Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Update on Glutathione's Biosynthesis, Metabolism, Functions, and Medicinal Purposes

Author(s): Amin Gasmi, Aniqa Nasreen, Larysa Lenchyk, Roman Lysiuk, Massimiliano Peana, Nataliya Shapovalova, Salva Piscopo, Mykola Komisarenko, Mariia Shanaida, Kateryna Smetanina, Halyna Antonyak, Liudmyla Fira, Petro Lykhatskyi, Dmytro Fira and Geir Bjørklund*

Volume 31, Issue 29, 2024

Published on: 26 October, 2023

Page: [4579 - 4601] Pages: 23

DOI: 10.2174/0109298673251025230919105818

Price: $65

Abstract

Glutathione (GSH) has been the focus of increased scientific interest in the last decades. It plays a crucial role in all major physiological processes by supplying antioxidant defenses through participating in cellular redox reactions in the human body and other living organisms. GSH also participates in detoxifying xenobiotics, protecting protein thiols from crosslinking and oxidation, regulating the cell cycle, storing cysteine, etc. The significant role of GSH in the most important physiological processes has been highlighted, such as maintaining the redox balance and reducing oxidative stress due to its ability to inactivate the reactive oxygen, nitrogen, and sulfur species. It can also enhance metabolic detoxification and regulate the function of the immune system. All of these characteristics make it a universal biomarker since its proper balance is essential for improving health and treating some age-related disorders. This review presents a current concept of the synthesis and metabolism of GSH; its main functions in a living organism, and as a precursor and cofactor; data on the use of GSH for medicinal purposes in the prevention and treatment of some diseases, as well as a nutritional strategy to maintain a normal pool of GSH in the body. The data were gathered by searching relevant information in multiple databases, such as PubMed, Scopus, ScienceDirect, and Google Scholar.

Next »
[1]
Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids, 2012, 2012, 1-26.
[http://dx.doi.org/10.1155/2012/736837] [PMID: 22500213]
[2]
Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem., 1984, 52, 711-760.
[3]
Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[4]
Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-related enzymes and proteins: A review. Molecules, 2023, 28(3), 1447.
[http://dx.doi.org/10.3390/molecules28031447] [PMID: 36771108]
[5]
Forman, H.J.; Thomas, M.J. Oxidant production and bactericidal activity of phagocytes. Annu. Rev. Physiol., 1986, 48(1), 669-680.
[http://dx.doi.org/10.1146/annurev.ph.48.030186.003321] [PMID: 3010830]
[6]
Korost, Y.V.; Sokurenko, O.O.; Kalashchenko, S.I.; Odynetsʹ, M.O. Understanding biochemical processes as the proposal of successful disease treatment. State-Art Technol. Med., 2016, 3-4(129-130), 20-23.
[7]
Marí, M.; de Gregorio, E.; de Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial glutathione: Recent insights and role in disease. Antioxidants, 2020, 9(10), 909.
[http://dx.doi.org/10.3390/antiox9100909] [PMID: 32987701]
[8]
Gao, X.; Yu, X.; Zhang, C.; Wang, Y.; Sun, Y.; Sun, H.; Zhang, H.; Shi, Y.; He, X. Telomeres and mitochondrial metabolism: Implications for cellular senescence and age-related diseases. Stem Cell Rev. Rep., 2022, 18(7), 2315-2327.
[http://dx.doi.org/10.1007/s12015-022-10370-8] [PMID: 35460064]
[9]
Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173.
[http://dx.doi.org/10.3390/ijms222313173] [PMID: 34884978]
[10]
Martini, H.; Passos, J. Cellular senescence: All roads lead to mitochondria. FEBS J., 2022, 290(5), 1186-1202.
[PMID: 35048548]
[11]
Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem., 1988, 263(33), 17205-17208.
[http://dx.doi.org/10.1016/S0021-9258(19)77815-6] [PMID: 3053703]
[12]
Cantin, A.M.; North, S.L.; Hubbard, R.C.; Crystal, R.G. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol, 1987, 63(1), 152-157.
[13]
Venglarik, C.J.; Giron-Calle, J.; Wigley, A.F.; Malle, E.; Watanabe, N.; Forman, H.J. Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. J. Appl. Physiol., 2003, 95(6), 2444-2452.
[14]
Pizzorno, J. Glutathione! Integr. Med., 2014, 13(1), 8-12.
[PMID: 26770075]
[15]
Ruiz-Capillas, C., Eds.; Nollet., L.M.L., Eds.; Flow Injection Analysis of Food Additives; Shpigun, L.K.CRC Press: C.Ruiz-Capillas, 2015, p. 736.
[16]
Iskusnykh, I.Y.; Zakharova, A.A.; Pathak, D. Glutathione in brain disorders and aging. Molecules., 2022, 27(1), 324.
[http://dx.doi.org/10.3390/molecules27010324] [PMID: 35011559]
[17]
Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells., 2022, 11(3), 552.
[http://dx.doi.org/10.3390/cells11030552] [PMID: 35159361]
[18]
Kulinsky, V.I.; Kolesnichenko, L.S. Nuclear glutathione and its functions. Biomed. Khim., 2010, 56(6), 657-662.
[http://dx.doi.org/10.18097/PBMC20105606657] [PMID: 21395068]
[19]
Ranganna, K.; Mathew, O.P.; Yatsu, F.M.; Yousefipour, Z.; Hayes, B.E.; Milton, S.G. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J., 2007, 274(22), 5962-5978.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06119.x] [PMID: 17961182]
[20]
Sies, H.; Ketterer, B. Glutathione conjugation. Mechanisms and biological significance; Academic Press: London, 1988.
[21]
Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med., 1999, 27(9-10), 916-921.
[http://dx.doi.org/10.1016/S0891-5849(99)00177-X] [PMID: 10569624]
[22]
Potęga, A. Glutathione-mediated conjugation of anticancer drugs: An overview of reaction mechanisms and biological significance for drug detoxification and bioactivation. Molecules., 2022, 27(16), 5252.
[http://dx.doi.org/10.3390/molecules27165252] [PMID: 36014491]
[23]
Hatem, E.; El Banna, N.; Huang, M.E. Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid. Redox Signal., 2017, 27(15), 1217-1234.
[http://dx.doi.org/10.1089/ars.2017.7134] [PMID: 28537430]
[24]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[25]
Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res., 2016, 76(1), 7-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3143] [PMID: 26729789]
[26]
Ennis, S.R.; Kawai, N.; Ren, X.; Abdelkarim, G.E.; Keep, R.F. Glutamine uptake at the blood-brain barrier is mediated by N-system transport. J. Neurochem., 1998, 71(6), 2565-2573.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71062565.x] [PMID: 9832157]
[27]
Dringen, R.; Kranich, O.; Hamprecht, B. The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem. Res., 1997, 22(6), 727-733.
[http://dx.doi.org/10.1023/A:1027310328310] [PMID: 9178957]
[28]
Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671.
[http://dx.doi.org/10.1016/S0301-0082(99)00060-X] [PMID: 10880854]
[29]
Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci., 2021, 22(9), 5010.
[http://dx.doi.org/10.3390/ijms22095010] [PMID: 34065042]
[30]
Bjørklund, G.; Peana, M.; Maes, M.; Dadar, M.; Severin, B. The glutathione system in Parkinson’s disease and its progression. Neurosci. Biobehav. Rev., 2021, 120, 470-478.
[http://dx.doi.org/10.1016/j.neubiorev.2020.10.004] [PMID: 33068556]
[31]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[32]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[33]
Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006, 43(2), 143-181.
[http://dx.doi.org/10.1080/10408360500523878] [PMID: 16517421]
[34]
Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med., 2009, 30(1-2), 42-59.
[http://dx.doi.org/10.1016/j.mam.2008.05.005] [PMID: 18601945]
[35]
White, C.C.; Viernes, H.; Krejsa, C.M.; Botta, D.; Kavanagh, T.J. Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal. Biochem., 2003, 318(2), 175-180.
[http://dx.doi.org/10.1016/S0003-2697(03)00143-X] [PMID: 12814619]
[36]
Oppenheimer, L.; Wellner, V.P.; Griffith, O.W.; Meister, A. Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J. Biol. Chem., 1979, 254(12), 5184-5190.
[http://dx.doi.org/10.1016/S0021-9258(18)50577-9] [PMID: 447639]
[37]
Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y-Z.; Yang, S. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[38]
Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med., 1999, 27(9-10), 922-935.
[http://dx.doi.org/10.1016/S0891-5849(99)00176-8] [PMID: 10569625]
[39]
Garlitska, N.; Fira, L.; Lykhatskyi, P.; Boyko, L. Biochemical mechanisms of oxidative stress in animals exposed to hexavalent chromium compounds in the case of isoniazid–rifampicin hepatitis. Farmacia, 2021, 69(2), 253-259.
[http://dx.doi.org/10.31925/farmacia.2021.2.9]
[40]
Gontova, T.; Koshovyi, O.; Shanaida, M.; Vlasova, I.; Grytsyk, L.; Zhumashova, G.; Sayakova, G.; Boshkayeva, A. Determination of standardization parameters of Oxycoccus macrocarpus (Ait.) Pursh and Oxycoccus palustris pers. leaves. Sci.: Pharm. Sci., 2022, 3, 48-57.
[41]
Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: Impact on insulin resistance and Nrf-2 expression. Front. Pharmacol., 2020, 11, 218.
[http://dx.doi.org/10.3389/fphar.2020.00218] [PMID: 32256346]
[42]
Ali, M.; Khan, T.; Fatima, K.; Ali, Q.A.; Ovais, M.; Khalil, A.T.; Ullah, I.; Raza, A.; Shinwari, Z.K.; Idrees, M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res., 2018, 32(2), 199-215.
[http://dx.doi.org/10.1002/ptr.5957] [PMID: 29047177]
[43]
Chung, T.K. L-2-oxothiazolidine-4-carboxylate as a cysteine precursor: Efficacy for growth and hepatic glutathione synthesis in chicks and rats. J Nutr., 1990, 120(2), 158-165.
[44]
Lyons, J.; Rauh-Pfeiffer, A.; Yu, Y.M.; Lu, X.M.; Zurakowski, D.; Tompkins, R.G.; Ajami, A.M.; Young, V.R.; Castillo, L. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc. Natl. Acad. Sci., 2000, 97(10), 5071-5076.
[http://dx.doi.org/10.1073/pnas.090083297] [PMID: 10792033]
[45]
Jahoor, F.; Jackson, A.; Gazzard, B.; Philips, G.; Sharpstone, D.; Frazer, M.E.; Heird, W. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am. J. Physiol., 1999, 276(1), E205-E211.
[PMID: 9886968]
[46]
Lu, S.C. In current topics in cellular regulation; Academic Press, 2001, Vol. 36, pp. 95-116.
[47]
Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F.; Wykes, L.; Henry, J.; Frazer, M.E. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am. J. Physiol., 1997, 273(2 Pt 1), E408-E415.
[PMID: 9277395]
[48]
Watford, M. Net interorgan transport of L-glutamate in rats occurs via the plasma, not via erythrocytes. J. Nutr., 2002, 132(5), 952-956.
[http://dx.doi.org/10.1093/jn/132.5.952] [PMID: 11983820]
[49]
Grimble, R.F.; Jackson, A.A.; Persaud, C.; Wride, M.J.; Delers, F.; Engler, R. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J. Nutr., 1992, 122(11), 2066-2073.
[http://dx.doi.org/10.1093/jn/122.11.2066] [PMID: 1279141]
[50]
Yu, Y.M.; Ryan, C.M.; Fei, Z.W.; Lu, X.M.; Castillo, L.; Schultz, J.T.; Tompkins, R.G.; Young, V.R. Plasma L -5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans. Am. J. Physiol. Endocrinol. Metab., 2002, 282(2), E247-E258.
[http://dx.doi.org/10.1152/ajpendo.00206.2001] [PMID: 11788355]
[51]
Sen, C.K. In Stress adaptation, prophylaxis and treatment; Springer: Boston, MA, 1999, pp. 31-42.
[http://dx.doi.org/10.1007/978-1-4615-5097-6_4]
[52]
Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196.
[http://dx.doi.org/10.3389/fphar.2014.00196] [PMID: 25206336]
[53]
Sen, C.K.; Packer, L. Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr., 2000, 72(S2), 653S-669S.
[http://dx.doi.org/10.1093/ajcn/72.2.653S] [PMID: 10919972]
[54]
Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473.
[http://dx.doi.org/10.1126/science.aaw5473] [PMID: 32273439]
[55]
Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal., 2004, 6(2), 289-300.
[http://dx.doi.org/10.1089/152308604322899350] [PMID: 15025930]
[56]
Rauhala, P.; Andoh, T.; Chiueh, C. Neuroprotective properties of nitric oxide and nitrosoglutathione. Toxicol. Appl. Pharmacol., 2005, 207(S2), 91-95.
[http://dx.doi.org/10.1016/j.taap.2005.02.028] [PMID: 15987648]
[57]
Moreno-Sanchez, R.; Hernández, M.A.; Pérez, J.C.; Vázquez, C.; Rodriguez-Enriquez, S.; Saavedra, E. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. Biochim Biophys Acta Bioenerg., 2018, 1859(10), 1138-1150.
[58]
Kinno, A.; Kasamatsu, S.; Akaike, T.; Ihara, H. Reactive sulfur species omics analysis in the brain tissue of the 5xFAD mouse model of Alzheimer’s disease. Antioxidants, 2023, 12(5), 1105.
[http://dx.doi.org/10.3390/antiox12051105] [PMID: 37237971]
[59]
Barayeu, U.; Schilling, D.; Eid, M.; Xavier da Silva, T.N.; Schlicker, L.; Mitreska, N.; Zapp, C.; Gräter, F.; Miller, A.K.; Kappl, R.; Schulze, A.; Friedmann, A.J.P.; Dick, T.P. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol., 2023, 19(1), 28-37.
[http://dx.doi.org/10.1038/s41589-022-01145-w] [PMID: 36109647]
[60]
Karkhanei, B.; Talebi, G.E.; Mehri, F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect., 2021, 42, 100897.
[http://dx.doi.org/10.1016/j.nmni.2021.100897] [PMID: 34026228]
[61]
Labarrere, C.A.; Kassab, G.S. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front. Microbiol., 2022, 13, 979719.
[http://dx.doi.org/10.3389/fmicb.2022.979719] [PMID: 36274722]
[62]
Polonikov, A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect. Dis., 2020, 6(7), 1558-1562.
[http://dx.doi.org/10.1021/acsinfecdis.0c00288] [PMID: 32463221]
[63]
Žarković, N.; Jastrząb, A.; Jarocka-Karpowicz, I.; Orehovec, B.; Baršić, B.; Tarle, M.; Kmet, M.; Lukšić, I.; Łuczaj, W.; Skrzydlewska, E. The impact of severe COVID-19 on plasma antioxidants. Molecules., 2022, 27(16), 5323.
[http://dx.doi.org/10.3390/molecules27165323] [PMID: 36014561]
[64]
Tymoshenko, M.; Gaida, I.; Kravchenko, O.; Ostapchenko, I. Content of different forms of glutathione and activity of glutathione reductase in cells of the gastrointestinal mucosa under experimental gastric carcinogenesis [in Ukrainian]. Visnyk Kyyivsʹkoho Natsionalʹnoho Universytetu Imeni T. Shevchenka, 2012, 61, 34-36.
[65]
Averill-Bates, D. The antioxidant glutathione. In: Vitamins and Hormones; , 2023; 121, pp. 109-141.
[66]
Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(8), 119041.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119041] [PMID: 33872672]
[67]
Borras, C.; Gambini, J.; Vina, J. Mitochondrial oxidant generation is involved in determining why females live longer than males. Front Biosci., 2007, 12, 1008-1013.
[68]
Kulinsky, V.I.; Kolesnichenko, L.S. Mitochondrial glutathione. Biochemistry., 2007, 72(7), 698-701.
[http://dx.doi.org/10.1134/S0006297907070024] [PMID: 17680760]
[69]
Wang, L.; Ahn, Y.J.; Asmis, R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol., 2020, 31, 101410.
[http://dx.doi.org/10.1016/j.redox.2019.101410] [PMID: 31883838]
[70]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[http://dx.doi.org/10.1016/j.cbi.2014.10.016] [PMID: 25452175]
[71]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem. Toxicol., 2017, 110, 240-250.
[http://dx.doi.org/10.1016/j.fct.2017.10.039] [PMID: 29079495]
[72]
Bjørklund, G.; Dadar, M.; Martins, N.; Chirumbolo, S.; Goh, B.H.; Smetanina, K.; Lysiuk, R. Brief challenges on medicinal plants: An eye-opening look at ageing-related disorders. Basic Clin. Pharmacol. Toxicol., 2018, 122(6), 539-558.
[http://dx.doi.org/10.1111/bcpt.12972] [PMID: 29369521]
[73]
Hayes, J.D. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[74]
Chorna, I.V.; Dronik, G.V.; Rogozinsky, M.S. Biological values of antioxidant protection system indicators in assessing the safety of the exercise of genetically modified organisms. Young Scientist, 2018, 10(62), 461-469.
[75]
Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6), 445-520.
[http://dx.doi.org/10.3109/10409239509083491] [PMID: 8770536]
[76]
Cahill, L.E.; Fontaine-Bisson, B.; El-Sohemy, A. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. Am. J. Clin. Nutr., 2009, 90(5), 1411-1417.
[http://dx.doi.org/10.3945/ajcn.2009.28327] [PMID: 19710200]
[77]
Xu, S.; Wang, Y.; Roe, B.; Pearson, W.R. Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion. J. Biol. Chem., 1998, 273(6), 3517-3527.
[http://dx.doi.org/10.1074/jbc.273.6.3517] [PMID: 9452477]
[78]
Frova, C. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng., 2006, 23(4), 149-169.
[http://dx.doi.org/10.1016/j.bioeng.2006.05.020] [PMID: 16839810]
[79]
Makarchuk, V.A.; Ushakova, G.O.; Krylova, O.O. The glutathione system in the blood of rats and morphological changes of the pancreas under experimental acute and chronic pancreatitis. Ukr. Biochem. J., 2013, 85(1), 71-78.
[http://dx.doi.org/10.15407/ubj85.01.071] [PMID: 23534292]
[80]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[81]
Hamilton, D.S.; Zhang, X.; Ding, Z.; Hubatsch, I.; Mannervik, B.; Houk, K.N.; Ganem, B.; Creighton, D.J. Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts. J. Am. Chem. Soc., 2003, 125(49), 15049-15058.
[http://dx.doi.org/10.1021/ja030396p] [PMID: 14653739]
[82]
Tkach, S.M. Glutathione as a universal hepatoprotector with pleiotropic effects. Health Ukraine, 2018, 2(48), 16-17.
[83]
Gons’kyĭ, IaI.; Korda, M.M.; Klishch, I.M. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide. Ukr. Biokhim. Zh., 1991, 63(5), 112-116.
[PMID: 1788866]
[84]
Skakun, N.P.; Stepanova, Y.N. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs. Vrach. Delo, 1988, 12, 52-54.
[PMID: 3245169]
[85]
Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural compounds and products from an anti-aging perspective. Molecules, 2022, 27(20), 7084.
[http://dx.doi.org/10.3390/molecules27207084] [PMID: 36296673]
[86]
Maus, A.; Peters, G.J. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids, 2017, 49(1), 21-32.
[http://dx.doi.org/10.1007/s00726-016-2342-9] [PMID: 27752843]
[87]
Dang, L.; Jin, S.; Su, S.M. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med., 2010, 16(9), 387-397.
[http://dx.doi.org/10.1016/j.molmed.2010.07.002] [PMID: 20692206]
[88]
Vélot, C.; Srere, P.A. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. J. Biol. Chem., 2000, 275(17), 12926-12933.
[PMID: 10777592]
[89]
Sriram, G.; Martinez, J.A.; McCabe, E.R.B.; Liao, J.C.; Dipple, K.M. Single-gene disorders: What role could moonlighting enzymes play? Am. J. Hum. Genet., 2005, 76(6), 911-924.
[http://dx.doi.org/10.1086/430799] [PMID: 15877277]
[90]
Lushchak, O.; Piroddi, M.; Galli, F.; Lushchak, V. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep., 2013, 19(1), 8-15.
[91]
Bulteau, A.L.; Ikeda-Saito, M.; Szweda, L.I. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry., 2003, 42(50), 14846-14855.
[http://dx.doi.org/10.1021/bi0353979] [PMID: 14674759]
[92]
Velsor, L.W.; Kariya, C.; Kachadourian, R.; Day, B.J. Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am. J. Respir. Cell Mol. Biol., 2006, 35(5), 579-586.
[http://dx.doi.org/10.1165/rcmb.2005-0473OC] [PMID: 16763223]
[93]
Jannat, R.; Uraji, M.; Morofuji, M.; Islam, M.M.; Bloom, R.E.; Nakamura, Y.; McClung, C.R.; Schroeder, J.I.; Mori, I.C.; Murata, Y. Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in arabidopsis guard cells. J. Plant Physiol., 2011, 168(16), 1919-1926.
[http://dx.doi.org/10.1016/j.jplph.2011.05.006] [PMID: 21665322]
[94]
Noctor, G.; Foyer, C.H. ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 249-279.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.249] [PMID: 15012235]
[95]
Puskas, F.; Gergely, P.; Niland, B.; Banki, K.; Perl, A. Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C. Antioxid. Redox Signal., 2002, 4(3), 357-369.
[http://dx.doi.org/10.1089/15230860260196164] [PMID: 12215204]
[96]
Whitbread, A.K.; Masoumi, A.; Tetlow, N.; Schmuck, E.; Coggan, M.; Board, P.G. Characterization of the omega class of glutathione transferases. Methods Enzymol., 2005, 401, 78-99.
[http://dx.doi.org/10.1016/S0076-6879(05)01005-0] [PMID: 16399380]
[97]
Jimenez, A.; Hernandez, J.A.; del Rio, L.A.; Sevilla, F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 1997, 114(1), 275-284.
[http://dx.doi.org/10.1104/pp.114.1.275] [PMID: 12223704]
[98]
Bartoli, C.; Buet, A.; Gergoff Grozeff, G.; Galatro, A.; Simontacchi, M. Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer, 2017; pp. 177-200.
[99]
Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in age-related diseases and anti-aging strategies. Antioxidants, 2022, 11(10), 1868.
[http://dx.doi.org/10.3390/antiox11101868] [PMID: 36290589]
[100]
Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3217-3266.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.018] [PMID: 23036594]
[101]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[102]
Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; Polishchuk, A.; Shanaida, V.; Peana, M.; Bjørklund, G. Polyphenols in metabolic diseases. Molecules., 2022, 27(19), 6280.
[http://dx.doi.org/10.3390/molecules27196280] [PMID: 36234817]
[103]
Quispe, C.; Cruz-Martins, N.; Manca, M.L.; Manconi, M.; Sytar, O.; Hudz, N.; Shanaida, M.; Kumar, M.; Taheri, Y.; Martorell, M.; Sharifi-Rad, J.; Pintus, G.; Cho, W.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/3149223] [PMID: 34584616]
[104]
Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), 3568.
[http://dx.doi.org/10.3390/ijms19113568] [PMID: 30424557]
[105]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[106]
Babula, P.; Masarik, M.; Adam, V.; Eckschlager, T.; Stiborova, M.; Trnkova, L.; Skutkova, H.; Provaznik, I.; Hubalek, J.; Kizek, R. Mammalian metallothioneins: Properties and functions. Metallomics, 2012, 4(8), 739-750.
[http://dx.doi.org/10.1039/c2mt20081c] [PMID: 22791193]
[107]
Zhang, J.; Zhou, X.; Wu, W.; Wang, J.; Xie, H.; Wu, Z. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ. Toxicol. Pharmacol., 2017, 51, 30-37.
[http://dx.doi.org/10.1016/j.etap.2017.02.022] [PMID: 28262510]
[108]
Patel, J.; Matnor, N.A.; Iyer, A.; Brown, L. A regenerative antioxidant protocol of vitamin E and α-lipoic acid ameliorates cardiovascular and metabolic changes in fructose-fed rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1155/2011/120801] [PMID: 21437191]
[109]
Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol., 2015, 93(12), 1021-1027.
[http://dx.doi.org/10.1139/cjpp-2014-0353] [PMID: 26406389]
[110]
Durand, P.; Prost, M.; Loreau, N.; Lussier-Cacan, S.; Blache, D. Impaired homocysteine metabolism and atherothrombotic disease. Lab. Invest., 2001, 81(5), 645-672.
[http://dx.doi.org/10.1038/labinvest.3780275] [PMID: 11351038]
[111]
Glushchenko, A.V.; Jacobsen, D.W. Molecular targeting of proteins by L-homocysteine: Mechanistic implications for vascular disease. Antioxid. Redox Signal., 2007, 9(11), 1883-1898.
[http://dx.doi.org/10.1089/ars.2007.1809] [PMID: 17760510]
[112]
Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci., 2016, 17(10), 1733.
[http://dx.doi.org/10.3390/ijms17101733] [PMID: 27775595]
[113]
Mosharov, E.; Cranford, M.R.; Banerjee, R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 2000, 39(42), 13005-13011.
[http://dx.doi.org/10.1021/bi001088w] [PMID: 11041866]
[114]
Vitvitsky, V.; Mosharov, E.; Tritt, M.; Ataullakhanov, F.; Banerjee, R. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep., 2003, 8(1), 57-63.
[http://dx.doi.org/10.1179/135100003125001260] [PMID: 12631446]
[115]
Tian, L.; Shi, M.M.; Forman, H.J. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch. Biochem. Biophys., 1997, 342(1), 126-133.
[http://dx.doi.org/10.1006/abbi.1997.9997] [PMID: 9185621]
[116]
Vitvitsky, V.; Dayal, S.; Stabler, S.; Zhou, Y.; Wang, H.; Lentz, S.R.; Banerjee, R. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(1), R39-R46.
[http://dx.doi.org/10.1152/ajpregu.00036.2004] [PMID: 15016621]
[117]
Schalinske, K.L.; Smazal, A.L. Homocysteine imbalance: A pathological metabolic marker. Adv. Nutr., 2012, 3(6), 755-762.
[http://dx.doi.org/10.3945/an.112.002758] [PMID: 23153729]
[118]
Bjørklund, G.; Peana, M.; Dadar, M.; Lozynska, I.; Chirumbolo, S.; Lysiuk, R.; Lenchyk, L.; Upyr, T.; Severin, B. The role of B vitamins in stroke prevention. Crit. Rev. Food Sci. Nutr., 2022, 62(20), 5462-5475.
[http://dx.doi.org/10.1080/10408398.2021.1885341] [PMID: 33724098]
[119]
Murray, T.V.A.; Dong, X.; Sawyer, G.J.; Caldwell, A.; Halket, J.; Sherwood, R.; Quaglia, A.; Dew, T.; Anilkumar, N.; Burr, S.; Mistry, R.K.; Martin, D.; Schröder, K.; Brandes, R.P.; Hughes, R.D.; Shah, A.M.; Brewer, A.C. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic. Biol. Med., 2015, 89, 918-930.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.015] [PMID: 26472193]
[120]
Guttormsen, A.B.; Ueland, P.M.; Nesthus, I.; Nygård, O.; Schneede, J.; Vollset, S.E.; Refsum, H. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study. J. Clin. Invest., 1996, 98(9), 2174-2183.
[http://dx.doi.org/10.1172/JCI119024] [PMID: 8903338]
[121]
Vollset, S.E.; Refsum, H.; Ueland, P.M. Population determinants of homocysteine. Am. J. Clin. Nutr., 2001, 73(3), 499-500.
[http://dx.doi.org/10.1093/ajcn/73.3.499] [PMID: 11237921]
[122]
Moat, S.J. Plasma total homocysteine: Instigator or indicator of cardiovascular disease? Ann. Clin. Biochem., 2008, 45(4), 345-348.
[http://dx.doi.org/10.1258/acb.2008.008053] [PMID: 18583617]
[123]
Kidd, P.M. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev., 2008, 13(2), 85-115.
[PMID: 18590347]
[124]
Schafer, J.H.; Glass, T.A.; Bolla, K.I.; Mintz, M.; Jedlicka, A.E.; Schwartz, B.S. Homocysteine and cognitive function in a population-based study of older adults. J. Am. Geriatr. Soc., 2005, 53(3), 381-388.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53153.x] [PMID: 15743278]
[125]
Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry., 2014, 79(13), 1562-1583.
[http://dx.doi.org/10.1134/S0006297914130082] [PMID: 25749165]
[126]
Holmgren, A. Thioredoxin and glutaredoxin systems. J. Biol. Chem., 1989, 264(24), 13963-13966.
[http://dx.doi.org/10.1016/S0021-9258(18)71625-6] [PMID: 2668278]
[127]
Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol., 2001, 39(3), 533-541.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02283.x] [PMID: 11169096]
[128]
Berndt, C.; Lillig, C.H.; Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(4), 641-650.
[http://dx.doi.org/10.1016/j.bbamcr.2008.02.003] [PMID: 18331844]
[129]
Heras, B.; Edeling, M.A.; Schirra, H.J.; Raina, S.; Martin, J.L. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl. Acad. Sci. , 2004, 101(24), 8876-8881.
[http://dx.doi.org/10.1073/pnas.0402769101] [PMID: 15184683]
[130]
Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854.
[http://dx.doi.org/10.1016/j.phrs.2021.105854] [PMID: 34455077]
[131]
Haffo, L.; Lu, J.; Bykov, V.J.N.; Martin, S.S.; Ren, X.; Coppo, L.; Wiman, K.G.; Holmgren, A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci. Rep., 2018, 8(1), 12671.
[http://dx.doi.org/10.1038/s41598-018-31048-7] [PMID: 30140002]
[132]
DiFrancisco-Donoghue, J.; Lamberg, E.M.; Rabin, E.; Elokda, A.; Fazzini, E.; Werner, W.G. Effects of exercise and B vitamins on homocysteine and glutathione in Parkinson’s disease: a randomized trial. Neurodegener. Dis., 2012, 10(1-4), 127-134.
[http://dx.doi.org/10.1159/000333790] [PMID: 22261439]
[133]
Montecinos, V.; Guzmán, P.; Barra, V.; Villagrán, M.; Muñoz-Montesino, C.; Sotomayor, K.; Escobar, E.; Godoy, A.; Mardones, L.; Sotomayor, P.; Guzmán, C.; Vásquez, O.; Gallardo, V.; van Zundert, B.; Bono, M.R.; Oñate, S.A.; Bustamante, M.; Cárcamo, J.G.; Rivas, C.I.; Vera, J.C.; Vitamin, C. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. J. Biol. Chem., 2007, 282(21), 15506-15515.
[http://dx.doi.org/10.1074/jbc.M608361200] [PMID: 17403685]
[134]
Kennedy, D. B vitamins and the brain: Mechanisms, dose and efficacy-a review. Nutrients., 2016, 8(2), 68.
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[135]
Antonyak, H.; Iskra, R.; Panas, N.; Lysiuk, R. Trace Elements and Minerals in Health and Longevity; Malavolta, M.; Mocchegiani, E. Springer Nature: Switzerland AG, 2018, pp. 63-98.
[136]
Solovyev, N.; Drobyshev, E.; Bjørklund, G.; Dubrovskii, Y.; Lysiuk, R.; Rayman, M.P. Selenium, selenoprotein P, and Alzheimer’s disease: Is there a link? Free Radic. Biol. Med., 2018, 127, 124-133.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.030] [PMID: 29481840]
[137]
Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules, 2022, 27(19), 6613.
[http://dx.doi.org/10.3390/molecules27196613] [PMID: 36235150]
[138]
Bose, S.; Vyas, P.; Singh, M.; Singh, M. Plasma zinc antioxidant vitamins, glutathione levels and total antioxidant activity in oral leukoplakia. Dent. Res. J. , 2012, 9(2), 158-161.
[http://dx.doi.org/10.4103/1735-3327.95229] [PMID: 22623931]
[139]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[140]
Dolbashid, A.S.; Mohktar, M.S.; Zaman, W.S.W.K.; Basri, N.R.H.; Azmi, M.F.; Sawai, S.; Ilyasa, M.Y.H. International Conference for Innovation in Biomedical Engineering and Life Sciences, 2017, pp. 147-151.
[141]
Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359.
[http://dx.doi.org/10.1016/j.coph.2007.04.005] [PMID: 17602868]
[142]
Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ., 2012, 35(2), 454-484.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02400.x] [PMID: 21777251]
[143]
Meister, A. Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem., 1994, 269(13), 9397-9400.
[http://dx.doi.org/10.1016/S0021-9258(17)36891-6] [PMID: 8144521]
[144]
Cairns, N.G.; Pasternak, M.; Wachter, A.; Cobbett, C.S.; Meyer, A.J. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol., 2006, 141(2), 446-455.
[http://dx.doi.org/10.1104/pp.106.077982] [PMID: 16531482]
[145]
Noctor, G.; Mhamdi, A. Quantitative measurement of ascorbate and glutathione by spectrophotometry. Methods Mol. Biol., 2022, 2526, 87-96.
[http://dx.doi.org/10.1007/978-1-0716-2469-2_6] [PMID: 35657513]
[146]
Baimukhametova, E.; Taipova, R.; Kuluev, B. Glutathione and glutathione S-transferases: Key components of the antioxidant protection system of plants. Biomics., 2016, 8, 311-322.
[147]
Rae, C.D.; Williams, S.R. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal. Biochem., 2017, 529, 127-143.
[http://dx.doi.org/10.1016/j.ab.2016.12.022] [PMID: 28034792]
[148]
Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480.
[http://dx.doi.org/10.1007/s11064-020-03030-1] [PMID: 32297027]
[149]
Aoyama, K.; Nakaki, T. Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids, 2013, 45(1), 133-142.
[http://dx.doi.org/10.1007/s00726-013-1481-5] [PMID: 23462929]
[150]
Allaman, I.; Bélanger, M.; Magistretti, P.J. Astrocyte–neuron metabolic relationships: For better and for worse. Trends Neurosci., 2011, 34(2), 76-87.
[http://dx.doi.org/10.1016/j.tins.2010.12.001] [PMID: 21236501]
[151]
Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci., 2008, 108(3), 227-238.
[http://dx.doi.org/10.1254/jphs.08R01CR] [PMID: 19008644]
[152]
Massucci, F.A.; DiNuzzo, M.; Giove, F.; Maraviglia, B.; Castillo, I.P.; Marinari, E.; Martino, A.D. Energy metabolism and glutamate-glutamine cycle in the brain: A stoichiometric modeling perspective. BMC Syst. Biol., 2013, 7(1), 103.
[http://dx.doi.org/10.1186/1752-0509-7-103] [PMID: 24112710]
[153]
Liu, B.; Teschemacher, A.G.; Kasparov, S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia, 2017, 65(8), 1205-1226.
[http://dx.doi.org/10.1002/glia.23136] [PMID: 28300322]
[154]
Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437.
[http://dx.doi.org/10.1016/j.phrs.2021.105437] [PMID: 33493659]
[155]
Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.017] [PMID: 32745763]
[156]
Park, H.R.; Lee, J.M.; Moon, H.E.; Lee, D.S.; Kim, B.N.; Kim, J.; Kim, D.G.; Paek, S.H. A short review on the current understanding of autism spectrum disorders. Exp. Neurobiol., 2016, 25(1), 1-13.
[http://dx.doi.org/10.5607/en.2016.25.1.1] [PMID: 26924928]
[157]
DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532.
[PMID: 26236139]
[158]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[159]
Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants, 2021, 10(7), 1011.
[http://dx.doi.org/10.3390/antiox10071011] [PMID: 34201812]
[160]
Mandal, P.K.; Shukla, D.; Tripathi, M.; Ersland, L. Cognitive improvement with glutathione supplement in Alzheimer’s disease: A way forward. J. Alzheimers Dis., 2019, 68(2), 531-535.
[http://dx.doi.org/10.3233/JAD-181054] [PMID: 30776003]
[161]
Pocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 625-630.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.003] [PMID: 22015471]
[162]
Calabresi, P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Physician, 2004, 70(10), 1935-1944.
[PMID: 15571060]
[163]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x] [PMID: 23030059]
[164]
Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48.
[http://dx.doi.org/10.1186/s12943-015-0321-5] [PMID: 25743109]
[165]
Hammond, C.L.; Marchan, R.; Krance, S.M.; Ballatori, N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J. Biol. Chem., 2007, 282(19), 14337-14347.
[http://dx.doi.org/10.1074/jbc.M611019200] [PMID: 17374608]
[166]
Zou, X.; Feng, Z.; Li, Y.; Wang, Y.; Wertz, K.; Weber, P.; Fu, Y.; Liu, J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: Activation of Nrf2 and JNK-p62/SQSTM1 pathways. J. Nutr. Biochem., 2012, 23(8), 994-1006.
[http://dx.doi.org/10.1016/j.jnutbio.2011.05.006] [PMID: 21937211]
[167]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol. In Vitro, 2017, 40, 94-101.
[http://dx.doi.org/10.1016/j.tiv.2016.12.012] [PMID: 28024936]
[168]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[169]
Angeli, J.P.F.; Shah, R.; Pratt, D.A.; Conrad, M. Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol. Sci., 2017, 38(5), 489-498.
[http://dx.doi.org/10.1016/j.tips.2017.02.005] [PMID: 28363764]
[170]
Filomeni, G.; Desideri, E.; Cardaci, S.; Rotilio, G.; Ciriolo, M.R. Under the ROS: Thiol network is the principal suspect for autophagy commitment. Autophagy, 2010, 6(7), 999-1005.
[http://dx.doi.org/10.4161/auto.6.7.12754] [PMID: 20639698]
[171]
Mancilla, H.; Maldonado, R.; Cereceda, K.; Villarroel-Espíndola, F.; Montes de Oca, M.; Angulo, C.; Castro, M.A.; Slebe, J.C.; Vera, J.C.; Lavandero, S.; Concha, I.I. Glutathione depletion induces spermatogonial cell autophagy. J. Cell. Biochem., 2015, 116(10), 2283-2292.
[http://dx.doi.org/10.1002/jcb.25178] [PMID: 25833220]
[172]
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[173]
Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials, 2021, 277, 121110.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121110] [PMID: 34482088]
[174]
Nunes, S.; Serpa, J. Glutathione in ovarian cancer: A double-edged sword. Int. J. Mol. Sci., 2018, 19(7), 1882.
[http://dx.doi.org/10.3390/ijms19071882] [PMID: 29949936]
[175]
Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 2020, 10(10), 1429.
[http://dx.doi.org/10.3390/biom10101429] [PMID: 33050144]
[176]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/972913] [PMID: 23766865]
[177]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[178]
Somasundaram, V.; Basudhar, D.; Bharadwaj, G.; No, J.H.; Ridnour, L.A.; Cheng, R.Y.S.; Fujita, M.; Thomas, D.D.; Anderson, S.K.; McVicar, D.W.; Wink, D.A. Molecular mechanisms of nitric oxide in cancer progression, signal transduction, and metabolism. Antioxid. Redox Signal., 2019, 30(8), 1124-1143.
[http://dx.doi.org/10.1089/ars.2018.7527] [PMID: 29634348]
[179]
Homma, T.; Fujii, J. Application of glutathione as anti-oxidative and anti-aging drugs. Curr. Drug Metab., 2015, 16(7), 560-571.
[http://dx.doi.org/10.2174/1389200216666151015114515] [PMID: 26467067]
[180]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[181]
Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P., Jr. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur. J. Clin. Nutr., 2018, 72(1), 105-111.
[http://dx.doi.org/10.1038/ejcn.2017.132] [PMID: 28853742]
[182]
Richie, J.P., Jr; Nichenametla, S.; Neidig, W.; Calcagnotto, A.; Haley, J.S.; Schell, T.D.; Muscat, J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr., 2015, 54(2), 251-263.
[http://dx.doi.org/10.1007/s00394-014-0706-z] [PMID: 24791752]
[183]
Barardo, D.; Thornton, D.; Thoppil, H.; Walsh, M.; Sharifi, S.; Ferreira, S.; Anžič, A.; Fernandes, M.; Monteiro, P.; Grum, T.; Cordeiro, R.; De-Souza, E.A.; Budovsky, A.; Araujo, N.; Gruber, J.; Petrascheck, M.; Fraifeld, V.E.; Zhavoronkov, A.; Moskalev, A.; de Magalhães, J.P. The DrugAge database of aging-related drugs. Aging Cell, 2017, 16(3), 594-597.
[http://dx.doi.org/10.1111/acel.12585] [PMID: 28299908]
[184]
Varesi, A.; Campagnoli, L.; Pierella, E.; Bavestrello Piccini, G.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence; Antioxidants: Basel, Switzerland, 2022, p. 11.
[185]
Gasmi, A.; Shanaida, M.; Oleshchuk, O.; Semenova, Y.; Mujawdiya, P.K.; Ivankiv, Y.; Pokryshko, O.; Noor, S.; Piscopo, S.; Adamiv, S.; Bjørklund, G. Natural ingredients to improve immunity. Pharmaceuticals., 2023, 16(4), 528.
[http://dx.doi.org/10.3390/ph16040528] [PMID: 37111285]
[186]
Kidd, P.M. Glutathione: Systemic protectant against oxidative and free radical damage. Altern. Med. Rev., 1997, 2, 155-176.
[187]
Witschi, A.; Reddy, S.; Stofer, B.; Lauterburg, B.H. The systemic availability of oral glutathione. Eur. J. Clin. Pharmacol., 1992, 43(6), 667-669.
[http://dx.doi.org/10.1007/BF02284971] [PMID: 1362956]
[188]
Prousky, J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. Evid. Based Complement. Alternat. Med., 2008, 5(1), 27-35.
[http://dx.doi.org/10.1093/ecam/nem040] [PMID: 18317545]
[189]
Palamara, A.T.; Garaci, E.; Rotilio, G.; Ciriolo, M.R.; Casablanca, A.; Fraternale, A.; Rossi, L.; Schiavano, G.F.; Chiarantlni, L.; Magnani, M. Inhibition of murine AIDS by reduced glutathione. AIDS Res. Hum. Retroviruses, 1996, 12(14), 1373-1381.
[http://dx.doi.org/10.1089/aid.1996.12.1373] [PMID: 8891117]
[190]
Schauer, R.J.; Kalmuk, S.; Gerbes, A.L.; Leiderer, R.; Meissner, H.; Schildberg, F.W.; Messmer, K.; Bilzer, M. Intravenous administration of glutathione protects parenchymal and non-parenchymal liver cells against reperfusion injury following rat liver transplantation. World J. Gastroenterol., 2004, 10(6), 864-870.
[http://dx.doi.org/10.3748/wjg.v10.i6.864] [PMID: 15040034]
[191]
Schmitt, B.; Vicenzi, M.; Garrel, C.; Denis, F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol., 2015, 6, 198-205.
[http://dx.doi.org/10.1016/j.redox.2015.07.012] [PMID: 26262996]
[192]
Coles, L.D.; Tuite, P.J.; Öz, G.; Mishra, U.R.; Kartha, R.V.; Sullivan, K.M.; Cloyd, J.C.; Terpstra, M. Repeated-dose oral n-acetylcysteine in Parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J. Clin. Pharmacol., 2018, 58(2), 158-167.
[http://dx.doi.org/10.1002/jcph.1008] [PMID: 28940353]
[193]
To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Nguyen, T.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; Medina, A.; Avitia, E.; Villegas, J.; Pham, C.; Sathananthan, A.; Venketaraman, V. Effects of oral liposomal glutathione in altering the immune responses against Mycobacterium tuberculosis and the Mycobacterium bovis BCG strain in individuals with type 2 diabetes. Front. Cell. Infect. Microbiol., 2021, 11, 657775.
[http://dx.doi.org/10.3389/fcimb.2021.657775] [PMID: 34150674]
[194]
Kretzschmar, M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp. Toxicol. Pathol., 1996, 48(5), 439-446.
[http://dx.doi.org/10.1016/S0940-2993(96)80054-6] [PMID: 8765689]
[195]
Fukagawa, N.K.; Ajami, A.M.; Young, V.R. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am. J. Physiol., 1996, 270(2 Pt 1), E209-E214.
[PMID: 8779940]
[196]
Davids, L.M.; Van Wyk, J.C.; Khumalo, N.P. Intravenous glutathione for skin lightening: Inadequate safety data. S. Afr. Med. J., 2016, 106(8), 782-786.
[http://dx.doi.org/10.7196/SAMJ.2016.v106i8.10878] [PMID: 27499402]
[197]
Aoyama, K.; Nakaki, T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci., 2013, 14(10), 21021-21044.
[http://dx.doi.org/10.3390/ijms141021021] [PMID: 24145751]
[198]
Paromov, V.; Kumari, S.; Brannon, M.; Kanaparthy, N.S.; Yang, H.; Smith, M.G.; Stone, W.L. Protective effect of liposome-encapsulated glutathione in a human epidermal model exposed to a mustard gas analog. J. Toxicol., 2011, 2011, 1-11.
[http://dx.doi.org/10.1155/2011/109516] [PMID: 21776256]
[199]
Lv, H.; Zhen, C.; Liu, J.; Yang, P.; Hu, L.; Shang, P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/3150145] [PMID: 31281572]
[200]
Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev., 2021, 50(10), 6013-6041.
[http://dx.doi.org/10.1039/D0CS00718H] [PMID: 34027953]
[201]
Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants, 2021, 10(9), 1414.
[http://dx.doi.org/10.3390/antiox10091414] [PMID: 34573046]
[202]
Wu, J.H.; Batist, G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3350-3353.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.016] [PMID: 23201199]
[203]
Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther., 2021, 228, 107916.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107916] [PMID: 34171332]
[204]
Ramachandran, A.; Jaeschke, H. Acetaminophen hepatotoxicity. Semin. Liver Dis., 2019, 39(2), 221-234.
[http://dx.doi.org/10.1055/s-0039-1679919] [PMID: 30849782]
[205]
Adil, M.; Amin, S.; Mohtashim, M. N-acetylcysteine in dermatology. Indian J. Dermatol. Venereol. Leprol., 2018, 84(6), 652-659.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_33_18] [PMID: 30246706]
[206]
Kumar, P.; Osahon, O.W.; Sekhar, R.V. GlyNAC (Glycine and N-Acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage. Nutrients., 2022, 14(5), 1114.
[http://dx.doi.org/10.3390/nu14051114] [PMID: 35268089]
[207]
Sekhar, R.V. GlyNAC supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: Implications for healthy aging. J. Nutr., 2021, 151(12), 3606-3616.
[http://dx.doi.org/10.1093/jn/nxab309] [PMID: 34587244]
[208]
Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: A randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci., 2023, 78(1), 75-89.
[http://dx.doi.org/10.1093/gerona/glac135] [PMID: 35975308]
[209]
Pressman Md, P.; Bridge, W.J.; Zarka, M.H.; Hayes, A.W.; Clemens, R. Dietary γ-glutamylcysteine: Its impact on glutathione status and potential health outcomes. J. Diet. Suppl., 2022, 19(2), 259-270.
[http://dx.doi.org/10.1080/19390211.2020.1856266] [PMID: 33307893]
[210]
Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants., 2020, 9(7), 619.
[http://dx.doi.org/10.3390/antiox9070619] [PMID: 32679751]
[211]
Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N.; Oliinyk, P.; Shanaida, V.; Denys, A.; Peana, M.; Bjørklund, G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr., 2023, May 2, 1-19.
[http://dx.doi.org/10.1080/10408398.2023.2195493] [PMID: 37129118]
[212]
Minich, D.M.; Brown, B.I. A review of dietary (Phyto)nutrients for glutathione support. Nutrients., 2019, 11(9), 2073.
[http://dx.doi.org/10.3390/nu11092073] [PMID: 31484368]
[213]
Zhou, X.; He, L.; Wu, C.; Zhang, Y.; Wu, X.; Yin, Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res., 2017, 61(11), 1700262.
[http://dx.doi.org/10.1002/mnfr.201700262] [PMID: 28759161]
[214]
Zhou, X.; He, L.; Zuo, S.; Zhang, Y.; Wan, D.; Long, C.; Huang, P.; Wu, X.; Wu, C.; Liu, G.; Yin, Y. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 488-498.
[http://dx.doi.org/10.1016/j.bbadis.2017.11.009] [PMID: 29158183]
[215]
Zavorsky, G.S.; Kubow, S.; Grey, V.; Riverin, V.; Lands, L.C. An open-label dose–response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int. J. Food Sci. Nutr., 2007, 58(6), 429-436.
[http://dx.doi.org/10.1080/09637480701253581] [PMID: 17710587]
[216]
Tosukhowong, P.; Boonla, C.; Dissayabutra, T.; Kaewwilai, L.; Muensri, S.; Chotipanich, C.; Joutsa, J.; Rinne, J.; Bhidayasiri, R. Biochemical and clinical effects of Whey protein supplementation in Parkinson’s disease: A pilot study. J. Neurol. Sci., 2016, 367, 162-170.
[http://dx.doi.org/10.1016/j.jns.2016.05.056] [PMID: 27423583]
[217]
Bhutto, A.; Morley, J.E. The clinical significance of gastrointestinal changes with aging. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(5), 651-660.
[http://dx.doi.org/10.1097/MCO.0b013e32830b5d37] [PMID: 18685464]
[218]
Corleto, V.D.; Festa, S.; Di Giulio, E.; Annibale, B. Proton pump inhibitor therapy and potential long-term harm. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(1), 3-8.
[http://dx.doi.org/10.1097/MED.0000000000000031] [PMID: 24310148]
[219]
Dvorshchenko, K.; Bernyk, O.; Dranytsyna, A.; Senin, S.; Ostapchenko, L. Influence of oxidative stress on the level of genes expression Tgfb1 and Hgf in rat liver upon long-term gastric hypochlorhydria and administration of multiprobiotic Symbiter. Ukr. Biokhim. Zh., 2014, 85, 114-123.
[220]
Naito, Y.; Yoshikawa, T. Molecular and cellular mechanisms involved in Helicobacter pylori -induced inflammation and oxidative stress 1,2 1Guest Editor: Giuseppe Poli 2This article is part of a series of reviews on “Reactive Oxygen and Nitrogen in Inflammation.” The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med., 2002, 33(3), 323-336.
[http://dx.doi.org/10.1016/S0891-5849(02)00868-7] [PMID: 12126754]
[221]
Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis: A review. World J. Gastroenterol., 2017, 23(4), 563-572.
[http://dx.doi.org/10.3748/wjg.v23.i4.563] [PMID: 28216963]
[222]
Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev., 2002, 7(1), 22-44.
[PMID: 11896744]
[223]
Jones, D.P.; Park, Y.; Gletsu-Miller, N.; Liang, Y.; Yu, T.; Accardi, C.J.; Ziegler, T.R. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 2011, 27(2), 199-205.
[http://dx.doi.org/10.1016/j.nut.2010.01.014] [PMID: 20471805]
[224]
Eve, A.A.; Liu, X.; Wang, Y.; Miller, M.J.; Jeffery, E.H.; Madak-Erdogan, Z. Biomarkers of broccoli consumption: Implications for glutathione metabolism and liver health. Nutrients, 2020, 12(9), 2514.
[http://dx.doi.org/10.3390/nu12092514] [PMID: 32825248]
[225]
Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3143-3153.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.008] [PMID: 22995213]
[226]
Skvarc, D.R.; Dean, O.M.; Byrne, L.K.; Gray, L.; Lane, S.; Lewis, M.; Fernandes, B.S.; Berk, M.; Marriott, A. The effect of N-acetylcysteine (NAC) on human cognition – A systematic review. Neurosci. Biobehav. Rev., 2017, 78, 44-56.
[http://dx.doi.org/10.1016/j.neubiorev.2017.04.013] [PMID: 28438466]
[227]
Lin, C.Y.; Wu, J.L.; Shih, T.S.; Tsai, P.J.; Sun, Y.M.; Ma, M.C.; Guo, Y.L. N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear. Res., 2010, 269(1-2), 42-47.
[http://dx.doi.org/10.1016/j.heares.2010.07.005] [PMID: 20638463]
[228]
McCarty, M.F.; O’Keefe, J.H.; DiNicolantonio, J.J. Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection. Ochsner J., 2018, 18(1), 81-87.
[PMID: 29559876]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy