Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Bioconjugation Techniques for Enhancing Stability and Targeting Efficiency of Protein and Peptide Therapeutics

Author(s): Tanuja Bisht, Anupriya Adhikari, Shivanand Patil and Shivang Dhoundiyal*

Volume 25, Issue 3, 2024

Published on: 25 October, 2023

Page: [226 - 243] Pages: 18

DOI: 10.2174/0113892037268777231013154850

Price: $65

Abstract

Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.

Graphical Abstract

[1]
Stevens, C.A.; Kaur, K.; Klok, H.A. Self-assembly of protein-polymer conjugates for drug delivery. Adv. Drug Deliv. Rev., 2021, 174, 447-460.
[http://dx.doi.org/10.1016/j.addr.2021.05.002] [PMID: 33984408]
[2]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[3]
Lieser, R.M.; Yur, D.; Sullivan, M.O.; Chen, W. Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjug. Chem., 2020, 31(10), 2272-2282.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00456] [PMID: 32931255]
[4]
Banerjee, A.; Onyuksel, H. Peptide delivery using phospholipid micelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(5), 562-574.
[http://dx.doi.org/10.1002/wnan.1185] [PMID: 22847908]
[5]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[6]
Fishburn, C.S. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci., 2008, 97(10), 4167-4183.
[http://dx.doi.org/10.1002/jps.21278] [PMID: 18200508]
[7]
Singh, S.; Narang, A.S.; Mahato, R.I. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res., 2011, 28(12), 2996-3015.
[http://dx.doi.org/10.1007/s11095-011-0608-1] [PMID: 22033880]
[8]
Dua, P.; Kim, S.; Lee, D. Nucleic acid aptamers targeting cell-surface proteins. Methods, 2011, 54(2), 215-225.
[http://dx.doi.org/10.1016/j.ymeth.2011.02.002] [PMID: 21300154]
[9]
Vance, N.; Zacharias, N.; Ultsch, M.; Li, G.; Fourie, A.; Liu, P.; LaFrance-Vanasse, J.; Ernst, J.A.; Sandoval, W.; Kozak, K.R.; Phillips, G.; Wang, W.; Sadowsky, J. Development, optimization, and structural characterization of an efficient peptide-based photoaffinity cross-linking reaction for generation of homogeneous conjugates from wild-type antibodies. Bioconjug. Chem., 2019, 30(1), 148-160.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00809] [PMID: 30566343]
[10]
Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibod-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol., 2021, 18(6), 327-344.
[http://dx.doi.org/10.1038/s41571-021-00470-8] [PMID: 33558752]
[11]
Lu, J.; Jiang, F.; Lu, A.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci., 2016, 17(4), 561.
[http://dx.doi.org/10.3390/ijms17040561] [PMID: 27089329]
[12]
Wang, L.; Zhao, W.; Tan, W. Bioconjugated silica nanoparticles: Development and applications. Nano Res., 2008, 1(2), 99-115.
[http://dx.doi.org/10.1007/s12274-008-8018-3]
[13]
Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551.
[http://dx.doi.org/10.1039/C5CS00048C] [PMID: 26000775]
[14]
Walper, S.A.; Turner, K.B.; Medintz, I.L. Enzymatic bioconjugation of nanoparticles: Developing specificity and control. Curr. Opin. Biotechnol., 2015, 34, 232-241.
[http://dx.doi.org/10.1016/j.copbio.2015.04.003] [PMID: 25955793]
[15]
de Graaf, A.J.; Kooijman, M.; Hennink, W.E.; Mastrobattista, E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug. Chem., 2009, 20(7), 1281-1295.
[http://dx.doi.org/10.1021/bc800294a] [PMID: 19191567]
[16]
Lu, Y.; Huang, F.; Wang, J.; Xia, J. Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions. Bioconjug. Chem., 2014, 25(5), 989-999.
[http://dx.doi.org/10.1021/bc500134w] [PMID: 24738859]
[17]
Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res., 2012, 45(7), 1048-1056.
[http://dx.doi.org/10.1021/ar2002304] [PMID: 22455499]
[18]
Sulaiman, S.; Mokhtar, M.N.; Naim, M.N.; Baharuddin, A.S.; Sulaiman, A. A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization Via covalent interactions. Appl. Biochem. Biotechnol., 2015, 175(4), 1817-1842.
[http://dx.doi.org/10.1007/s12010-014-1417-x] [PMID: 25427594]
[19]
Bellucci, J.J.; Bhattacharyya, J.; Chilkoti, A. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins. Angew. Chem. Int. Ed., 2015, 54(2), 441-445.
[http://dx.doi.org/10.1002/anie.201408126] [PMID: 25363491]
[20]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852.
[http://dx.doi.org/10.1016/j.tet.2005.08.031]
[21]
Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry. Chem. Mater., 2014, 26(1), 724-744.
[http://dx.doi.org/10.1021/cm402180t]
[22]
Sletten, E.M.; Bertozzi, C.R. From mechanism to mouse: A tale of two bioorthogonal reactions. Acc. Chem. Res., 2011, 44(9), 666-676.
[http://dx.doi.org/10.1021/ar200148z] [PMID: 21838330]
[23]
Li, F.; Mahato, R.I. Bioconjugate therapeutics: Current progress and future perspective. Mol. Pharm., 2017, 14(5), 1321-1324.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00263] [PMID: 28457140]
[24]
Cooper, B.M.; Iegre, J.; O’ Donovan, D.H.; Ölwegård Halvarsson, M.; Spring, D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem. Soc. Rev., 2021, 50(3), 1480-1494.
[http://dx.doi.org/10.1039/D0CS00556H] [PMID: 33346298]
[25]
Rashidian, M.; Dozier, J.K.; Distefano, M.D. Enzymatic labeling of proteins: Techniques and approaches. Bioconjug. Chem., 2013, 24(8), 1277-1294.
[http://dx.doi.org/10.1021/bc400102w] [PMID: 23837885]
[26]
Zhang, C.; Vinogradova, E.V.; Spokoyny, A.M.; Buchwald, S.L.; Pentelute, B.L. Arylation chemistry for bioconjugation. Angew. Chem. Int. Ed., 2019, 58(15), 4810-4839.
[http://dx.doi.org/10.1002/anie.201806009] [PMID: 30399206]
[27]
Malešević M.; Migge, A.; Hertel, T.C.; Pietzsch, M. A fluorescence-based array screen for transglutaminase substrates. ChemBioChem, 2015, 16(8), 1169-1174.
[http://dx.doi.org/10.1002/cbic.201402709] [PMID: 25940638]
[28]
Proft, T. Sortase-mediated protein ligation: An emerging biotechnology tool for protein modification and immobilisation. Biotechnol. Lett., 2010, 32(1), 1-10.
[http://dx.doi.org/10.1007/s10529-009-0116-0] [PMID: 19728105]
[29]
Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J.S.; Carroll, J.S.; Spring, D.R. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev., 2021, 50(2), 1305-1353.
[http://dx.doi.org/10.1039/D0CS00310G] [PMID: 33290462]
[30]
Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem., 2011, 22(5), 825-858.
[http://dx.doi.org/10.1021/bc200065z] [PMID: 21585205]
[31]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer-drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[32]
Chen, F.; Nielsen, S.; Zenobi, R. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents. J. Mass Spectrom., 2013, 48(7), 807-812.
[http://dx.doi.org/10.1002/jms.3224] [PMID: 23832936]
[33]
Pan, S.; Zhang, H.; Wang, C.; Yao, S.C.L.; Yao, S.Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep., 2016, 33(5), 612-620.
[http://dx.doi.org/10.1039/C5NP00101C] [PMID: 26580476]
[34]
Mayer, G.; Heckel, A. Biologically active molecules with a “light switch”. Angew. Chem. Int. Ed., 2006, 45(30), 4900-4921.
[http://dx.doi.org/10.1002/anie.200600387] [PMID: 16826610]
[35]
Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 2009, 30(20), 3371-3377.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.030] [PMID: 19345991]
[36]
Chen, C.; Ng, D.Y.W.; Weil, T. Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Prog. Polym. Sci., 2020, 105, 101241.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101241]
[37]
Girotti, A.; Fernández-Colino, A.; López, I.M.; Rodríguez-Cabello, J.C.; Arias, F.J. Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnol. J., 2011, 6(10), 1174-1186.
[http://dx.doi.org/10.1002/biot.201100116] [PMID: 21932251]
[38]
Ozer, I.; Chilkoti, A. Site-specific and stoichiometric stealth polymer conjugates of therapeutic peptides and proteins. Bioconjug. Chem., 2017, 28(3), 713-723.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00652] [PMID: 27998056]
[39]
Agarwal, P.; Bertozzi, C.R. Site-specific antibody-drug conjugates: The nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem., 2015, 26(2), 176-192.
[http://dx.doi.org/10.1021/bc5004982] [PMID: 25494884]
[40]
Rabuka, D. Chemoenzymatic methods for site-specific protein modification. Curr. Opin. Chem. Biol., 2010, 14(6), 790-796.
[http://dx.doi.org/10.1016/j.cbpa.2010.09.020] [PMID: 21030291]
[41]
Shadish, J.A.; DeForest, C.A. Site-selective protein modification: From functionalized proteins to functional biomaterials. Matter, 2020, 2(1), 50-77.
[http://dx.doi.org/10.1016/j.matt.2019.11.011]
[42]
Fominaya, J.; Bravo, J.; Rebollo, A. Strategies to stabilize cell penetrating peptides for in vivo applications. Ther. Deliv., 2015, 6(10), 1171-1194.
[http://dx.doi.org/10.4155/tde.15.51] [PMID: 26448473]
[43]
Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926.
[http://dx.doi.org/10.1021/cr400031z] [PMID: 24446748]
[44]
Vyas, SP; Singh, A; Sihorkar, V Ligand-receptor-mediated drug delivery: An emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug. Carrier. Syst., 2001, 18(1), 1-76.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v18.i1.10]
[45]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[46]
Zhang, T.; Huang, S.; Lin, H.; An, N.; Tong, R.; Chen, Y.; Wang, Y.; Qu, F. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J. Chem., 2017, 41(6), 2468-2478.
[http://dx.doi.org/10.1039/C6NJ02357F]
[47]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[48]
Singh, R.; Singh, S.; Lillard, J.W. Jr Past, present, and future technologies for oral delivery of therapeutic proteins. J. Pharm. Sci., 2008, 97(7), 2497-2523.
[http://dx.doi.org/10.1002/jps.21183] [PMID: 17918721]
[49]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[50]
Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[51]
Shakya, A.K.; Sami, H.; Srivastava, A.; Kumar, A. Stability of responsive polymer-protein bioconjugates. Prog. Polym. Sci., 2010, 35(4), 459-486.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.01.003]
[52]
Pawar, V.K.; Meher, J.G.; Singh, Y.; Chaurasia, M.; Surendar Reddy, B.; Chourasia, M.K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J. Control. Release, 2014, 196, 168-183.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.031] [PMID: 25305562]
[53]
Gunnoo, S.B.; Madder, A. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org. Biomol. Chem., 2016, 14(34), 8002-8013.
[http://dx.doi.org/10.1039/C6OB00808A] [PMID: 27461374]
[54]
Wang, Y.; Cheetham, A.G.; Angacian, G.; Su, H.; Xie, L.; Cui, H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 112-126.
[http://dx.doi.org/10.1016/j.addr.2016.06.015] [PMID: 27370248]
[55]
Parkins, D.A.; Lashmar, U.T. The formulation of biopharmaceutical products. Pharm. Sci. Technol. Today, 2000, 3(4), 129-137.
[http://dx.doi.org/10.1016/S1461-5347(00)00248-0] [PMID: 10754542]
[56]
Gebauer, M.; Skerra, A. Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg. Med. Chem., 2018, 26(10), 2882-2887.
[http://dx.doi.org/10.1016/j.bmc.2017.09.016] [PMID: 29102080]
[57]
Elliott, S.; Pham, E.; Macdougall, I.C. Erythropoietins: A common mechanism of action. Exp. Hematol., 2008, 36(12), 1573-1584.
[http://dx.doi.org/10.1016/j.exphem.2008.08.003] [PMID: 18922615]
[58]
Zhao, H.L.; Yao, X.Q.; Xue, C.; Wang, Y.; Xiong, X.H.; Liu, Z.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expr. Purif., 2008, 61(1), 73-77.
[http://dx.doi.org/10.1016/j.pep.2008.04.013] [PMID: 18541441]
[59]
Kishimoto, S.; Nakashimada, Y.; Yokota, R.; Hatanaka, T.; Adachi, M.; Ito, Y. Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format. Bioconjug. Chem., 2019, 30(3), 698-702.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00865] [PMID: 30606013]
[60]
Huang, Y.Y.; Wang, C.H. Pulmonary delivery of insulin by liposomal carriers. J. Control. Release, 2006, 113(1), 9-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.014] [PMID: 16730838]
[61]
Huang, L.C.; Wang, H.C.; Chen, L.H.; Ho, C.Y.; Hsieh, P.H.; Huang, M.Y.; Wu, H.C.; Wang, T.W. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics, 2019, 9(23), 7072-7087.
[http://dx.doi.org/10.7150/thno.35803] [PMID: 31660087]
[62]
Coad, B.R.; Jasieniak, M.; Griesser, S.S.; Griesser, H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Tech., 2013, 233, 169-177.
[http://dx.doi.org/10.1016/j.surfcoat.2013.05.019]
[63]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476.
[http://dx.doi.org/10.1016/S0169-409X(02)00022-4] [PMID: 12052709]
[64]
Béduneau, A.; Saulnier, P.; Benoit, J.P. Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28(33), 4947-4967.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.011] [PMID: 17716726]
[65]
Lee, J.C.; Donahue, N.D.; Mao, A.S.; Karim, A.; Komarneni, M.; Thomas, E.E.; Francek, E.R.; Yang, W.; Wilhelm, S. Exploring maleimide-based nanoparticle surface engineering to control cellular interactions. ACS Appl. Nano Mater., 2020, 3(3), 2421-2429.
[http://dx.doi.org/10.1021/acsanm.9b02541]
[66]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693]
[67]
Scinto, S.L.; Bilodeau, D.A.; Hincapie, R.; Lee, W.; Nguyen, S.S.; Xu, M. am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; Pezacki, J.P.; Prescher, J.A.; Robillard, M.S.; Fox, J.M. Bioorthogonal chemistry. Nat. Rev. Methods Primers, 2021, 1(1), 30.
[http://dx.doi.org/10.1038/s43586-021-00028-z] [PMID: 34585143]
[68]
Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51.
[http://dx.doi.org/10.1517/14728222.2011.538682] [PMID: 21142802]
[69]
Patel, K.G.; Swartz, J.R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 2011, 22(3), 376-387.
[http://dx.doi.org/10.1021/bc100367u] [PMID: 21355575]
[70]
Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG — A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.046] [PMID: 24997275]
[71]
Tamura, T.; Hamachi, I. Chemistry for covalent modification of endogenous/native proteins: From test tubes to complex biological systems. J. Am. Chem. Soc., 2019, 141(7), 2782-2799.
[http://dx.doi.org/10.1021/jacs.8b11747] [PMID: 30592612]
[72]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[73]
Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: An emerging platform for enhanced brain drug delivery. Brain Res. Bull., 2018, 142, 384-393.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.003] [PMID: 30086350]
[74]
Chae, S.Y.; Choi, Y.G.; Son, S.; Jung, S.Y.; Lee, D.S.; Lee, K.C. The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics. J. Control. Release, 2010, 144(1), 10-16.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.024] [PMID: 20093159]
[75]
Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina, 2002, 22(2), 143-152.
[http://dx.doi.org/10.1097/00006982-200204000-00002] [PMID: 11927845]
[76]
Ishihara, H. Current status and prospects of polyethyleneglycol-modified medicines. Biol. Pharm. Bull., 2013, 36(6), 883-888.
[http://dx.doi.org/10.1248/bpb.b13-00087] [PMID: 23727910]
[77]
Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine, 2013, 9(4), 474-491.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[78]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[79]
Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev., 2002, 54(4), 531-545.
[http://dx.doi.org/10.1016/S0169-409X(02)00026-1] [PMID: 12052713]
[80]
Zorzi, A.; Linciano, S.; Angelini, A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm, 2019, 10(7), 1068-1081.
[http://dx.doi.org/10.1039/C9MD00018F] [PMID: 31391879]
[81]
Schellenberger, V.; Wang, C.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; Cleland, J.L.; Silverman, J.; Stemmer, W.P.C. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol., 2009, 27(12), 1186-1190.
[http://dx.doi.org/10.1038/nbt.1588] [PMID: 19915550]
[82]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]
[83]
Wang, Y.; Wu, C. Site-specific conjugation of polymers to proteins. Biomacromolecules, 2018, 19(6), 1804-1825.
[http://dx.doi.org/10.1021/acs.biomac.8b00248] [PMID: 29722971]
[84]
AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750.
[http://dx.doi.org/10.1016/j.biopha.2019.108750] [PMID: 30849643]
[85]
Luk, B.T.; Zhang, L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release, 2015, 220(Pt B), 600-607.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.019] [PMID: 26210440]
[86]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[87]
Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release, 2005, 109(1-3), 256-274.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.023] [PMID: 16266768]
[88]
Zegota, M.M.; Müller, M.A.; Lantzberg, B.; Kizilsavas, G.; Coelho, J.A.S.; Moscariello, P.; Martínez-Negro, M.; Morsbach, S.; Gois, P.M.P.; Wagner, M.; Ng, D.Y.W.; Kuan, S.L.; Weil, T. Dual stimuli-responsive dynamic covalent peptide tags: Toward sequence-controlled release in tumor-like microenvironments. J. Am. Chem. Soc., 2021, 143(41), 17047-17058.
[http://dx.doi.org/10.1021/jacs.1c06559] [PMID: 34632780]
[89]
Shi, Z.; Li, Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett., 2020, 31(6), 1345-1356.
[http://dx.doi.org/10.1016/j.cclet.2020.03.001]
[90]
Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater., 2019, 10(3), 34.
[http://dx.doi.org/10.3390/jfb10030034] [PMID: 31370252]
[91]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[92]
Andresen, T.L.; Thompson, D.H.; Kaasgaard, T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy. Mol. Membr. Biol., 2010, 27(7), 353-363.
[http://dx.doi.org/10.3109/09687688.2010.515950] [PMID: 20939771]
[93]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[94]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[95]
Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem., 2011, 83(12), 4453-4488.
[http://dx.doi.org/10.1021/ac200853a] [PMID: 21545140]
[96]
Hermanson, G.T. Bioconjugate techniques; Academic press, 2013.
[97]
Liu, D.Q.; Hop, C.E.C.A. Strategies for characterization of drug metabolites using liquid chromatography–tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal., 2005, 37(1), 1-18.
[http://dx.doi.org/10.1016/j.jpba.2004.09.003] [PMID: 15664738]
[98]
Plesner, B.; Fee, C.J.; Westh, P.; Nielsen, A.D. Effects of PEG size on structure, function and stability of PEGylated BSA. Eur. J. Pharm. Biopharm., 2011, 79(2), 399-405.
[http://dx.doi.org/10.1016/j.ejpb.2011.05.003] [PMID: 21620970]
[99]
Meager, A. Biological assays for interferons. J. Immunol. Methods, 2002, 261(1-2), 21-36.
[http://dx.doi.org/10.1016/S0022-1759(01)00570-1] [PMID: 11861063]
[100]
Beck, A.; D’Atri, V.; Ehkirch, A.; Fekete, S.; Hernandez-Alba, O.; Gahoual, R.; Leize-Wagner, E.; François, Y.; Guillarme, D.; Cianférani, S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: Present and future. Expert Rev. Proteomics, 2019, 16(4), 337-362.
[http://dx.doi.org/10.1080/14789450.2019.1578215] [PMID: 30706723]
[101]
Lin, C.A.J.; Yang, T.Y.; Lee, C.H.; Huang, S.H.; Sperling, R.A.; Zanella, M.; Li, J.K.; Shen, J.L.; Wang, H.H.; Yeh, H.I.; Parak, W.J.; Chang, W.H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009, 3(2), 395-401.
[http://dx.doi.org/10.1021/nn800632j] [PMID: 19236077]
[102]
López-Lorente, A.I.; Simonet, B.M.; Valcárcel, M. Electrophoretic methods for the analysis of nanoparticles. Trends Analyt. Chem., 2011, 30(1), 58-71.
[http://dx.doi.org/10.1016/j.trac.2010.10.006]
[103]
Azizi, A.; Ranjbar, B.; Moghadam, T.T.; Bagheri, Z. Plasmonic circular dichroism study of DNA-gold nanoparticles bioconjugates. Plasmonics, 2014, 9(2), 273-281.
[http://dx.doi.org/10.1007/s11468-013-9620-0]
[104]
Zaghmi, A.; Greschner, A.A.; Mendez-Villuendas, E.; Liu, J.Y.; de Haan, H.W.; Gauthier, M.A. Determination of the degree of PEGylation of protein bioconjugates using data from proton nuclear magnetic resonance spectroscopy. Data Brief, 2019, 25, 104037.
[http://dx.doi.org/10.1016/j.dib.2019.104037] [PMID: 31223640]
[105]
Schwarz, G.; Mueller, L.; Beck, S.; Linscheid, M.W. DOTA based metal labels for protein quantification: A review. J. Anal. At. Spectrom., 2014, 29(2), 221-233.
[http://dx.doi.org/10.1039/C3JA50277E]
[106]
Mero, A.; Spolaore, B.; Veronese, F.M.; Fontana, A. Transglutaminase-mediated PEGylation of proteins: Direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug. Chem., 2009, 20(2), 384-389.
[http://dx.doi.org/10.1021/bc800427n] [PMID: 19186937]
[107]
Beck, J.L.; Colgrave, M.L.; Ralph, S.F.; Sheil, M.M. Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev., 2001, 20(2), 61-87.
[http://dx.doi.org/10.1002/mas.1003] [PMID: 11455562]
[108]
Gabrielli, V.; Baretta, R.; Pilot, R.; Ferrarini, A.; Frasconi, M. Insights into the gelation mechanism of metal-coordinated hydrogels by paramagnetic NMR spectroscopy and molecular dynamics. Macromolecules, 2022, 55(2), 450-461.
[http://dx.doi.org/10.1021/acs.macromol.1c01756]
[109]
Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.104] [PMID: 35217087]
[110]
Holm, L.S.; Mcumber, A.; Rasmussen, J.E.; Obiols-Rabasa, M.; Thulstrup, P.W.; Kasimova, M.R.; Randolph, T.W.; van de Weert, M. The effect of protein PEGylation on physical stability in liquid formulation. J. Pharm. Sci., 2014, 103(10), 3043-3054.
[http://dx.doi.org/10.1002/jps.24094] [PMID: 25139193]
[111]
Moreira-Alvarez, B.; Cid-Barrio, L.; Ferreira, H.S.; Costa-Fernández, J.M.; Encinar, J.R. Integrated analytical platforms for the comprehensive characterization of bioconjugated inorganic nanomaterials aiming at biological applications. J. Anal. At. Spectrom., 2020, 35(8), 1518-1529.
[http://dx.doi.org/10.1039/D0JA00147C]
[112]
Kaliyaperumal, A.; Jing, S. Immunogenicity assessment of therapeutic proteins and peptides. Curr. Pharm. Biotechnol., 2009, 10(4), 352-358.
[http://dx.doi.org/10.2174/138920109788488860] [PMID: 19519410]
[113]
Mu, R.; Yuan, J.; Huang, Y.; Meissen, J.K.; Mou, S.; Liang, M.; Rosenbaum, A.I. Bioanalytical methods and strategic perspectives addressing the rising complexity of novel bioconjugates and delivery routes for biotherapeutics. BioDrugs, 2022, 36(2), 181-196.
[http://dx.doi.org/10.1007/s40259-022-00518-w] [PMID: 35362869]
[114]
Yao, V.J.; D’Angelo, S.; Butler, K.S.; Theron, C.; Smith, T.L.; Marchiò, S.; Gelovani, J.G.; Sidman, R.L.; Dobroff, A.S.; Brinker, C.J.; Bradbury, A.R.M.; Arap, W.; Pasqualini, R. Ligand-targeted theranostic nanomedicines against cancer. J. Control. Release, 2016, 240, 267-286.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.002] [PMID: 26772878]
[115]
Lazar, A.C.; Wang, L.; Blättler, W.A.; Amphlett, G.; Lambert, J.M.; Zhang, W. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(13), 1806-1814.
[http://dx.doi.org/10.1002/rcm.1987] [PMID: 15945030]
[116]
Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical considerations, challenges, and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug. Chem., 2018, 29(3), 686-701.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00633] [PMID: 29287474]
[117]
Jadhav, P.D.; Shim, Y.Y.; Reaney, M.J.T. Synthesis and characterization of site-selective orbitide-BSA conjugate to produce antibodies. Bioconjug. Chem., 2016, 27(10), 2346-2358.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00357] [PMID: 27626291]
[118]
Pagar, R.R.; Musale, S.R.; Pawar, G.; Kulkarni, D.; Giram, P.S. Comprehensive review on the degradation chemistry and toxicity studies of functional materials. ACS Biomater. Sci. Eng., 2022, 8(6), 2161-2195.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01304] [PMID: 35522605]
[119]
Ghosh, S.; Ghosh, T.; Bhowmik, S.; Patidar, M.K.; Das, A.K. Nucleopeptide-coupled injectable bioconjugated guanosine-quadruplex hydrogel with inherent antibacterial activity. ACS Appl. Bio Mater., 2023, 6(2), 640-651.
[http://dx.doi.org/10.1021/acsabm.2c00912] [PMID: 36706228]
[120]
Kuan, S.L.; Wang, T.; Weil, T. Site-selective disulfide modification of proteins: Expanding diversity beyond the proteome. Chemistry, 2016, 22(48), 17112-17129.
[http://dx.doi.org/10.1002/chem.201602298] [PMID: 27778400]
[121]
Wu, G.; Barth, R.F.; Yang, W.; Kawabata, S.; Zhang, L.; Green-Church, K. Targeted delivery of methotrexate to epidermal growth factor receptor–positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol. Cancer Ther., 2006, 5(1), 52-59.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0325] [PMID: 16432162]
[122]
Wolfe, B.J.; Ghomashchi, F.; Kim, T.; Abam, C.A.; Sadilek, M.; Jack, R.; Thompson, J.N.; Scott, C.R.; Gelb, M.H.; Turecek, F. New substrates and enzyme assays for the detection of mucopolysaccharidosis III (Sanfilippo Syndrome) types A, B, C, and D by tandem mass spectrometry. Bioconjug. Chem., 2012, 23(3), 557-564.
[http://dx.doi.org/10.1021/bc200609x] [PMID: 22372747]
[123]
Liu, X.; Zheng, W.; Jiang, X. Cell-based assays on microfluidics for drug screening. ACS Sens., 2019, 4(6), 1465-1475.
[http://dx.doi.org/10.1021/acssensors.9b00479] [PMID: 31074263]
[124]
Das, M.; Duan, W.; Sahoo, S.K. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine, 2015, 11(2), 379-389.
[http://dx.doi.org/10.1016/j.nano.2014.09.002] [PMID: 25240596]
[125]
Yang, S.B.; Banik, N.; Han, B.; Lee, D.N.; Park, J. Peptide-based bioconjugates and therapeutics for targeted anticancer therapy. Pharmaceutics, 2022, 14(7), 1378.
[http://dx.doi.org/10.3390/pharmaceutics14071378] [PMID: 35890274]
[126]
Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: Efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236.
[http://dx.doi.org/10.1002/smll.201301417] [PMID: 23873835]
[127]
Tao, W.; Zeng, X.; Wu, J.; Zhu, X.; Yu, X.; Zhang, X.; Zhang, J.; Liu, G.; Mei, L. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 2016, 6(4), 470-484.
[http://dx.doi.org/10.7150/thno.14184] [PMID: 26941841]
[128]
Liu, H.; Bolleddula, J.; Nichols, A.; Tang, L.; Zhao, Z.; Prakash, C. Metabolism of bioconjugate therapeutics: Why, when, and how? Drug Metab. Rev., 2020, 52(1), 66-124.
[http://dx.doi.org/10.1080/03602532.2020.1716784] [PMID: 32045530]
[129]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[130]
Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed., 2007, 2(4), 715-733.
[PMID: 18203438]
[131]
van den Dobbelsteen, G.P.J.M.; Faé, K.C.; Serroyen, J.; van den Nieuwenhof, I.M.; Braun, M.; Haeuptle, M.A.; Sirena, D.; Schneider, J.; Alaimo, C.; Lipowsky, G.; Gambillara-Fonck, V.; Wacker, M.; Poolman, J.T. Immunogenicity and safety of a tetravalent E. Coli O-antigen bioconjugate vaccine in animal models. Vaccine, 2016, 34(35), 4152-4160.
[http://dx.doi.org/10.1016/j.vaccine.2016.06.067] [PMID: 27395567]
[132]
Sau, S.; Alsaab, H.O.; Kashaw, S.K.; Tatiparti, K.; Iyer, A.K. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today, 2017, 22(10), 1547-1556.
[http://dx.doi.org/10.1016/j.drudis.2017.05.011] [PMID: 28627385]
[133]
Ibeanu, N.; Egbu, R.; Onyekuru, L.; Javaheri, H.; Khaw, P.T.; Williams, G.R.; Brocchini, S.; Awwad, S. Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics, 2020, 12(10), 999.
[http://dx.doi.org/10.3390/pharmaceutics12100999] [PMID: 33096803]
[134]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[135]
Nairn, N.W.; Shanebeck, K.D.; Wang, A.; Graddis, T.J.; VanBrunt, M.P.; Thornton, K.C.; Grabstein, K. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation. Bioconjug. Chem., 2012, 23(10), 2087-2097.
[http://dx.doi.org/10.1021/bc300295x] [PMID: 22988919]
[136]
Kobayashi, H.; Turkbey, B.; Watanabe, R.; Choyke, P.L. Cancer drug delivery: Considerations in the rational design of nanosized bioconjugates. Bioconjug. Chem., 2014, 25(12), 2093-2100.
[http://dx.doi.org/10.1021/bc500481x] [PMID: 25385142]
[137]
Mahon, E.; Salvati, A.; Baldelli Bombelli, F.; Lynch, I.; Dawson, K.A. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release, 2012, 161(2), 164-174.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.009] [PMID: 22516097]
[138]
Szijj, P.A.; Bahou, C.; Chudasama, V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. Drug Discov. Today. Technol., 2018, 30, 27-34.
[http://dx.doi.org/10.1016/j.ddtec.2018.07.002] [PMID: 30553517]
[139]
Zhang, M.M.; Bahal, R.; Rasmussen, T.P.; Manautou, J.E.; Zhong, X. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem. Pharmacol., 2021, 189, 114432.
[http://dx.doi.org/10.1016/j.bcp.2021.114432] [PMID: 33513339]
[140]
Geho, D.H.; Petricoin, E.F.; Liotta, L.A.; Araujo, R.P. Modeling of protein signaling networks in clinical proteomics.Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2005, 70, pp. 517-524.
[http://dx.doi.org/10.1101/sqb.2005.70.022]
[141]
Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022] [PMID: 31082570]
[142]
Jurgielewicz, B.; Stice, S.; Yao, Y. Therapeutic potential of nucleic acids when combined with extracellular vesicles. Aging Dis., 2021, 12(6), 1476-1493.
[http://dx.doi.org/10.14336/AD.2021.0708] [PMID: 34527423]
[143]
Lee, S.; Xie, J.; Chen, X. Peptide-based probes for targeted molecular imaging. Biochemistry, 2010, 49(7), 1364-1376.
[http://dx.doi.org/10.1021/bi901135x] [PMID: 20102226]
[144]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[145]
Benizri, S.; Gissot, A.; Martin, A.; Vialet, B.; Grinstaff, M.W.; Barthélémy, P. Bioconjugated oligonucleotides: Recent developments and therapeutic applications. Bioconjug. Chem., 2019, 30(2), 366-383.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00761] [PMID: 30608140]
[146]
Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[147]
Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomed., 2010, 5, 37-49.
[PMID: 20161986]
[148]
Gombotz, W.R.; Pettit, D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem., 1995, 6(4), 332-351.
[http://dx.doi.org/10.1021/bc00034a002] [PMID: 7578352]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy