. Sci., 2020, 21(20), 7642.
[http://dx.doi.org/10.3390/ijms21207642] [PMID: 33076548]
[99]
Chen, L.; Li, Q.; Jiang, Z.; Li, C.; Hu, H.; Wang, T.; Gao, Y.; Wang, D. Chrysin induced cell apoptosis through H19/let-7a/COPB2 axis in gastric cancer cells and inhibited tumor growth. Front. Oncol., 2021, 11, 651644.
[http://dx.doi.org/10.3389/fonc.2021.651644] [PMID: 34150620]
[100]
Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem., 2021, 166, 10-19.
[http://dx.doi.org/10.1016/j.plaphy.2021.05.023] [PMID: 34087741]
[101]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[102]
Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417.
[http://dx.doi.org/10.1039/C4FO01178C] [PMID: 25761771]
[103]
Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82.
[http://dx.doi.org/10.1002/jcb.21977] [PMID: 19009557]
[104]
Noori-Daloii, M.R.; Momeny, M.; Yousefi, M.; Shirazi, F.G.; Yaseri, M.; Motamed, N.; Kazemialiakbar, N.; Hashemi, S. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): Implications for nutritional transcriptomics and multi-target therapy. Med. Oncol., 2011, 28(4), 1395-1404.
[http://dx.doi.org/10.1007/s12032-010-9603-3] [PMID: 20596804]
[105]
Shankar, G.M.; Antony, J.; Anto, R.J. Quercetin and tryptanthrin. In: Enzymes; Academic Press, 2015; 37, pp. 43-72.
[http://dx.doi.org/10.1016/bs.enz.2015.05.001]
[106]
Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[107]
Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108.
[http://dx.doi.org/10.1186/s12957-018-1400-z] [PMID: 29898731]
[108]
Khan, K.; Javed, Z.; Sadia, H.; Sharifi-Rad, J.; Cho, W.C.; Luparello, C. Quercetin and MicroRNA interplay in apoptosis regulation in ovarian cancer. Curr. Pharm. Des., 2021, 27(20), 2328-2336.
[http://dx.doi.org/10.2174/1381612826666201019102207] [PMID: 33076802]
[109]
Rezaie, F.; Mokhtari, M.J.; Kalani, M. Quercetin arrests in G2 phase, upregulates INXS LncRNA and downregulates UCA1 LncRNA in MCF-7 cells. Int. J. Mol. Cell. Med., 2021, 10(3), 208-216.
[http://dx.doi.org/10.22088/IJMCM.BUMS.10.3.207] [PMID: 35178359]
[110]
Chai, R.; Xu, C.; Lu, L.; Liu, X.; Ma, Z. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway. Immunopharmacol. Immunotoxicol., 2021, 43(6), 693-703.
[http://dx.doi.org/10.1080/08923973.2021.1966032] [PMID: 34448661]
[111]
Chandrashekar, N.; Pandi, A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J. Food Biochem., 2022, 46(9), e14230.
[http://dx.doi.org/10.1111/jfbc.14230] [PMID: 35543192]
[112]
Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in hepatocellular carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291.
[http://dx.doi.org/10.1016/j.biopha.2017.07.068] [PMID: 28747003]
[113]
Kalhori, M.R.; Khodayari, H.; Khodayari, S.; Vesovic, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. Regulation of long non-coding rnas by plant secondary metabolites: A novel anti-cancer therapeutic approach. Cancers, 2021, 13(6), 1274.
[http://dx.doi.org/10.3390/cancers13061274] [PMID: 33805687]
[114]
Fatima, N.; Baqri, S.S.R.; Bhattacharya, A.; Koney, N.K.K.; Husain, K.; Abbas, A.; Ansari, R.A. Role of flavonoids as epigenetic modulators in cancer prevention and therapy. Front. Genet., 2021, 12, 758733.
[http://dx.doi.org/10.3389/fgene.2021.758733] [PMID: 34858475]
[115]
Yang, X.; Jiang, J.; Zhang, C.; Li, Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz. J. Med. Biol. Res., 2019, 52(12), e8934.
[http://dx.doi.org/10.1590/1414-431x20198934] [PMID: 31778440]
[116]
Yu, X.; Yang, Y.; Li, Y.; Cao, Y.; Tang, L.; Chen, F.; Xia, J. Baicalein inhibits cervical cancer progression via downregulating long noncoding RNA BDLNR and its downstream PI3 K/Akt pathway. Int. J. Biochem. Cell Biol., 2018, 94, 107-118.
[http://dx.doi.org/10.1016/j.biocel.2017.11.009] [PMID: 29175387]
[117]
Yu, X.; Cao, Y.; Tang, L.; Yang, Y.; Chen, F.; Xia, J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J. Cell. Biochem., 2018, 119(8), 6842-6856.
[http://dx.doi.org/10.1002/jcb.26881] [PMID: 29693272]
[118]
Yu, X.; Tang, W.; Yang, Y.; Tang, L.; Dai, R.; Pu, B.; Feng, C.; Xia, J. Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling. Chem. Biol. Interact., 2018, 285, 48-58.
[http://dx.doi.org/10.1016/j.cbi.2018.02.027] [PMID: 29481769]
[119]
Mostafa, S.M.; Gamal-Eldeen, A.M.; Maksoud, N.A.E.; Fahmi, A.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. An. Acad. Bras. Cienc., 2020, 92(4), e20200574.
[http://dx.doi.org/10.1590/0001-3765202020200574]
[120]
Zhao, Y.; Chen, X.; Jiang, J.; Wan, X.; Wang, Y.; Xu, P. Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165856.
[http://dx.doi.org/10.1016/j.bbadis.2020.165856] [PMID: 32512188]
[121]
Hu, D.L.; Wang, G.; Yu, J.; Zhang, L.H.; Huang, Y.F.; Wang, D.; Zhou, H.H. Epigallocatechin-3-gallate modulates long non-coding RNA and mRNA expression profiles in lung cancer cells. Mol. Med. Rep., 2019, 19(3), 1509-1520.
[http://dx.doi.org/10.3892/mmr.2019.9816] [PMID: 30628683]
[122]
Sabry, D.; Abdelaleem, O.O.; El Amin Ali, A.M.; Mohammed, R.A.; Abdel-Hameed, N.D.; Hassouna, A.; Khalifa, W.A. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: In vitro study. Mol. Biol. Rep., 2019, 46(2), 2039-2047.
[http://dx.doi.org/10.1007/s11033-019-04653-6] [PMID: 30710234]
[123]
Liu, G.; Zheng, X.; Xu, Y.; Lu, J.; Chen, J.; Huang, X. Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin. Med. J., 2015, 128(1), 91-97.
[http://dx.doi.org/10.4103/0366-6999.147824] [PMID: 25563320]
[124]
Hayakawa, S.; Ohishi, T.; Oishi, Y.; Isemura, M.; Miyoshi, N. Contribution of non-coding RNAs to anti-cancer effects of dietary polyphenols: chlorogenic acid, curcumin, epigallocatechin-3-gallate, genistein, quercetin and resveratrol. Anti-oxidants, 2022, 11(12), 2352.
[http://dx.doi.org/10.3390/antiox11122352] [PMID: 36552560]
[125]
Mobeen, I.; Romero, M.A.; Yulaevna, I.M.; Attar, R.; Jabeen, S.; Fayyaz, S. Regulation of cell signaling pathways by genistein in different cancers: Progress, prospects and pitfalls. Cell. Mol. Biol., 2022, 67(6), 318-329.
[http://dx.doi.org/10.14715/cmb/2021.67.6.42] [PMID: 35818180]
[126]
Chen, X.; Wu, Y.; Gu, J.; Liang, P.; Shen, M.; Xi, J.; Qin, J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors, 2020, 46(4), 620-628.
[http://dx.doi.org/10.1002/biof.1627] [PMID: 32078221]
[127]
Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/804510] [PMID: 25254214]
[128]
Chen, J.; Lin, C.; Yong, W.; Ye, Y.; Huang, Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell. Physiol. Biochem., 2015, 35(2), 722-728.
[http://dx.doi.org/10.1159/000369732] [PMID: 25613518]
[129]
Chiyomaru, T.; Yamamura, S.; Fukuhara, S.; Yoshino, H.; Kinoshita, T.; Majid, S.; Saini, S.; Chang, I.; Tanaka, Y.; Enokida, H.; Seki, N.; Nakagawa, M.; Dahiya, R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One, 2013, 8(8), e70372.
[http://dx.doi.org/10.1371/journal.pone.0070372] [PMID: 23936419]
[130]
Chen, Y.; Zhu, Z.; Chen, J.; Zheng, Y.; Limsila, B.; Lu, M.; Gao, T.; Yang, Q.; Fu, C.; Liao, W. Terpenoids from Curcumae Rhizoma: Their anti-cancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother., 2021, 138, 111350.
[http://dx.doi.org/10.1016/j.biopha.2021.111350] [PMID: 33721752]
[131]
Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W.; Li, C.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed. Pharmacother., 2019, 114, 108812.
[http://dx.doi.org/10.1016/j.biopha.2019.108812] [PMID: 30965237]
[132]
Hu, Z.; Wu, H.; Li, Y.; Hou, Q.; Wang, Y.; Li, S.; Xia, B.; Wu, S. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. Anti-cancer Drugs, 2015, 26(5), 531-539.
[http://dx.doi.org/10.1097/CAD.0000000000000216] [PMID: 25646744]
[133]
Hu, T.; Gao, Y. β-Elemene suppresses tumor growth of diffuse large B-cell lymphoma through regulating lncRNA HULC-mediated apoptotic pathway. Biosci. Rep., 2020, 40(2), BSR20190804.
[http://dx.doi.org/10.1042/BSR20190804] [PMID: 32010942]
[134]
Xu, C.; Jiang, Z.B.; Shao, L.; Zhao, Z.M.; Fan, X.X.; Sui, X.; Yu, L.L.; Wang, X.R.; Zhang, R.N.; Wang, W.J.; Xie, Y.J.; Zhang, Y.Z.; Nie, X.W.; Xie, C.; Huang, J.M.; Wang, J.; Wang, J.; Leung, E.L.H.; Wu, Q.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol. Res., 2023, 191, 106739.
[http://dx.doi.org/10.1016/j.phrs.2023.106739] [PMID: 36948327]
[135]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[136]
Yang, Y.H.; Mao, J.W.; Tan, X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med., 2020, 18(12), 890-897.
[http://dx.doi.org/10.1016/S1875-5364(20)60032-2] [PMID: 33357719]
[137]
Thiruvengadam, M.; Ahmed Khalil, A.; Rauf, A.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Javed, M.S.; Khan, M.A.; Khan, I.A.; El-Esawi, M.A.; Bawazeer, S.; Bouyahya, A.; Rebezov, M.; Shariati, M.A. Recent developments and anti-cancer therapeutics of paclitaxel: An update. Curr. Pharm. Des., 2022, 28(41), 3363-3373.
[http://dx.doi.org/10.2174/1381612829666221102155212] [PMID: 36330627]
[138]
Howat, S.; Park, B.; Oh, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: Biosynthesis, production and future prospects. N. Biotechnol., 2014, 31(3), 242-245.
[http://dx.doi.org/10.1016/j.nbt.2014.02.010] [PMID: 24614567]
[139]
Rodríguez-Antona, C. Pharmacogenomics of paclitaxel. Pharmacogenomics, 2010, 11(5), 621-623.
[http://dx.doi.org/10.2217/pgs.10.32] [PMID: 20415548]
[140]
Dong, Z.; Zhang, D.; Yang, R.; Wang, S. Paclitaxel: New uses for an old drug. Drug Des. Devel. Ther., 2014, 8, 279-284.
[http://dx.doi.org/10.2147/DDDT.S56801] [PMID: 24591817]
[141]
Li, Z-Y.; Wang, X-L.; Dang, Y.; Zhu, X-Z.; Zhang, Y-H.; Cai, B-X.; Zheng, L. Long non-coding RNA UCA1 promotes the progression of paclitaxel resistance in ovarian cancer by regulating the miR-654-5p/SIK2 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 591-603.
[http://dx.doi.org/10.26355/eurrev_202001_20035] [PMID: 32016960]
[142]
Zhao, Y.; Hong, L. lncRNA-PRLB confers paclitaxel resistance of ovarian cancer cells by regulating RSF1/NF-κB signaling pathway. Cancer Biother. Radiopharm., 2021, 36(2), 202-210.
[http://dx.doi.org/10.1089/cbr.2019.3363] [PMID: 33156701]
[143]
Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR-206/ ABCB 1. J. Cell. Mol. Med., 2018, 22(9), 4068-4075.
[http://dx.doi.org/10.1111/jcmm.13679] [PMID: 29971911]
[144]
Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7.
[http://dx.doi.org/10.1186/s12906-017-2062-z] [PMID: 29316908]
[145]
Ammon, H. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116.
[http://dx.doi.org/10.1055/s-2006-947227] [PMID: 17024588]
[146]
Reddy, G.K.; Chandrakasan, G.; Dhar, S.C. Studies on the metabolism of glycosaminoglycans under the influence of new herbal anti-inflammatory agents. Biochem. Pharmacol., 1989, 38(20), 3527-3534.
[http://dx.doi.org/10.1016/0006-2952(89)90124-X] [PMID: 2818645]
[147]
Yadav, V.R.; Prasad, S.; Sung, B.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int. J. Cancer, 2012, 130(9), 2176-2184.
[http://dx.doi.org/10.1002/ijc.26251] [PMID: 21702037]
[148]
Liu, J.J.; Nilsson, A.; Oredsson, S.; Badmaev, V.; Zhao, W.Z.; Duan, R.D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis, 2002, 23(12), 2087-2093.
[http://dx.doi.org/10.1093/carcin/23.12.2087] [PMID: 12507932]
[149]
Dai, J.; Lin, Y.; Duan, Y.; Li, Z.; Zhou, D.; Chen, W.; Wang, L.; Zhang, Q.Q. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway. Int. J. Biol. Sci., 2017, 13(5), 660-668.
[http://dx.doi.org/10.7150/ijbs.19194] [PMID: 28539838]
[150]
Jiang, X.; Liu, Y.; Zhang, G.; Lin, S.; Yuan, N.; Wu, J.; Yan, X.; Ma, Y.; Ma, M. Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor-α. Cancer Manag. Res., 2020, 12, 2301-2314.
[http://dx.doi.org/10.2147/CMAR.S238051] [PMID: 32273767]
[151]
Sun, M.; Ye, Y.; Xiao, L.; Duan, X.; Zhang, Y.; Zhang, H. Anti-cancer effects of ginsenoside Rg3 (Review). Int. J. Mol. Med., 2017, 39(3), 507-518.
[http://dx.doi.org/10.3892/ijmm.2017.2857] [PMID: 28098857]
[152]
Zhao, L.; Sun, W.; Zheng, A.; Zhang, Y.; Fang, C.; Zhang, P. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim. Pol., 2021, 68(4), 575-582.
[http://dx.doi.org/10.18388/abp.2020_5343] [PMID: 34038042]
[153]
Wu, P.; Yu, X.; Peng, Y.; Wang, Q.L.; Deng, L.T.; Xing, W. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J. Inflamm., 2021, 18(1), 31.
[http://dx.doi.org/10.1186/s12950-021-00296-2] [PMID: 34930287]
[154]
Pu, Z.; Ge, F.; Wang, Y.; Jiang, Z.; Zhu, S.; Qin, S.; Dai, Q.; Liu, H.; Hua, H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered, 2021, 12(1), 2398-2409.
[http://dx.doi.org/10.1080/21655979.2021.1932211] [PMID: 34130594]
[155]
Zhang, Y.; Lu, Q.; Li, N.; Xu, M.; Miyamoto, T.; Liu, J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer, 2022, 8(1), 40.
[http://dx.doi.org/10.1038/s41523-022-00402-4] [PMID: 35332167]
[156]
Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from broccoli, sulforaphane, and its properties. J. Med. Food, 2019, 22(2), 121-126.
[http://dx.doi.org/10.1089/jmf.2018.0024] [PMID: 30372361]
[157]
Luo, Y.; Yan, B.; Liu, L.; Yin, L.; Ji, H.; An, X.; Gladkich, J.; Qi, Z.; De La Torre, C.; Herr, I. Sulforaphane inhibits the expression of long noncoding RNA H19 and Its Target APOBEC3G and thereby pancreatic cancer progression. Cancers, 2021, 13(4), 827.
[http://dx.doi.org/10.3390/cancers13040827] [PMID: 33669381]
[158]
Beaver, L.M.; Kuintzle, R.; Buchanan, A.; Wiley, M.W.; Glasser, S.T.; Wong, C.P.; Johnson, G.S.; Chang, J.H.; Löhr, C.V.; Williams, D.E.; Dashwood, R.H.; Hendrix, D.A.; Ho, E. Long noncoding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer. J. Nutr. Biochem., 2017, 42, 72-83.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.001] [PMID: 28131897]
[159]
Stanojković, T. Investigations of lichen secondary metabolites with potential anti-cancer activity. In: Lichen Secondary Metabolites; Springer: Cham, 2015; pp. 127-146.
[http://dx.doi.org/10.1007/978-3-319-13374-4_5]
[160]
Çolak, B.; Cansaran-Duman, D.; Guney Eskiler, G.; Földes, K.; Yangın, S. Usnic acid-induced programmed cell death in ovarian cancer cells. Rend. Lincei Sci. Fis. Nat., 2022, 33(1), 143-152.
[http://dx.doi.org/10.1007/s12210-021-01044-7]
[161]
Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432.
[http://dx.doi.org/10.1007/s10456-012-9270-4] [PMID: 22669534]
[162]
Kiliç, N.; Islakoğlu, Y.Ö.; Büyük, İ.; Gür-Dedeoğlu, B.; Cansaran-Duman, D. Determination of usnic acid responsive mirnas in breast cancer cell lines. Anti-cancer. Agents Med. Chem., 2019, 19(12), 1463-1472.
[http://dx.doi.org/10.2174/1871520618666181112120142] [PMID: 30417797]
[163]
Petrozza, V.; Carbone, A.; Bellissimo, T.; Porta, N.; Palleschi, G.; Pastore, A.; Di Carlo, A.; Della Rocca, C.; Fazi, F. Oncogenic MicroRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci., 2015, 16(12), 29219-29225.
[http://dx.doi.org/10.3390/ijms161226160] [PMID: 26670229]
[164]
Wang, B.; Li, J.; Sun, M.; Sun, L.; Zhang, X. MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life, 2014, 66(5), 371-377.
[http://dx.doi.org/10.1002/iub.1273] [PMID: 24846313]
[165]
Wen, Y.; Han, J.; Chen, J.; Dong, J.; Xia, Y.; Liu, J.; Jiang, Y.; Dai, J.; Lu, J.; Jin, G.; Han, J.; Wei, Q.; Shen, H.; Sun, B.; Hu, Z. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int. J. Cancer, 2015, 137(7), 1679-1690.
[http://dx.doi.org/10.1002/ijc.29544] [PMID: 25845839]
[166]
Secme, M.; Dodurga, Y. Usnic acid inhibits cell proliferation and downregulates LncRNA UCA1 expression in ishikawa endometrial cancer cells. Nat. Prod. Biotechnol., 2021, 1(1), 28-37.
[167]
Zinovieva, O.L.; Grineva, E.N.; Prokofjeva, M.M.; Karpov, D.S.; Krasnov, G.S.; Prassolov, V.S.; Mashkova, T.D.; Lisitsyn, N.A. Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells. Mol. Biol., 2017, 51(5), 733-739.
[http://dx.doi.org/10.1134/S0026893317050247] [PMID: 29116072]
[168]
Sung, W.J.; Hong, J. Targeting lncRNAs of colorectal cancers with natural products. Front. Pharmacol., 2023, 13, 1050032.
[http://dx.doi.org/10.3389/fphar.2022.1050032] [PMID: 36699052]
[169]
Brown, J.A.; Bulkley, D.; Wang, J.; Valenstein, M.L.; Yario, T.A.; Steitz, T.A.; Steitz, J.A. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol., 2014, 21(7), 633-640.
[http://dx.doi.org/10.1038/nsmb.2844] [PMID: 24952594]
[170]
Gencel-Augusto, J.; Wu, W.; Bivona, T.G. Long non-coding RNAs as emerging targets in lung cancer. Cancers, 2023, 15(12), 3135.
[http://dx.doi.org/10.3390/cancers15123135] [PMID: 37370745]
[171]
Rakheja, I.; Ansari, A.H.; Ray, A.; Chandra Joshi, D.; Maiti, S. Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. Mol. Ther. Nucleic Acids, 2022, 30, 241-256.
[http://dx.doi.org/10.1016/j.omtn.2022.09.016] [PMID: 36284512]
[172]
Aguilar, R.; Spencer, K.B.; Kesner, B.; Rizvi, N.F.; Badmalia, M.D.; Mrozowich, T.; Mortison, J.D.; Rivera, C.; Smith, G.F.; Burchard, J.; Dandliker, P.J.; Patel, T.R.; Nickbarg, E.B.; Lee, J.T. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature, 2022, 604(7904), 160-166.
[http://dx.doi.org/10.1038/s41586-022-04537-z] [PMID: 35355011]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy