Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Unraveling the Concealed Transcriptomic Landscape of PTEN in Human Malignancies

Author(s): Michaela A. Boti, Panagiotis G. Adamopoulos, Dido Vassilacopoulou and Andreas Scorilas*

Volume 24, Issue 4, 2023

Published on: 25 October, 2023

Page: [250 - 262] Pages: 13

DOI: 10.2174/0113892029265367231013113304

Price: $65

Abstract

Background: Phosphatase and tensin homolog, widely known as PTEN, is a major negative regulator of the PI3K/AKT/mTOR signaling pathway, involved in the regulation of a variety of important cellular processes, including cell proliferation, growth, survival, and metabolism. Since most of the molecules involved in this biological pathway have been described as key regulators in cancer, the study of the corresponding genes at several levels is crucial.

Objective: Although previous studies have elucidated the physiological role of PTEN under normal conditions and its involvement in carcinogenesis and cancer progression, the transcriptional profile of PTEN has been poorly investigated.

Methods: In this study, instead of conducting the “gold-standard” direct RNA sequencing that fails to detect less abundant novel mRNAs due to the decreased sequencing depth, we designed and implemented a multiplexed PTEN-targeted sequencing approach that combined both short- and longread sequencing.

Results: Our study has highlighted a broad spectrum of previously unknown PTEN mRNA transcripts and assessed their expression patterns in a wide range of human cancer and non-cancer cell lines, shedding light on the involvement of PTEN in cell cycle dysregulation and thus tumor development.

Conclusion: The identification of the described novel PTEN splice variants could have significant implications for understanding PTEN regulation and function, and provide new insights into PTEN biology, opening new avenues for monitoring PTEN-related diseases, including cancer.

Graphical Abstract

[1]
Bigner, S.H.; Mark, J.; Mahaley, M.S.; Bigner, D.D. Patterns of the early, gross chromosomal changes in malignant human gliomas. Hereditas, 1984, 101(1), 103-113.
[http://dx.doi.org/10.1111/j.1601-5223.1984.tb00455.x] [PMID: 6490389]
[2]
Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S.H.; Giovanella, B.C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M.H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997, 275(5308), 1943-1947.
[http://dx.doi.org/10.1126/science.275.5308.1943] [PMID: 9072974]
[3]
Steck, P.A.; Pershouse, M.A.; Jasser, S.A.; Yung, W.K.A.; Lin, H.; Ligon, A.H.; Langford, L.A.; Baumgard, M.L.; Hattier, T.; Davis, T.; Frye, C.; Hu, R.; Swedlund, B.; Teng, D.H.R.; Tavtigian, S.V. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet., 1997, 15(4), 356-362.
[http://dx.doi.org/10.1038/ng0497-356] [PMID: 9090379]
[4]
Podsypanina, K.; Ellenson, L.H.; Nemes, A.; Gu, J.; Tamura, M.; Yamada, K.M.; Cordon-Cardo, C.; Catoretti, G.; Fisher, P.E.; Parsons, R. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1563-1568.
[http://dx.doi.org/10.1073/pnas.96.4.1563] [PMID: 9990064]
[5]
Suzuki, A.; de la Pompa, J.L.; Stambolic, V.; Elia, A.J.; Sasaki, T.; Barrantes, I.B.; Ho, A.; Wakeham, A. ltie, A.; Khoo, W.; Fukumoto, M.; Mak, T.W. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol., 1998, 8(21), 1169-1178.
[http://dx.doi.org/10.1016/S0960-9822(07)00488-5] [PMID: 9799734]
[6]
Cristofano, A.D.; Pesce, B.; Cordon-Cardo, C.; Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nat. Genet., 1998, 19(4), 348-355.
[http://dx.doi.org/10.1038/1235] [PMID: 9697695]
[7]
Alimonti, A.; Carracedo, A.; Clohessy, J.G.; Trotman, L.C.; Nardella, C.; Egia, A.; Salmena, L.; Sampieri, K.; Haveman, W.J.; Brogi, E.; Richardson, A.L.; Zhang, J.; Pandolfi, P.P. Subtle variations in Pten dose determine cancer susceptibility. Nat. Genet., 2010, 42(5), 454-458.
[http://dx.doi.org/10.1038/ng.556] [PMID: 20400965]
[8]
Di Cristofano, A.; De Acetis, M.; Koff, A.; Cordon-Cardo, C.; Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat. Genet., 2001, 27(2), 222-224.
[http://dx.doi.org/10.1038/84879] [PMID: 11175795]
[9]
Palomero, T.; Sulis, M.L.; Cortina, M.; Real, P.J.; Barnes, K.; Ciofani, M.; Caparros, E.; Buteau, J.; Brown, K.; Perkins, S.L.; Bhagat, G.; Agarwal, A.M.; Basso, G.; Castillo, M.; Nagase, S.; Cordon-Cardo, C.; Parsons, R.; Zúñiga-Pflücker, J.C.; Dominguez, M.; Ferrando, A.A. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med., 2007, 13(10), 1203-1210.
[http://dx.doi.org/10.1038/nm1636] [PMID: 17873882]
[10]
Papa, A.; Wan, L.; Bonora, M.; Salmena, L.; Song, M.S.; Hobbs, R.M.; Lunardi, A.; Webster, K.; Ng, C.; Newton, R.H.; Knoblauch, N.; Guarnerio, J.; Ito, K.; Turka, L.A.; Beck, A.H.; Pinton, P.; Bronson, R.T.; Wei, W.; Pandolfi, P.P. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell, 2014, 157(3), 595-610.
[http://dx.doi.org/10.1016/j.cell.2014.03.027] [PMID: 24766807]
[11]
Worby, C.A.; Dixon, J.E. PTEN. Annu. Rev. Biochem., 2014, 83(1), 641-669.
[http://dx.doi.org/10.1146/annurev-biochem-082411-113907] [PMID: 24905788]
[12]
Lee, Y.R.; Chen, M.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol., 2018, 19(9), 547-562.
[http://dx.doi.org/10.1038/s41580-018-0015-0] [PMID: 29858604]
[13]
Heinrich, F.; Chakravarthy, S.; Nanda, H.; Papa, A.; Pandolfi, P.P.; Ross, A.H.; Harishchandra, R.K.; Gericke, A.; Lösche, M. The PTEN Tumor Suppressor Forms Homodimers in Solution. Structure, 2015, 23(10), 1952-1957.
[http://dx.doi.org/10.1016/j.str.2015.07.012] [PMID: 26299948]
[14]
Liang, H.; He, S.; Yang, J.; Jia, X.; Wang, P.; Chen, X.; Zhang, Z.; Zou, X.; McNutt, M.A.; Shen, W.H.; Yin, Y. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab., 2014, 19(5), 836-848.
[http://dx.doi.org/10.1016/j.cmet.2014.03.023] [PMID: 24768297]
[15]
Hopkins, B.D.; Fine, B.; Steinbach, N.; Dendy, M.; Rapp, Z.; Shaw, J.; Pappas, K.; Yu, J.S.; Hodakoski, C.; Mense, S.; Klein, J.; Pegno, S.; Sulis, M.L.; Goldstein, H.; Amendolara, B.; Lei, L.; Maurer, M.; Bruce, J.; Canoll, P.; Hibshoosh, H.; Parsons, R. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science, 2013, 341(6144), 399-402.
[http://dx.doi.org/10.1126/science.1234907] [PMID: 23744781]
[16]
Liang, H.; Chen, X.; Yin, Q.; Ruan, D.; Zhao, X.; Zhang, C.; McNutt, M.A.; Yin, Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat. Commun., 2017, 8(1), 14771.
[http://dx.doi.org/10.1038/ncomms14771] [PMID: 28332494]
[17]
Liang, H.; Yin, Y. Multiple roles of PTEN isoforms PTENα and PTENβ in cellular activities and tumor development. Sci. China Life Sci., 2019, 62(12), 1722-1724.
[http://dx.doi.org/10.1007/s11427-019-1595-2] [PMID: 31823204]
[18]
Zhang, C.; Ma, H.M.; Dong, S.S.; Zhang, N.; He, P.; Ge, M.K.; Xia, L.; Yu, J.X.; Xia, Q.; Chen, G.Q.; Shen, S.M. Furin extracellularly cleaves secreted PTENα/β to generate C-terminal fragment with a tumor-suppressive role. Cell Death Dis., 2022, 13(6), 532.
[http://dx.doi.org/10.1038/s41419-022-04988-2] [PMID: 35668069]
[19]
Taylor, J.; Abdel-Wahab, O. PTEN isoforms with dual and opposing function. Nat. Cell Biol., 2019, 21(11), 1306-1308.
[http://dx.doi.org/10.1038/s41556-019-0405-3] [PMID: 31685989]
[20]
Eldeeb, M.A.; Esmaili, M.; Hassan, M.; Ragheb, M.A. The role of PTEN-L in modulating PINK1-Parkin-mediated mitophagy. Neurotox. Res., 2022, 40(4), 1103-1114.
[http://dx.doi.org/10.1007/s12640-022-00475-w] [PMID: 35699891]
[21]
Shen, S.M.; Zhang, C.; Ge, M.K.; Dong, S.S.; Xia, L.; He, P.; Zhang, N.; Ji, Y.; Yang, S.; Yu, Y.; Zheng, J.K.; Yu, J.X.; Xia, Q.; Chen, G.Q. PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation. Nat. Cell Biol., 2019, 21(11), 1436-1448.
[http://dx.doi.org/10.1038/s41556-019-0409-z] [PMID: 31685992]
[22]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[23]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[24]
Pulido, R. PTEN: A yin-yang master regulator protein in health and disease. Methods, 2015, 77-78, 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2015.02.009] [PMID: 25843297]
[25]
Perevalova, A.M.; Kobelev, V.S.; Sisakyan, V.G.; Gulyaeva, L.F.; Pustylnyak, V.O. Role of tumor suppressor PTEN and its regulation in malignant transformation of endometrium. Biochemistry, 2022, 87(11), 1310-1326.
[http://dx.doi.org/10.1134/S0006297922110104] [PMID: 36509719]
[26]
Shimobayashi, M.; Hall, M.N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 155-162.
[http://dx.doi.org/10.1038/nrm3757] [PMID: 24556838]
[27]
Leslie, N.R.; Downes, C.P. PTEN function: How normal cells control it and tumour cells lose it. Biochem. J., 2004, 382(1), 1-11.
[http://dx.doi.org/10.1042/BJ20040825] [PMID: 15193142]
[28]
Bonneau, D.; Longy, M. Mutations of the human PTEN gene. Hum. Mutat., 2000, 16(2), 109-122.
[http://dx.doi.org/10.1002/1098-1004(200008)16:2<109:AID-HUMU3>3.0.CO;2-0] [PMID: 10923032]
[29]
Mighell, T.L.; Evans-Dutson, S.; O’Roak, B.J. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am. J. Hum. Genet., 2018, 102(5), 943-955.
[http://dx.doi.org/10.1016/j.ajhg.2018.03.018] [PMID: 29706350]
[30]
Rodríguez-Escudero, I.; Oliver, M.D.; Andrés-Pons, A.; Molina, M.; Cid, V.J.; Pulido, R. A comprehensive functional analysis of PTEN mutations: Implications in tumor- and autism-related syndromes. Hum. Mol. Genet., 2011, 20(21), 4132-4142.
[http://dx.doi.org/10.1093/hmg/ddr337] [PMID: 21828076]
[31]
Denu, J.M.; Stuckey, J.A.; Saper, M.A.; Dixon, J.E. Form and function in protein dephosphorylation. Cell, 1996, 87(3), 361-364.
[http://dx.doi.org/10.1016/S0092-8674(00)81356-2] [PMID: 8898189]
[32]
Lee, J.O.; Yang, H.; Georgescu, M.M.; Di Cristofano, A.; Maehama, T.; Shi, Y.; Dixon, J.E.; Pandolfi, P.; Pavletich, N.P. Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell, 1999, 99(3), 323-334.
[http://dx.doi.org/10.1016/S0092-8674(00)81663-3] [PMID: 10555148]
[33]
Adamopoulos, P.G.; Kontos, C.K.; Scorilas, A. Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 – KLK9), using Next-generation sequencing. Sci. Rep., 2017, 7(1), 17299.
[http://dx.doi.org/10.1038/s41598-017-16269-6] [PMID: 29229980]
[34]
van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The third revolution in sequencing technology. Trends Genet., 2018, 34(9), 666-681.
[http://dx.doi.org/10.1016/j.tig.2018.05.008] [PMID: 29941292]
[35]
Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-Generation Sequencing: The spearhead towards the radical transformation of modern genomics. Life, 2021, 12(1), 30.
[http://dx.doi.org/10.3390/life12010030] [PMID: 35054423]
[36]
Michael, T.P.; Jupe, F.; Bemm, F.; Motley, S.T.; Sandoval, J.P.; Lanz, C.; Loudet, O.; Weigel, D.; Ecker, J.R. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun., 2018, 9(1), 541.
[http://dx.doi.org/10.1038/s41467-018-03016-2] [PMID: 29416032]
[37]
Korbie, D.J.; Mattick, J.S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc., 2008, 3(9), 1452-1456.
[http://dx.doi.org/10.1038/nprot.2008.133] [PMID: 18772872]
[38]
Adamopoulos, P.G.; Tsiakanikas, P.; Boti, M.A.; Scorilas, A. Targeted long-read sequencing decodes the transcriptional atlas of the founding RAS gene family members. Int. J. Mol. Sci., 2021, 22(24), 13298.
[http://dx.doi.org/10.3390/ijms222413298] [PMID: 34948093]
[39]
Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol., 2019, 20(1), 129.
[http://dx.doi.org/10.1186/s13059-019-1727-y] [PMID: 31234903]
[40]
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18), 3094-3100.
[http://dx.doi.org/10.1093/bioinformatics/bty191] [PMID: 29750242]
[41]
Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform., 2013, 14(2), 178-192.
[http://dx.doi.org/10.1093/bib/bbs017] [PMID: 22517427]
[42]
Holmqvist, I.; Bäckerholm, A.; Tian, Y.; Xie, G.; Thorell, K.; Tang, K.W. FLAME: Long-read bioinformatics tool for comprehensive spliceome characterization. RNA, 2021, 27(10), 1127-1139.
[http://dx.doi.org/10.1261/rna.078800.121] [PMID: 34253685]
[43]
de la Fuente, L.; Arzalluz-Luque, Á.; Tardáguila, M.; del Risco, H.; Martí, C.; Tarazona, S.; Salguero, P.; Scott, R.; Lerma, A.; Alastrue-Agudo, A.; Bonilla, P.; Newman, J.R.B.; Kosugi, S.; McIntyre, L.M.; Moreno-Manzano, V.; Conesa, A. tappAS: A comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol., 2020, 21(1), 119.
[http://dx.doi.org/10.1186/s13059-020-02028-w] [PMID: 32423416]
[44]
Adamopoulos, P.G.; Theodoropoulou, M.C.; Scorilas, A. Alternative splicing detection tool—a novel PERL algorithm for sensitive detection of splicing events, based on next-generation sequencing data analysis. Ann. Transl. Med., 2018, 6(12), 244-244.
[http://dx.doi.org/10.21037/atm.2018.06.32] [PMID: 30069446]
[45]
Artimo, P. ExPASy: SIB bioinformatics resource portal., Nucleic Acids Res, 2012, 40((Web Server issue)), W597-603.
[http://dx.doi.org/10.1093/nar/gks400]
[46]
Yang, C.; Yang, L.; Zhou, M.; Xie, H.; Zhang, C.; Wang, M.D.; Zhu, H. LncADeep: An ab initio lncRNA identification and functional annotation tool based on deep learning. Bioinformatics, 2018, 34(22), 3825-3834.
[http://dx.doi.org/10.1093/bioinformatics/bty428] [PMID: 29850816]
[47]
Kulmanov, M.; Hoehndorf, R. DeepGOPlus: Improved protein function prediction from sequence. Bioinformatics, 2021, 37(8), 1187.
[http://dx.doi.org/10.1093/bioinformatics/btaa763] [PMID: 34009304]
[48]
Zhang, Z.; Xin, D.; Wang, P.; Zhou, L.; Hu, L.; Kong, X.; Hurst, L.D. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol., 2009, 7(1), 23.
[http://dx.doi.org/10.1186/1741-7007-7-23] [PMID: 19442261]
[49]
Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling: The path to discovery and understanding. Nat. Rev. Mol. Cell Biol., 2012, 13(3), 195-203.
[http://dx.doi.org/10.1038/nrm3290] [PMID: 22358332]
[50]
Stambolic, V.; Suzuki, A.; de la Pompa, J.L.; Brothers, G.M.; Mirtsos, C.; Sasaki, T.; Ruland, J.; Penninger, J.M.; Siderovski, D.P.; Mak, T.W. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 1998, 95(1), 29-39.
[http://dx.doi.org/10.1016/S0092-8674(00)81780-8] [PMID: 9778245]
[51]
Durrant, T.N.; Hutchinson, J.L.; Heesom, K.J.; Anderson, K.E.; Stephens, L.R.; Hawkins, P.T.; Marshall, A.J.; Moore, S.F.; Hers, I. In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv., 2017, 1(14), 918-932.
[http://dx.doi.org/10.1182/bloodadvances.2017005173] [PMID: 29242851]
[52]
Leslie, N.R.; Dixon, M.J.; Schenning, M.; Gray, A.; Batty, I.H. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv. Biol. Regul., 2012, 52(1), 205-213.
[http://dx.doi.org/10.1016/j.advenzreg.2011.09.010] [PMID: 21930147]
[53]
Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[54]
Knudson, A.G., Jr Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci., 1971, 68(4), 820-823.
[http://dx.doi.org/10.1073/pnas.68.4.820] [PMID: 5279523]
[55]
Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol., 2012, 13(5), 283-296.
[http://dx.doi.org/10.1038/nrm3330] [PMID: 22473468]
[56]
Liu, A.; Zhu, Y.; Chen, W.; Merlino, G.; Yu, Y. PTEN dual lipid- and protein-phosphatase function in tumor progression. Cancers, 2022, 14(15), 3666.
[http://dx.doi.org/10.3390/cancers14153666] [PMID: 35954330]
[57]
Li, Y.; He, L.; Zeng, N.; Sahu, D.; Cadenas, E.; Shearn, C.; Li, W.; Stiles, B.L. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling regulates mitochondrial biogenesis and respiration via estrogen-related receptor α (ERRα). J. Biol. Chem., 2013, 288(35), 25007-25024.
[http://dx.doi.org/10.1074/jbc.M113.450353] [PMID: 23836899]
[58]
Li, G.; Yang, J.; Yang, C.; Zhu, M.; Jin, Y.; McNutt, M.A.; Yin, Y. PTENα regulates mitophagy and maintains mitochondrial quality control. Autophagy, 2018, 14(10), 1742-1760.
[http://dx.doi.org/10.1080/15548627.2018.1489477] [PMID: 29969932]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy