Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Amlodipine Ocular Delivery Restores Ferning Patterns and Reduces Intensity of Glycosylated Peak of Carrageenan-Induced Tear Fluid: An In-Silico Flexible Docking with IL-β1

Author(s): Ashirbad Nanda, Rudra Narayan Sahoo*, Mahendra Gour, Sandeep Kumar Swain, Debajyoti Das, Amit Kumar Nayak* and Subrata Mallick*

Volume 21, Issue 10, 2024

Published on: 26 October, 2023

Page: [1375 - 1385] Pages: 11

DOI: 10.2174/0115672018264980231017115829

Price: $65

conference banner
Abstract

Background: The tear ferning test can be an easy clinical procedure for the evaluation and characterization of the ocular tear film.

Objective: The objective of this study was to examine the restoration of tear ferning patterns and reduction of glycosylation peak after amlodipine application in carrageenan-induced conjunctivitis.

Methods: At the rabbit’s upper palpebral region, carrageenan was injected for cytokine-mediated conjunctivitis. Ferning pattern and glycosylation of the tear fluid were characterized using various instrumental analyses. The effect of amlodipine was also examined after ocular instillation and flexible docking studies.

Results: Optical microscopy showed a disrupted ferning of the tear collected from the inflamed eye. FTIR of the induced tear fluid exhibited peaks within 1000-1200 cm-1, which might be due to the protein glycosylation absent in the normal tear spectrogram. The glycosylation peak reduced significantly in the tear sample collected from the amlodipine-treated group. Corresponding energy dispersive analysis showed the presence of sulphur, indicating protein leakage from the lacrimal gland in the induced group. The disappearance of sulphur from the treated group indicated its remedial effect. The flexible docking studies revealed a stronger binding mode of amlodipine with Interleukin-1β (IL-1β). The reduction in the intensity of the glycosylated peak and the restoration offering are probably due to suppression of IL-1β.

Conclusion: This study may be helpful in obtaining primary information for drug discovery to be effective against IL-1β and proving tear fluid as a novel diagnostic biomarker.

Graphical Abstract

[1]
Masmali, A.M.; Al-Shehri, A.; Alanazi, S.A.; Abusharaha, A.; Fagehi, R.; El-Hiti, G.A. Assessment of tear film quality among smokers using tear ferning patterns. J. Ophthalmol., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/8154315] [PMID: 28003910]
[2]
Mantelli, F.; Argüeso, P. Functions of ocular surface mucins in health and disease. Curr. Opin. Allergy Clin. Immunol., 2008, 8(5), 477-483.
[http://dx.doi.org/10.1097/ACI.0b013e32830e6b04] [PMID: 18769205]
[3]
Horwath, J.; Ettinger, K.; Bachernegg, M.; Bodner, E.; Schmut, O. Ocular Ferning test - effect of temperature and humidity on tear Ferning patterns. Ophthalmologica, 2001, 215(2), 102-107.
[http://dx.doi.org/10.1159/000050838] [PMID: 11244339]
[4]
Nebbioso, M.; Sacchetti, M.; Bianchi, G.; Zicari, A.M.; Duse, M.; Del Regno, P.; Lambiase, A. Tear ferning test and pathological effects on ocular surface before and after topical cyclosporine in vernal keratoconjunctivitis patients. J. Ophthalmol., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/1061276] [PMID: 30405906]
[5]
Tabbara, K.F.; Okumoto, M. Ocular ferning test. A qualitative test for mucus deficiency. Ophthalmology, 1982, 89(6), 712-714.
[http://dx.doi.org/10.1016/S0161-6420(82)34736-3] [PMID: 7122048]
[6]
Rolando, M.; Baldi, F.; Calabria, G. Tear mucus crystallization in children with cystic fibrosis. Ophthalmologica, 1988, 197(4), 202-206.
[http://dx.doi.org/10.1159/000309944] [PMID: 3231427]
[7]
Vaikoussis, E.; Georgiou, P.; Nomicarios, D. Tear mucus ferning in patients with Sjögren’s syndrome. Doc. Ophthalmol., 1994, 87(2), 145-151.
[http://dx.doi.org/10.1007/BF01204791] [PMID: 7835183]
[8]
Kalayci, D.; Kiper, N.; Ozcelik, U.; Gocmen, A.; Hasiripi, H. Clinical status, ocular surface changes and tear ferning in patients with cystic fibrosis. Acta Ophthalmol. Scand., 1996, 74(6), 563-565.
[http://dx.doi.org/10.1111/j.1600-0420.1996.tb00735.x] [PMID: 9017042]
[9]
Pearce, E.I.; Tomlinson, A. Spatial location studies on the chemical composition of human tear ferns. Ophthalmic Physiol. Opt., 2000, 20(4), 306-313.
[http://dx.doi.org/10.1046/j.1475-1313.2000.00523.x] [PMID: 10962696]
[10]
Nanda, A.; Sahoo, R.N.; Pramanik, A.; Mohapatra, R.; Pradhan, S.K.; Thirumurugan, A.; Das, D.; Mallick, S. Drug-in-mucoadhesive type film for ocular anti-inflammatory potential of amlodipine: Effect of sulphobutyl-ether-beta-cyclodextrin on permeation and molecular docking characterization. Colloids Surf. B Biointerfaces, 2018, 172, 555-564.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.011] [PMID: 30218981]
[11]
Mohapatra, R.; Mallick, S.; Nanda, A.; Sahoo, R.N.; Pramanik, A.; Bose, A.; Das, D.; Pattnaik, L. Analysis of steady state and non-steady state corneal permeation of diclofenac. RSC Advances, 2016, 6(38), 31976-31987.
[http://dx.doi.org/10.1039/C6RA03604J]
[12]
Pramanik, A.; Sahoo, R.N.; Nanda, A.; Mohapatra, R.; Singh, R.; Mallick, S. Ocular permeation and sustained anti-inflammatory activity of dexamethasone from kaolin nanodispersion hydrogel system. Curr. Eye Res., 2018, 43(6), 828-838.
[http://dx.doi.org/10.1080/02713683.2018.1446534] [PMID: 29521542]
[13]
Pattanaik, S.; Nandi, S.; Sahoo, R.N.; Nanda, A.; Swain, R.; Das, S.; Mallick, S. Budesonide-cyclodextrin in hydrogel system: impact of quaternary surfactant on in vitro in vivo assessment of mucosal drug delivery. Revista de Chimie, 2020, 71(6), 332-345.
[http://dx.doi.org/10.37358/RC.20.6.8200]
[14]
Dinarello, C.A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol., 1998, 16(5-6), 457-499.
[http://dx.doi.org/10.3109/08830189809043005] [PMID: 9646173]
[15]
Sims, J.E.; Smith, D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol., 2010, 10(2), 89-102.
[http://dx.doi.org/10.1038/nri2691] [PMID: 20081871]
[16]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27(1), 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[17]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[18]
Dinarello, C.A.; Simon, A.; van der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov., 2012, 11(8), 633-652.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[19]
Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol., 2010, 6(4), 232-241.
[http://dx.doi.org/10.1038/nrrheum.2010.4] [PMID: 20177398]
[20]
Halim, S.A.; Jawad, M.; Ilyas, M.; Mir, Z.; Mirza, A.A.; Husnain, T. In silico identification of novel IL-1β inhibitors to target protein–protein interfaces. Comput. Biol. Chem., 2015, 58, 158-166.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.06.004] [PMID: 26253030]
[21]
Gül, A.; Tugal-Tutkun, I.; Dinarello, C.A.; Reznikov, L.; Esen, B.A.; Mirza, A.; Scannon, P.; Solinger, A. Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behçet’s disease: an open-label pilot study. Ann. Rheum. Dis., 2012, 71(4), 563-566.
[http://dx.doi.org/10.1136/annrheumdis-2011-155143] [PMID: 22084392]
[22]
Shima, E.; Katsube, M.; Kato, T.; Kitagawa, M.; Hato, F.; Hino, M.; Takahashi, T.; Fujita, H.; Kitagawa, S. Calcium channel blockers suppress cytokine-induced activation of human neutrophils. Am. J. Hypertens., 2008, 21(1), 78-84.
[http://dx.doi.org/10.1038/ajh.2007.13] [PMID: 18091748]
[23]
Mayama, C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur. J. Pharmacol., 2014, 739, 96-105.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.073] [PMID: 24291107]
[24]
Bruton, L.L.; John, S.L.; Parker, K.L. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, eleventh edition; McGraw Hill: New York, 2005, p. 837.
[25]
Hemmati, A.A.; Mojiri Forushani, H.; Mohammad Asgari, H. Wound healing potential of topical amlodipine in full thickness wound of rabbit. Jundishapur J. Nat. Pharm. Prod., 2014, 9(3), e15638.
[http://dx.doi.org/10.17795/jjnpp-15638] [PMID: 25237643]
[26]
El Morsy, E.M.; Kamel, R.; Ahmed, M.A.E. Attenuating effects of coenzyme Q10 and amlodipine in ulcerative colitis model in rats. Immunopharmacol. Immunotoxicol., 2015, 37(3), 244-251.
[http://dx.doi.org/10.3109/08923973.2015.1021357] [PMID: 25753843]
[27]
Rynes, R.I. Antimalarial drugs in the treatment of rheumatological diseases. Rheumatology (Oxford), 1997, 36(7), 799-805.
[http://dx.doi.org/10.1093/rheumatology/36.7.799] [PMID: 9255117]
[28]
Merdoud, A.; Mouffok, M.; Mesli, A.; Chafi, N.; Chaib, M. In vitro release study of 2-aminobenzothiazole from microspheres as drug carriers. J. Serb. Chem. Soc., 2020, 85(4), 531-545.
[http://dx.doi.org/10.2298/JSC190326132M]
[29]
Cvetkovic, V. Jovićevic, N.; Vukicevic, N.; Jovicevic, J. Aluminium/zirconium alloys obtained by Al underpotential deposition onto Zr from low temperature AlCl3+NaCl molten salts. J. Serb. Chem. Soc., 2019, 84(11), 1329-1344.
[http://dx.doi.org/10.2298/JSC190620073C]
[30]
Khajehpour, M.; Dashnau, J.L.; Vanderkooi, J.M. Infrared spectroscopy used to evaluate glycosylation of proteins. Anal. Biochem., 2006, 348(1), 40-48.
[http://dx.doi.org/10.1016/j.ab.2005.10.009] [PMID: 16298329]
[31]
Halim, S.A.; Jawad, M. Attempt to explore the binding mechanism of IL-1β inhibitors via molecular docking studies. Med. Chem., 2015, 5, 452-457.
[32]
Kern, J.A.; Lamb, R.J.; Reed, J.C.; Daniele, R.P.; Nowell, P.C. Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Posttranscriptional mechanisms. J. Clin. Invest., 1988, 81(1), 237-244.
[http://dx.doi.org/10.1172/JCI113301] [PMID: 3257219]
[33]
Ogawa, T.; Sakaue, T.; Terai, T.; Fukiage, C. Effects of bromfenac sodium, non-steroidal anti-inflammatory drug, on acute ocular inflammation. Nippon Ganka Gakkai Zasshi, 1995, 99(4), 406-411.
[PMID: 7741052]
[34]
Oka, T.; Shearer, T.; Azuma, M. Involvement of cyclooxygenase-2 in rat models of conjunctivitis. Curr. Eye Res., 2004, 29(1), 27-34.
[http://dx.doi.org/10.1080/02713680490513164] [PMID: 15370364]
[35]
Can, M.E.; Cakmak, H.B.; Can, G.D.; Unverdi, H.; Toklu, Y.; Llu, S.H. A novel technique for conjunctivoplasty in a rabbit model: Platelet-rich fibrin membrane grafting. J. Ophthalmol, 2016, 2016
[36]
Kato, M.; Hagiwara, Y.; Oda, T.; Imamura-Takai, M.; Aono, H.; Nakamura, M. Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J. Ocul. Pharmacol. Ther., 2011, 27(4), 353-360.
[http://dx.doi.org/10.1089/jop.2010.0177] [PMID: 21574866]
[37]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49(2), 534-553.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[38]
Sherman, W.; Beard, H.S.; Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des., 2006, 67(1), 83-84.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00327.x] [PMID: 16492153]
[39]
Stern, M.E.; Beuerman, R.W.; Fox, R.I.; Gao, J.; Mircheff, A.K.; Pflugfelder, S.C. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea, 1998, 17(6), 584-589.
[http://dx.doi.org/10.1097/00003226-199811000-00002] [PMID: 9820935]
[40]
Stern, M.E.; Gao, J.; Siemasko, K.F.; Beuerman, R.W.; Pflugfelder, S.C. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res., 2004, 78(3), 409-416.
[http://dx.doi.org/10.1016/j.exer.2003.09.003] [PMID: 15106920]
[41]
Teng, P.; Bateman, N.W.; Hood, B.L.; Conrads, T.P. Advances in proximal fluid proteomics for disease biomarker discovery. J. Proteome Res., 2010, 9(12), 6091-6100.
[http://dx.doi.org/10.1021/pr100904q] [PMID: 21028795]
[42]
Rolando, M. Semiology of the tear film. Chibret. Int. J. Ophthalmol., 1984, 2, 32-41.
[43]
Kogbe, O.; Liotet, S.; Tiffany, J.M. Factors responsible for tear ferning. Cornea, 1991, 10(5), 433-444.
[http://dx.doi.org/10.1097/00003226-199109000-00013] [PMID: 1935142]
[44]
Filipello, M.; Scimone, G.; Cascone, G.; Zagami, A.; Pantaleoni, G. Ferning test in Down’s syndrome. Acta Ophthalmol., 1992, 70(2), 274-277.
[http://dx.doi.org/10.1111/j.1755-3768.1992.tb04137.x] [PMID: 1535171]
[45]
Bitton, E.; Keech, A.; Jones, L.; Simpson, T. Subjective and objective variation of the tear film pre- and post-sleep. Optom. Vis. Sci., 2008, 85(8), 740-749.
[http://dx.doi.org/10.1097/OPX.0b013e318181a92f] [PMID: 18677238]
[46]
Srinivasan, S.; Joyce, E.; Jones, L.W. Tear osmolality and ferning patterns in postmenopausal women. Optom. Vis. Sci., 2007, 84(7), 588-592.
[http://dx.doi.org/10.1097/OPX.0b013e3180dc9a23] [PMID: 17632306]
[47]
Beden, U.; Turgut-Coban, D.; Aygün, C.; Ulu-Güngör, I.; Süllü, Y.; Erkan, D.; Küçüködük, S. Tear secretion and ferning patterns among premature and full-term newborns. Turk. J. Pediatr., 2008, 50(2), 155-159.
[PMID: 18664080]
[48]
Li, M.; Zhang, M.; Lin, Y.; Xiao, Q.; Zhu, X.; Song, S.; Lin, J.; Chen, J.; Liu, Z. Tear function and goblet cell density after pterygium excision. Eye (Lond.), 2007, 21(2), 224-228.
[http://dx.doi.org/10.1038/sj.eye.6702186] [PMID: 16341136]
[49]
Evans, K.S.E.; North, R.V.; Purslow, C. Tear ferning in contact lens wearers. Ophthalmic Physiol. Opt., 2009, 29(2), 199-204.
[http://dx.doi.org/10.1111/j.1475-1313.2008.00626.x] [PMID: 19236590]
[50]
Mann, A.M.; Tighe, B.J. Tear analysis and lens–tear interactions. Cont. Lens Anterior Eye, 2007, 30(3), 163-173.
[http://dx.doi.org/10.1016/j.clae.2007.03.006] [PMID: 17499010]
[51]
Versura, P.; Profazio, V.; Fresina, M.; Campos, E.C. A novel scraping cytology score system (SCSS) grades inflammation in dry eye patients. Curr. Eye Res., 2009, 34(5), 340-346.
[http://dx.doi.org/10.1080/02713680902816290] [PMID: 19401876]
[52]
Hermeling, S.; Crommelin, D.J.A.; Schellekens, H.; Jiskoot, W. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res., 2004, 21(6), 897-903.
[http://dx.doi.org/10.1023/B:PHAM.0000029275.41323.a6] [PMID: 15212151]
[53]
Müller, I.; Jenner, J.; Handgretinger, R.; Riberdy, J.; Kerst, G. Glycosylation and lectins-examples of immunesurveillance and immune evasion. Histol. Histopathol., 2004, 19(2), 527-533.
[PMID: 15024714]
[54]
Delves, P.J. The role of glycosylation in autoimmune disease. Autoimmunity, 1998, 27(4), 239-253.
[http://dx.doi.org/10.3109/08916939808993836] [PMID: 9623502]
[55]
Dewald, J.; Colomb, F.; Bobowski-Gerard, M.; Groux-Degroote, S.; Delannoy, P. Role of cytokine-induced glycosylation changes in regulating cell interactions and cell signaling in inflammatory diseases and cancer. Cells, 2016, 5(4), 43.
[http://dx.doi.org/10.3390/cells5040043] [PMID: 27916834]
[56]
Videira, P.A.Q.; Castro-Caldas, M. Linking glycation and glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s disease. Front. Neurosci., 2018, 12, 381.
[http://dx.doi.org/10.3389/fnins.2018.00381] [PMID: 29930494]
[57]
Bavkar, L.N.; Patil, R.S.; Rooge, S.B.; Nalawade, M.L.; Arvindekar, A.U. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor. Mol. Cell. Biochem., 2019, 459(1-2), 61-71.
[http://dx.doi.org/10.1007/s11010-019-03550-7] [PMID: 31102033]
[58]
Bevilacqua, M.; Butcher, E.; Furie, B.; Furie, B.; Gallatin, M.; Gimbrone, M.; Harlan, J.; Kishimoto, K.; Lasky, L.; McEver, R. Selectins: A family of adhesion receptors. Cell, 1991, 67(2), 233.
[http://dx.doi.org/10.1016/0092-8674(91)90174-W] [PMID: 1717161]
[59]
Ge, H.; Yuan, W.; Liu, J.; He, Q.; Ding, S.; Pu, J.; He, B. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages. PLoS One, 2015, 10(2), e0117463.
[http://dx.doi.org/10.1371/journal.pone.0117463] [PMID: 25658763]
[60]
Bezold, V.; Rosenstock, P.; Scheffler, J.; Geyer, H.; Horstkorte, R.; Bork, K. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging (Albany NY), 2019, 11(14), 5258-5275.
[http://dx.doi.org/10.18632/aging.102123] [PMID: 31386629]
[61]
Sharanjeet-Kaur; Ho, C.Y.; Mutalib, H.A.; Ghazali, A.R. The relationship between tear ferning patterns and non-invasive tear break-up time in normal Asian population. J. Optom., 2016, 9(3), 175-181.
[http://dx.doi.org/10.1016/j.optom.2015.10.004] [PMID: 26652245]
[62]
Zoukhri, D. Effect of inflammation on lacrimal gland function. Exp. Eye Res., 2006, 82(5), 885-898.
[http://dx.doi.org/10.1016/j.exer.2005.10.018] [PMID: 16309672]
[63]
Liu, T.; Jiang, C.Y.; Fujita, T.; Luo, S.W.; Kumamoto, E. Enhancement by interleukin-1β of AMPA and NMDA receptor-mediated currents in adult rat spinal superficial dorsal horn neurons. Mol. Pain, 2013, 9, 1744-8069-9-16.
[http://dx.doi.org/10.1186/1744-8069-9-16] [PMID: 23537341]
[64]
Gustafson-Vickers, S.L.; Van Lu, B.; Lai, A.Y.; Todd, K.G.; Ballanyi, K.; Smith, P.A. Long-term actions of interleukin-1beta on delay and tonic firing neurons in rat superficial dorsal horn and their relevance to central sensitization. Mol. Pain, 2008, 4, 1744-8069-4-63.
[http://dx.doi.org/10.1186/1744-8069-4-63] [PMID: 19091115]
[65]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[66]
Dinarello, C.A. Interleukin-1. Cytokine Growth Factor Rev., 1997, 8(4), 253-265.
[http://dx.doi.org/10.1016/S1359-6101(97)00023-3] [PMID: 9620641]
[67]
Braddock, M.; Quinn, A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat. Rev. Drug Discov., 2004, 3(4), 330-340.
[http://dx.doi.org/10.1038/nrd1342] [PMID: 15060528]
[68]
Shams, N.B.; Sigel, M.M.; Davis, J.F.; Ferguson, J.G. Corneal epithelial cells produce thromboxane in response to interleukin 1 (IL-1). Invest. Ophthalmol. Vis. Sci., 1986, 27(10), 1543-1545.
[PMID: 3489694]
[69]
Liu, X.; Ye, F.; Xiong, H.; Hu, D.N.; Limb, G.A.; Xie, T.; Peng, L.; Zhang, P.; Wei, Y.; Zhang, W.; Wang, J.; Wu, H.; Lee, P.; Song, E.; Zhang, D.Y. IL-1β Induces IL-6 production in retinal Müller cells predominantly through the activation of P38 MAPK/NF-κB signaling pathway. Exp. Cell Res., 2015, 331(1), 223-231.
[http://dx.doi.org/10.1016/j.yexcr.2014.08.040] [PMID: 25239226]
[70]
Cignarella, A. Targeting interleukin-1ß hampers atherosclerosis progression – Is there great promise? Atherosclerosis, 2011, 217(1), 64-66.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.006] [PMID: 21565345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy