Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Effects of Chronic Cold Exposure on Proteomics of Lung Tissue in Mice

Author(s): Moyou Li, Ying Liu, Xiaoye Tian, Zhuojun Wang, Feng Cheng, Xiao Han, Zheyuan Chen, Ruihang Ma* and Hongxu Jin*

Volume 20, Issue 2, 2023

Published on: 26 October, 2023

Page: [107 - 119] Pages: 13

DOI: 10.2174/0115701646245422231013072302

Price: $65

conference banner
Abstract

Background: Cold exposure can induce inflammation-related injury in lung tissue, but the exact mechanism is still unclear.

Objective: The study aimed to clarify the proteomic characteristics of lung tissue under cold exposure.

Methods: Forty mice were randomly equally divided into a control group and a model group. The model group was exposed to - 20°C for two weeks (4 hours per day), while the control group was maintained at 22 ± 2°C. H&E staining and ELISA were used to verify the injury of lung tissue. Furthermore, a quantitative analysis of the overall proteome in the lung of mice exposed to cold stress was conducted by using LC-MS/MS. 15 differentially expressed proteins were selected for PRM validation.

Results: According to our results, cold exposure induced lung injury, and the expressions of 151 proteins were upregulated and those of 95 proteins were downregulated. Bioinformatics analysis showed that differentially expressed proteins were associated with tricarboxylic acid cycle, fat metabolism, glycolysis, and oxidative phosphorylation. The expression of gabra2, Klkb1, and complement- related proteins was significantly upregulated. The results of PRM validation were consistent with those of proteomics.

Conclusion: We found changes in glycolysis, gabra2, Klkb1, and the complement system in the lung tissue of cold-stressed mice, which may play an important role in cold stress-induced lung injury.

Next »
Graphical Abstract

[1]
Vicedo-Cabrera, A.M.; Tobias, A.; Jaakkola, J.J.K.; Honda, Y.; Hashizume, M.; Guo, Y.; Schwartz, J.; Zanobetti, A.; Bell, M.L.; Armstrong, B.; Katsouyanni, K.; Haines, A.; Ebi, K.L.; Gasparrini, A. Global mortality burden attributable to non-optimal temperatures. Lancet, 2022, 399(10330), 1113.
[http://dx.doi.org/10.1016/S0140-6736(22)00179-9] [PMID: 35305734]
[2]
Martínez-Solanas, È.; Quijal-Zamorano, M.; Achebak, H.; Petrova, D.; Robine, J.M.; Herrmann, F.R.; Rodó, X.; Ballester, J. Projections of temperature-attributable mortality in Europe: A time series analysis of 147 contiguous regions in 16 countries. Lancet Planet. Health, 2021, 5(7), e446-e454.
[http://dx.doi.org/10.1016/S2542-5196(21)00150-9] [PMID: 34245715]
[3]
Kephart, J.L.; Sánchez, B.N.; Moore, J.; Schinasi, L.H.; Bakhtsiyarava, M.; Ju, Y.; Gouveia, N.; Caiaffa, W.T.; Dronova, I.; Arunachalam, S.; Diez Roux, A.V.; Rodríguez, D.A. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med., 2022, 28(8), 1700-1705.
[http://dx.doi.org/10.1038/s41591-022-01872-6] [PMID: 35760859]
[4]
McCormack, M.C.; Paulin, L.M.; Gummerson, C.E.; Peng, R.D.; Diette, G.B.; Hansel, N.N. Colder temperature is associated with increased COPD morbidity. Eur. Respir. J., 2017, 49(6), 1601501.
[http://dx.doi.org/10.1183/13993003.01501-2016] [PMID: 28663313]
[5]
Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine, 2016, 6, 258-268.
[http://dx.doi.org/10.1016/j.ebiom.2016.02.034] [PMID: 27211569]
[6]
Lane, M.A.; Walawender, M.; Brownsword, E.A.; Pu, S.; Saikawa, E.; Kraft, C.S.; Davis, R.E. The impact of cold weather on respiratory morbidity at Emory Healthcare in Atlanta. Sci. Total Environ., 2022, 813, 152612.
[http://dx.doi.org/10.1016/j.scitotenv.2021.152612] [PMID: 34963597]
[7]
Chen, T.H.; Du, X.L.; Chan, W.; Zhang, K. Impacts of cold weather on emergency hospital admission in Texas, 2004–2013. Environ. Res., 2019, 169, 139-146.
[http://dx.doi.org/10.1016/j.envres.2018.10.031] [PMID: 30453131]
[8]
Koskela, H.O. Cold air-provoked respiratory symptoms: The mechanisms and management. Int. J. Circumpolar Health, 2007, 66(2), 91-100.
[http://dx.doi.org/10.3402/ijch.v66i2.18237] [PMID: 17515249]
[9]
Giesbrecht, G.G. The respiratory system in a cold environment. Aviat. Space Environ. Med., 1995, 66(9), 890-902.
[PMID: 7487830] [PMID: 7487830]
[10]
Zhu, Y.; Yang, T.; Huang, S.; Li, H.; Lei, J.; Xue, X.; Gao, Y.; Jiang, Y.; Liu, C.; Kan, H.; Chen, R. Cold temperature and sudden temperature drop as novel risk factors of asthma exacerbation: A longitudinal study in 18 Chinese cities. Sci. Total Environ., 2022, 814, 151959.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151959] [PMID: 34843761]
[11]
Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of respiratory viral infections. Annu. Rev. Virol., 2020, 7(1), 83-101.
[http://dx.doi.org/10.1146/annurev-virology-012420-022445] [PMID: 32196426]
[12]
Luo, B.; Shi, H.; Zhang, K.; Wei, Q.; Niu, J.; Wang, J.; Hammond, S.K.; Liu, S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. Ecotoxicol. Environ. Saf., 2019, 168, 9-16.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.064] [PMID: 30384172]
[13]
Zhang, K.; Guo, L.; Wei, Q.; Song, Q.; Liu, J.; Niu, J.; Zhang, L.; Ruan, Y.; Luo, B. COPD rat model is more susceptible to cold stress and PM2.5 exposure and the underlying mechanism. Environ. Pollut., 2018, 241, 26-34.
[http://dx.doi.org/10.1016/j.envpol.2018.05.034] [PMID: 29793105]
[14]
Liu, Y.; Xue, N.; Zhang, B.; Lv, H.; Li, S. Cold stress induced liver injury of mice through activated nlrp3/caspase-1/gsdmd pyroptosis signaling pathway. Biomolecules, 2022, 12(7), 927.
[http://dx.doi.org/10.3390/biom12070927] [PMID: 35883482]
[15]
Wu, M.L.; Liu, F.L.; Sun, J.; Li, X.; He, X.Y.; Zheng, H.Y.; Zhou, Y.H.; Yan, Q.; Chen, L.; Yu, G.Y.; Chang, J.; Jin, X.; Zhao, J.; Chen, X.W.; Zheng, Y.T.; Wang, J.H. SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduct. Target. Ther., 2021, 6(1), 428.
[http://dx.doi.org/10.1038/s41392-021-00849-0] [PMID: 34921131]
[16]
Zhong, P.; Zhou, M.; Zhang, J.; Peng, J.; Zeng, G.; Huang, H. The role of Cold‐Inducible RNA‐binding protein in respiratory diseases. J. Cell. Mol. Med., 2022, 26(4), 957-965.
[http://dx.doi.org/10.1111/jcmm.17142] [PMID: 34953031]
[17]
Cai, J.; Zhao, C.; Du, Y.; Huang, Y.; Zhao, Q. Amentoflavone ameliorates cold stress-induced inflammation in lung by suppression of C3/BCR/NF-κB pathways. BMC Immunol., 2019, 20(1), 49.
[http://dx.doi.org/10.1186/s12865-019-0331-y] [PMID: 31888465]
[18]
Liu, J.; Wu, J.; Qiao, C.; He, Y.; Xia, S.; Zheng, Y.; Lv, H. Impact of chronic cold exposure on lung inflammation, pyroptosis and oxidative stress in mice. Int. Immunopharmacol., 2023, 115, 109590.
[http://dx.doi.org/10.1016/j.intimp.2022.109590] [PMID: 36577159]
[19]
Joo, S.Y.; Park, M.J.; Kim, K.H.; Choi, H.J.; Chung, T.W.; Kim, Y.J.; Kim, J.H.; Kim, K.J.; Joo, M.; Ha, K.T. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury. Int. J. Biometeorol., 2016, 60(8), 1217-1225.
[http://dx.doi.org/10.1007/s00484-015-1116-5] [PMID: 26617279]
[20]
Luo, B.; Shi, H.; Wang, L.; Shi, Y.; Wang, C.; Yang, J.; Wan, Y.; Niu, J. Rat lung response to PM2.5 exposure under different cold stresses. Int. J. Environ. Res. Public Health, 2014, 11(12), 12915-12926.
[http://dx.doi.org/10.3390/ijerph111212915] [PMID: 25514147]
[21]
Sun, W.; Wang, Z.; Cao, J.; Cui, H.; Ma, Z. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells. Cell Stress Chaperones, 2016, 21(2), 367-372.
[http://dx.doi.org/10.1007/s12192-015-0663-3] [PMID: 26634370]
[22]
Khan, M.M.; Yang, W.L.; Brenner, M.; Bolognese, A.C.; Wang, P. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Sci. Rep., 2017, 7(1), 41363.
[http://dx.doi.org/10.1038/srep41363] [PMID: 28128330]
[23]
Murata, K.; Fujita, N.; Takahashi, R. Ninjinyoeito ameliorated cigarette smoke extract-induced apoptosis and inflammation through JNK signaling inhibition in human lung fibroblasts. BMC Compl. Med. Ther., 2022, 22(1), 96.
[http://dx.doi.org/10.1186/s12906-022-03574-5] [PMID: 35361188]
[24]
Zhang, Y.; Li, X.; Zhang, L.; Lin, Y.S.; Xiao, Z.H.; Su, Z.; Liu, Y.; Yang, D.F. Effects of acute cold exposure on pulmonary proinflammatory cytokine of rat. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2015, 31(1), 6-9.
[PMID: 26016226]
[25]
Eklund, L.; Schagatay, F.; Tufvesson, E.; Sjöström, R.; Söderström, L. An experimental exposure study revealing composite airway effects of physical exercise in a subzero environment. Int. J. Circumpolar Health, 2021, 80(1), 1897213.
[http://dx.doi.org/10.1080/22423982.2021.1897213]
[26]
Pizanis, N.; Gillner, S.; Kamler, M.; de Groot, H.; Jakob, H.; Rauen, U. Cold-induced injury to lung epithelial cells can be inhibited by iron chelators-Implications for lung preservation. Eur. J. Cardiothorac. Surg., 2011, 40(4), 948-955.
[http://dx.doi.org/10.1016/j.ejcts.2011.01.052] [PMID: 21398140]
[27]
Cong, P.; Liu, Y.; Liu, N.; Zhang, Y.; Tong, C.; Shi, L.; Liu, X.; Shi, X.; Liu, Y.; Tong, Z.; Hou, M. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc. Disord., 2018, 18(1), 36.
[http://dx.doi.org/10.1186/s12872-018-0748-x] [PMID: 29448942]
[28]
Liu, Y.; Liu, Y.; Tong, C.; Cong, P.; Shi, X.; Shi, L.; Hou, M.; Jin, H.; Bao, Y. Quantitative analysis of the global proteome in lung from mice with blast injury. Exp. Lung Res., 2020, 46(8), 308-319.
[http://dx.doi.org/10.1080/01902148.2020.1801896] [PMID: 32748703]
[29]
Camporesi, E.; Nilsson, J.; Vrillon, A.; Cognat, E.; Hourregue, C.; Zetterberg, H.; Blennow, K.; Becker, B.; Brinkmalm, A.; Paquet, C.; Brinkmalm, G. Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry. EBioMedicine, 2022, 75, 103793.
[http://dx.doi.org/10.1016/j.ebiom.2021.103793] [PMID: 34990894]
[30]
Suresh, K.; Shimoda, L.A. Lung circulation. Compr. Physiol., 2016, 6(2), 897-943.
[http://dx.doi.org/10.1002/cphy.c140049] [PMID: 27065170]
[31]
Qiu, W.; He, H.; Fan, L.; Feng, X.; Li, M.; Dong, C.; Li, Z.; Liu, W.; Liang, R.; Zhang, Y.; Zhang, Y.; Gu, P.; Wang, B.; Chen, W. Ambient temperature exposure causes lung function impairment: The evidence from Controlled Temperature Study in Healthy Subjects (CTSHS). Int. J. Hyg. Environ. Health, 2023, 252, 114214.
[http://dx.doi.org/10.1016/j.ijheh.2023.114214] [PMID: 37392524]
[32]
Cheshire, W.P., Jr Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci., 2016, 196, 91-104.
[http://dx.doi.org/10.1016/j.autneu.2016.01.001] [PMID: 26794588]
[33]
Regnard, J. Cold and the airways. Int. J. Sports Med., 1992, 13(S1)(Suppl. 1), S182-S184.
[http://dx.doi.org/10.1055/s-2007-1024633] [PMID: 1483769]
[34]
Eccles, R.; Wilkinson, J.E. Exposure to cold and acute upper respiratory tract infection. Rhinology, 2015, 53(2), 99-106.
[http://dx.doi.org/10.4193/Rhino14.239] [PMID: 26030031]
[35]
Sue-Chu, M. Winter sports athletes: Long-term effects of cold air exposure. Br. J. Sports Med., 2012, 46(6), 397-401.
[http://dx.doi.org/10.1136/bjsports-2011-090822] [PMID: 22267570]
[36]
Du, C.; Kang, J.; Yu, W. Repeated exposure to temperature variation exacerbates airway inflammation through trpa1 in a mouse model of asthma. Respirology, 2019, 24(3), 238-245.
[http://dx.doi.org/10.1111/resp.13433]
[37]
Sánchez-Gloria, J.L.; Carbó, R.; Buelna-Chontal, M.; Osorio-Alonso, H.; Henández-Díazcouder, A.; de la Fuente-León, R.L.; Sandoval, J.; Sánchez, F.; Rubio-Gayosso, I.; Sánchez-Muñoz, F. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α, IL-1β, and IL-6. Life Sci., 2021, 287, 120091.
[http://dx.doi.org/10.1016/j.lfs.2021.120091] [PMID: 34717910]
[38]
Castellani, J.W.; Young, A.J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci., 2016, 196, 63-74.
[http://dx.doi.org/10.1016/j.autneu.2016.02.009] [PMID: 26924539]
[39]
Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ., 2015, 39(3), 139-148.
[http://dx.doi.org/10.1152/advan.00126.2014] [PMID: 26330029]
[40]
Johnson, J.M.; Minson, C.T.; Kellogg, D.L., Jr Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr. Physiol., 2014, 4(1), 33-89.
[http://dx.doi.org/10.1002/cphy.c130015] [PMID: 24692134]
[41]
Brychta, R.J.; Chen, K.Y. Cold-induced thermogenesis in humans. Eur. J. Clin. Nutr., 2017, 71(3), 345-352.
[http://dx.doi.org/10.1038/ejcn.2016.223] [PMID: 27876809]
[42]
Abe, Y.; Fujiwara, Y.; Takahashi, H.; Matsumura, Y.; Sawada, T.; Jiang, S.; Nakaki, R.; Uchida, A.; Nagao, N.; Naito, M.; Kajimura, S.; Kimura, H.; Osborne, T.F.; Aburatani, H.; Kodama, T.; Inagaki, T.; Sakai, J. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun., 2018, 9(1), 1566.
[http://dx.doi.org/10.1038/s41467-018-03868-8] [PMID: 29674659]
[43]
Leiria, L.O.; Wang, C.H.; Lynes, M.D.; Yang, K.; Shamsi, F.; Sato, M.; Sugimoto, S.; Chen, E.Y.; Bussberg, V.; Narain, N.R.; Sansbury, B.E.; Darcy, J.; Huang, T.L.; Kodani, S.D.; Sakaguchi, M.; Rocha, A.L.; Schulz, T.J.; Bartelt, A.; Hotamisligil, G.S.; Hirshman, M.F.; van Leyen, K.; Goodyear, L.J.; Blüher, M.; Cypess, A.M.; Kiebish, M.A.; Spite, M.; Tseng, Y.H. 12-lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-hepe from brown fat. Cell Metab., 2019, 30(4), 768-783.e7.
[http://dx.doi.org/10.1016/j.cmet.2019.07.001] [PMID: 31353262]
[44]
Snodgrass, J.J.; Sorensen, M.V.; Tarskaia, L.A.; Leonard, W.R. Adaptive dimensions of health research among indigenous Siberians. Am. J. Hum. Biol., 2007, 19(2), 165-180.
[http://dx.doi.org/10.1002/ajhb.20624] [PMID: 17286259]
[45]
Snodgrass, J.J.; Leonard, W.R.; Tarskaia, L.A.; Alekseev, V.P.; Krivoshapkin, V.G. Basal metabolic rate in the Yakut (Sakha) of Siberia. Am. J. Hum. Biol., 2005, 17(2), 155-172.
[http://dx.doi.org/10.1002/ajhb.20106] [PMID: 15736182]
[46]
Mills, E.L.; Pierce, K.A.; Jedrychowski, M.P.; Garrity, R.; Winther, S.; Vidoni, S.; Yoneshiro, T.; Spinelli, J.B.; Lu, G.Z.; Kazak, L.; Banks, A.S.; Haigis, M.C.; Kajimura, S.; Murphy, M.P.; Gygi, S.P.; Clish, C.B.; Chouchani, E.T. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560(7716), 102-106.
[http://dx.doi.org/10.1038/s41586-018-0353-2] [PMID: 30022159]
[47]
Liu, P.; Yao, R.; Shi, H.; Liu, Y.; Lian, S.; Yang, Y.; Yang, H.; Li, S. Effects of cold-inducible rna-binding protein (cirp) on liver glycolysis during acute cold exposure in c57bl/6 mice. Int. J. Mol. Sci., 2019, 20(6), 1470.
[http://dx.doi.org/10.3390/ijms20061470] [PMID: 30909542]
[48]
Teng, T.; Yang, H.; Xu, T.; Sun, G. Activation of inflammatory networks in the lungs caused by chronic cold stress is moderately attenuated by glucose supplementation. Int. J. Mol. Sci., 2022, 23(18), 10697.
[http://dx.doi.org/10.3390/ijms231810697]
[49]
Luo, Y.; Balle, T. GABAA receptors as targets for anaesthetics and analgesics and promising candidates to help treat coronavirus infections: A mini-review. Basic Clin. Pharmacol. Toxicol., 2022, 131(6), 443-451.
[http://dx.doi.org/10.1111/bcpt.13798]
[50]
Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA receptors: structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol., 2021, 19(1), 123.
[http://dx.doi.org/10.1186/s43141-021-00224-0] [PMID: 34417930]
[51]
Yocum, G.T.; Turner, D.L.; Danielsson, J.; Barajas, M.B.; Zhang, Y.; Xu, D.; Harrison, N.L.; Homanics, G.E.; Farber, D.L.; Emala, C.W. GABA A receptor α 4 -subunit knockout enhances lung inflammation and airway reactivity in a murine asthma model. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(2), L406-L415.
[http://dx.doi.org/10.1152/ajplung.00107.2017] [PMID: 28473323]
[52]
Gallos, G.; Yocum, G.T.; Siviski, M.E.; Yim, P.D.; Fu, X.W.; Poe, M.M.; Cook, J.M.; Harrison, N.; Perez-Zoghbi, J.; Emala, C.W. Sr Selective targeting of the α5-subunit of GABA A receptors relaxes airway smooth muscle and inhibits cellular calcium handling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(9), L931-L942.
[http://dx.doi.org/10.1152/ajplung.00107.2014] [PMID: 25659897]
[53]
Huang, T.; Zhang, Y.; Wang, C.; Gao, J. Propofol reduces acute lung injury by up-regulating gamma-aminobutyric acid type a receptors. Exp. Mol. Pathol., 2019, 110, 104295.
[http://dx.doi.org/10.1016/j.yexmp.2019.104295] [PMID: 31419406]
[54]
Lang, L.; Xu, B.; Yuan, J.; Li, S.; Lian, S.; Chen, Y.; Guo, J.; Yang, H. Gaba-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the nlrp3 inflammasome and nf-kappab signaling pathways. Int. Immunopharmacol., 2020, 89(Pt B), 106908.
[http://dx.doi.org/10.1016/j.intimp.2020.106908]
[55]
Zheng, G.; Chen, Y.; Zhang, X.; Cai, T.; Liu, M.; Zhao, F.; Luo, W.; Chen, J. Acute cold exposure and rewarming enhanced spatial memory and activated the MAPK cascades in the rat brain. Brain Res., 2008, 1239, 171-180.
[http://dx.doi.org/10.1016/j.brainres.2008.08.057] [PMID: 18789908]
[56]
Brickley, S.G.; Mody, I. Extrasynaptic GABA(A) receptors: Their function in the CNS and implications for disease. Neuron, 2012, 73(1), 23-34.
[http://dx.doi.org/10.1016/j.neuron.2011.12.012] [PMID: 22243744]
[57]
Tyagi, N.; Lominadze, D.; Gillespie, W.; Moshal, K.S.; Sen, U.; Rosenberger, D.S.; Steed, M.; Tyagi, S.C. Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine. Clin. Chem. Lab. Med., 2007, 45(12), 1777-1784.
[http://dx.doi.org/10.1515/CCLM.2007.342] [PMID: 17990949]
[58]
Gallos, G.; Yim, P.; Chang, S.; Zhang, Y.; Xu, D.; Cook, J.M.; Gerthoffer, W.T.; Emala, C.W. Sr Targeting the restricted α-subunit repertoire of airway smooth muscle GABA A receptors augments airway smooth muscle relaxation. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(2), L248-L256.
[http://dx.doi.org/10.1152/ajplung.00131.2011] [PMID: 21949156]
[59]
Aurelian, L.; Balan, I. GABAAR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology, 2019, 236(10), 3023-3043.
[http://dx.doi.org/10.1007/s00213-019-05220-4] [PMID: 31030249]
[60]
Simões, P.S.R.; Zanelatto, A.O.; Assis, M.C.; Varella, P.P.V.; Yacubian, E.M.; Carrete, H.; Centeno, R.; Araujo, M.S.; Cavalheiro, E.A.; Tersariol, I.L.S.; Motta, G.; Naffah-Mazzacoratti, M.G. Plasma kallikrein‐kinin system contributes to peripheral inflammation in temporal lobe epilepsy. J. Neurochem., 2019, 150(3), 296-311.
[http://dx.doi.org/10.1111/jnc.14793] [PMID: 31206169]
[61]
Stadnicka, I.; Strzałka-Mrozik, B.; Solarz, K.; Stadnicki, A. Significance of kallikrein-kinin system in central nervous system diseases. Wiad. Lek., 2018, 71(8), 1615-1620.
[PMID: 30684349]
[62]
Kolte, D.; Shariat-Madar, Z. Plasma kallikrein inhibitors in cardiovascular disease: An innovative therapeutic approach. Cardiol. Rev., 2016, 24(3), 99-109.
[http://dx.doi.org/10.1097/CRD.0000000000000069] [PMID: 25853524]
[63]
Xie, Z.; Li, Z.; Shao, Y.; Liao, C. Discovery and development of plasma kallikrein inhibitors for multiple diseases. Eur. J. Med. Chem., 2020, 190, 112137.
[http://dx.doi.org/10.1016/j.ejmech.2020.112137] [PMID: 32066009]
[64]
Duckworth, E.J.; Murugesan, N.; Li, L.; Rushbrooke, L.J.; Lee, D.K.; De Donatis, G.M.; Maetzel, A.; Yea, C.M.; Hampton, S.L. Pharmacological suppression of the kallikrein kinin system with KVD900: An orally available plasma kallikrein inhibitor for the on-demand treatment of hereditary angioedema. Clin. Exp. Allergy, 2022, 52(9), 1059-1070.
[65]
García-Sáinz, J.A.; Avendaño-Vázquez, S.E. Activation of bradykinin B2 receptors increases calcium entry and intracellular mobilization in C9 liver cells. IUBMB Life, 1999, 47(6), 927-933.
[http://dx.doi.org/10.1080/15216549900202043] [PMID: 10410238]
[66]
Lau, J.; Rousseau, J. A systematic review of molecular imaging agents targeting bradykinin b1 and b2 receptors. Pharmaceuticals, 2020, 13(8), 199.
[http://dx.doi.org/10.3390/ph13080199]
[67]
Chiang, W.C.; Chien, C.T.; Lin, W.W.; Lin, S.L.; Chen, Y.M.; Lai, C.F.; Wu, K.D.; Chao, J.; Tsai, T.J. Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic. Biol. Med., 2006, 41(8), 1304-1314.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.011] [PMID: 17015177]
[68]
Agata, J.; Chao, L.; Chao, J. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension, 2002, 40(5), 653-659.
[http://dx.doi.org/10.1161/01.HYP.0000036035.41122.99] [PMID: 12411458]
[69]
Xia, C.F.; Yin, H.; Borlongan, C.V.; Chao, L.; Chao, J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension, 2004, 43(2), 452-459.
[http://dx.doi.org/10.1161/01.HYP.0000110905.29389.e5] [PMID: 14698996]
[70]
Wang, B.; Yan, X.; Chen, F.; Yang, A.; Lu, Y.; Wu, Y. Plasma kallikrein contributes to ambient particulate matter-induced lung injury. Biochem. Biophys. Res. Commun., 2019, 518(3), 409-415.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.060] [PMID: 31451224]
[71]
Nilsson, B.; Persson, B.; Eriksson, O.; Fromell, K.; Hultström, M.; Frithiof, R.; Lipcsey, M.; Huber-Lang, M.; Ekdahl, K.N. How the innate immune system of the blood contributes to systemic pathology in covid-19-induced ards and provides potential targets for treatment. Front. Immunol., 2022, 13, 840137.
[http://dx.doi.org/10.3389/fimmu.2022.840137]
[72]
Martens, C.P.; Van Mol, P.; Wauters, J.; Wauters, E.; Gangnus, T.; Noppen, B.; Callewaert, H.; Feyen, J.H.M.; Liesenborghs, L.; Heylen, E.; Jansen, S.; Pereira, L.C.V.; Kraisin, S.; Guler, I.; Engelen, M.M.; Ockerman, A.; Van Herck, A.; Vos, R.; Vandenbriele, C.; Meersseman, P.; Hermans, G.; Wilmer, A.; Martinod, K.; Burckhardt, B.B.; Vanhove, M.; Jacquemin, M.; Verhamme, P.; Neyts, J.; Vanassche, T. Dysregulation of the kallikrein-kinin system in bronchoalveolar lavage fluid of patients with severe COVID-19. EBioMedicine, 2022, 83, 104195.
[http://dx.doi.org/10.1016/j.ebiom.2022.104195] [PMID: 35939907]
[73]
Nagashima, S.; Dutra, A.A.; Arantes, M.P.; Zeni, R.C.; Klein, C.K. Covid-19 and lung mast cells: The kallikrein-kinin activation pathway. Int. J. Mol. Sci., 2022, 23(3), 1714.
[http://dx.doi.org/10.3390/ijms23031714]
[74]
Polidoro, R.B.; Hagan, R.S.; de Santis Santiago, R.; Schmidt, N.W. Overview: Systemic inflammatory response derived from lung injury caused by sars-cov-2 infection explains severe outcomes in COVID-19. Front. Immunol., 2020, 1626, 11.
[PMID: 32714336]
[75]
van de Veerdonk, F.L.; Netea, M.G.; van Deuren, M.; van der Meer, J.W.M.; de Mast, Q.; Brüggemann, R.J.; van der Hoeven, H. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife, 2020, 9, e57555.
[http://dx.doi.org/10.7554/eLife.57555] [PMID: 32338605]
[76]
Bekassy, Z.; Lopatko Fagerström, I.; Bader, M.; Karpman, D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat. Rev. Immunol., 2022, 22(7), 411-428.
[http://dx.doi.org/10.1038/s41577-021-00634-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy