Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs

Author(s): Swati Verma* and Sarvesh Paliwal

Volume 25, Issue 4, 2024

Published on: 25 October, 2023

Page: [448 - 467] Pages: 20

DOI: 10.2174/0113892010238984231019085154

Price: $65

Abstract

Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.

Graphical Abstract

[1]
Yamada, H.; Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 1996, 60(9), 1391-1400.
[http://dx.doi.org/10.1271/bbb.60.1391] [PMID: 8987584]
[2]
Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol., 2002, 13(4), 345-351.
[http://dx.doi.org/10.1016/S0958-1669(02)00328-2] [PMID: 12323357]
[3]
Sheldon, R.A.; Brady, D.; Bode, M.L. The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chem. Sci. (Camb.), 2020, 11(10), 2587-2605.
[http://dx.doi.org/10.1039/C9SC05746C] [PMID: 32206264]
[4]
Birmingham, W.R.; Starbird, C.A.; Panosian, T.D.; Nannemann, D.P.; Iverson, T.M.; Bachmann, B.O. Bio-retrosynthetic construction of a didanosine biosynthetic pathway. Nat. Chem. Biol., 2014, 10(5), 392-399.
[http://dx.doi.org/10.1038/nchembio.1494] [PMID: 24657930]
[5]
Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed., 2021, 60(1), 88-119.
[http://dx.doi.org/10.1002/anie.202006648] [PMID: 32558088]
[6]
Simić, S.; Zukić, E.; Schmermund, L.; Faber, K.; Winkler, C.K.; Kroutil, W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem. Rev., 2022, 122(1), 1052-1126.
[http://dx.doi.org/10.1021/acs.chemrev.1c00574] [PMID: 34846124]
[7]
Luetz, S.; Giver, L.; Lalonde, J. Engineered enzymes for chemical production. Biotechnol. Bioeng., 2008, 101(4), 647-653.
[http://dx.doi.org/10.1002/bit.22077] [PMID: 18814289]
[8]
Rosenthal, K.; Lütz, S. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr. Opin. Green Sustain. Chem., 2018, 11, 58-64.
[http://dx.doi.org/10.1016/j.cogsc.2018.03.015]
[9]
Hollmann, F.; Opperman, D.J.; Paul, C.E. Biocatalytic reduction reactions from a chemist’s perspective. Angew. Chem. Int. Ed., 2021, 60(11), 5644-5665.
[http://dx.doi.org/10.1002/anie.202001876] [PMID: 32330347]
[10]
Bornscheuer, U.T.; Buchholz, K. Highlights in Biocatalysis - Historical Landmarks and Current Trends. Eng. Life Sci., 2005, 5(4), 309-323.
[http://dx.doi.org/10.1002/elsc.200520089]
[11]
Hughes, G.; Lewis, J.C. Introduction: Biocatalysis in Industry. Chem. Rev., 2018, 118(1), 1-3.
[http://dx.doi.org/10.1021/acs.chemrev.7b00741] [PMID: 29316793]
[12]
Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem., 2018, 2(12), 409-421.
[http://dx.doi.org/10.1038/s41570-018-0055-1]
[13]
Truppo, M.D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett., 2017, 8(5), 476-480.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00114] [PMID: 28523096]
[14]
Shin, J.S.; Kim, B.G.; Liese, A.; Wandrey, C. Kinetic resolution of chiral amines with? -transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng., 2001, 73(3), 179-187.
[http://dx.doi.org/10.1002/bit.1050] [PMID: 11257600]
[15]
Sharfuddin, M.; Narumi, A.; Iwai, Y.; Miyazawa, K.; Yamada, S.; Kakuchi, T.; Kaga, H. Lipase-catalyzed dy-namic kinetic resolution of hemiaminals. Tetrahedron Asymmetry, 2003, 14(11), 1581-1585.
[http://dx.doi.org/10.1016/S0957-4166(03)00313-6]
[16]
de Miranda, A.S.; Miranda, L.S.M.; de Souza, R.O.M.A. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol. Adv., 2015, 33(5), 372-393.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.015] [PMID: 25795055]
[17]
Koszelewski, D.; Lavandera, I.; Clay, D.; Guebitz, G.M.; Rozzell, D.; Kroutil, W. Formal asymmetric biocata-lytic reductive amination. Angew. Chem. Int. Ed., 2008, 47(48), 9337-9340.
[http://dx.doi.org/10.1002/anie.200803763] [PMID: 18972473]
[18]
Bornscheuer, U.T. Biocatalysis - key to sustainable industrial chemistry. ChemSusChem, 2018, 11(18), 3142-3151.
[http://dx.doi.org/10.1002/cssc.202102709]
[19]
Turner, N.J.; Humphreys, L. Biocatalysis in organic synthesis: The Reterosynthetic Approach; Royal Society of Chemistry: Piccadilly, London, 2018, 1-429.
[20]
Kinner, A.; Nerke, P.; Siedentop, R.; Steinmetz, T.; Classen, T.; Rosenthal, K.; Nett, M.; Pietruszka, J.; Lütz, S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines, 2022, 10(5), 964.
[http://dx.doi.org/10.3390/biomedicines10050964] [PMID: 35625702]
[21]
Nunes, H.H.C.; Nguyen, T.D.; Dang, T.T.T. Chemoenzymatic synthesis of natural products using plant bio-catalysts. CurrOpinion in green and SusChem., 2022, 35, 1-10.
[http://dx.doi.org/10.1016/j.cogsc.2022.100627]
[22]
Li, J.; Amatuni, A.; Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol., 2020, 55, 111-118.
[http://dx.doi.org/10.1016/j.cbpa.2020.01.005] [PMID: 32086167]
[23]
Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed., 2014, 53(12), 3070-3095.
[http://dx.doi.org/10.1002/anie.201302195] [PMID: 24520044]
[24]
Noyori, R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture).Angew. Chem. Int; , 2002, 41, pp. (12)1-12.
[http://dx.doi.org/10.1002/1521-3773(20020617)41:12<2008::AIDANIE2008>3.0.CO;2-4.]
[25]
Arnold, F.H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed., 2018, 57(16), 4143-4148.
[http://dx.doi.org/10.1002/anie.201708408] [PMID: 29064156]
[26]
Pee, K.H-V; Chen, X. Catalytic mechanisms, basic roles, and biotechnological and environmental signifi-cance of halogenating enzymes. Nat. Prod. Rep., 2008, 40(3), 183-93.
[http://dx.doi.org/10.1111/j.1745-7270.2008.00390.x]
[27]
Li, R.J.; Tian, K.; Li, X.; Gaikaiwari, A.R.; Li, Z. Engineering P450 Monooxygenases for Highly regioselective and Active p-Hydroxylation of m-Alkylphenols. ACS Catal., 2022, 12(10), 5939-5948.
[http://dx.doi.org/10.1021/acscatal.1c06011]
[28]
Chen, K.; Baran, P.S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature, 2009, 459(7248), 824-828.
[http://dx.doi.org/10.1038/nature08043] [PMID: 19440196]
[29]
Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J.C.; Ward, T.R. Artificial metalloenzymes: Reaction scope and optimization strategies. Chem. Rev., 2018, 118(1), 142-231.
[http://dx.doi.org/10.1021/acs.chemrev.7b00014] [PMID: 28714313]
[30]
Park, S.V.; Yang, J.S.; Jo, H.; Kang, B.; Oh, S.S.; Jung, G.Y. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol. Adv., 2019, 37(8), 107452.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107452] [PMID: 31669138]
[31]
Siedentop, R.; Rosenthal, K. Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecologi-cal Assessment. Int. J. Mol. Sci., 2022, 23(7), 3605.
[http://dx.doi.org/10.3390/ijms23073605] [PMID: 35408960]
[32]
Expanding biocatalysis for a sustainable future. Nat. Catal., 2020, 3(3), 179-180.
[http://dx.doi.org/10.1038/s41929-020-0447-8]
[33]
Chakrabarty, S.; Romero, E.O.; Pyser, J.B.; Yazarians, J.A.; Narayan, A.R.H. Chemoenzymatic Total Syn-thesis of Natural Products. Acc. Chem. Res., 2021, 54(6), 1374-1384.
[http://dx.doi.org/10.1021/acs.accounts.0c00810] [PMID: 33600149]
[34]
Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc., 2013, 135(34), 12480-12496.
[http://dx.doi.org/10.1021/ja405051f] [PMID: 23930719]
[35]
Heckmann, C.M.; Paradisi, F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem, 2020, 12(24), 6082-6102.
[http://dx.doi.org/10.1002/cctc.202001107] [PMID: 33381242]
[36]
Armstrong, E.F. Enzymes: A Discovery and its Consequences. Nature, 1933, 131(3311), 535-537.
[http://dx.doi.org/10.1038/131535a0]
[37]
Fischer, E. The influence of configuration on enzyme activity (Translated from German). Ber. Dtsch. Chem. Ges., 1894, 27, 2985-2993.
[http://dx.doi.org/10.1002/cber.18940270364]
[38]
Feiten, M.C.; Di Luccio, M.; Santos, K.F.; de Oliveira, D.; Oliveira, J.V. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids. Appl. Biochem. Biotechnol., 2017, 182(2), 429-451.
[http://dx.doi.org/10.1007/s12010-016-2336-9] [PMID: 27900555]
[39]
Shin, J.S.; Kim, B.G. Kinetic modeling of ω-transamination for enzymatic kinetic resolution of α-methylbenzylamine. Biotechnol. Bioeng., 1998, 60(5), 534-540.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19981205)60:5<534:AID-BIT3>3.0.CO;2-L] [PMID: 10099461]
[40]
Berkessel, A.; Sebastian-Ibarz, M.L.; Müller, T.N. Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols. Angew. Chem. Int. Ed., 2006, 45(39), 6567-6570.
[http://dx.doi.org/10.1002/anie.200600379] [PMID: 16952181]
[41]
Dominy, N.J. Ferment in the family tree. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 308-309.
[http://dx.doi.org/10.1073/pnas.1421566112] [PMID: 25552552]
[42]
de Romo, A.C. Tallow and the time capsule: Claude Bernard’s discovery of the pancreatic digestion of fat. Hist. Philos. Life Sci., 1989, 11(2), 253-274.
[PMID: 2700021]
[43]
Kazlauskas, R.J.; Bornscheuer, U.T. Biotransformations with Lipases. Biotechnology, 2008, 36-191.
[http://dx.doi.org/10.1002/9783527620999.ch3h]
[44]
Turner, N.J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol., 2004, 8(2), 114-119.
[http://dx.doi.org/10.1016/j.cbpa.2004.02.001] [PMID: 15062770]
[45]
Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep., 2013, 30(10), 1324-1345.
[http://dx.doi.org/10.1039/c3np70045c] [PMID: 23934236]
[46]
Wong, C.H.; Whitesides, G.M. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc., 1981, 103(16), 4890-4899.
[http://dx.doi.org/10.1021/ja00406a037]
[47]
Baker Dockrey, S.A.; Lukowski, A.L.; Becker, M.R.; Narayan, A.R.H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem., 2018, 10(2), 119-125.
[http://dx.doi.org/10.1038/nchem.2879] [PMID: 29359749]
[48]
Pyser, J.B.; Baker Dockrey, S.A.; Benítez, A.R.; Joyce, L.A.; Wiscons, R.A.; Smith, J.L.; Narayan, A.R.H. Ste-reodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J. Am. Chem. Soc., 2019, 141(46), 18551-18559.
[http://dx.doi.org/10.1021/jacs.9b09385] [PMID: 31692339]
[49]
De Wildeman, S.M.A.; Sonke, T.; Schoemaker, H.E.; May, O. Biocatalytic reductions: From lab curiosity to “first choice”. Acc. Chem. Res., 2007, 40(12), 1260-1266.
[http://dx.doi.org/10.1021/ar7001073] [PMID: 17941701]
[50]
Liu, W.; Wang, P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol. Adv., 2007, 25(4), 369-384.
[http://dx.doi.org/10.1016/j.biotechadv.2007.03.002] [PMID: 17459647]
[51]
Wichmann, R.; Vasic-Racki, D. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol., 2005, 92, 225-260.
[http://dx.doi.org/10.1007/b98911] [PMID: 15791939]
[52]
Hughes, D.L. Biocatalysis in Drug Development—Highlights of the Recent Patent Literature. Org. Process Res. Dev., 2018, 22(9), 1063-1080.
[http://dx.doi.org/10.1021/acs.oprd.8b00232]
[53]
Cassimjee, K.E.; Branneby, C.; Abedi, V.; Wells, A.; Berglund, P. Transaminations with isopropyl amine: Equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem. Commun. (Camb.), 2010, 46(30), 5569-5571.
[http://dx.doi.org/10.1039/c0cc00050g] [PMID: 20461279]
[54]
Truppo, M.D.; Rozzell, J.D.; Moore, J.C.; Turner, N.J. Rapid screening and scale-up of transaminase catalysed reactions. Org. Biomol. Chem., 2009, 7(2), 395-398.
[http://dx.doi.org/10.1039/B817730A] [PMID: 19109687]
[55]
Zachos, I.; Nowak, C.; Sieber, V. Biomimetic cofactors and methods for their recycling. Curr. Opin. Chem. Biol., 2019, 49, 59-66.
[http://dx.doi.org/10.1016/j.cbpa.2018.10.003] [PMID: 30336443]
[56]
Kelly, S.A.; Mix, S.; Moody, T.S.; Gilmore, B.F. Transaminases for industrial biocatalysis: Novel enzyme discovery. Appl. Microbiol. Biotechnol., 2020, 104(11), 4781-4794.
[http://dx.doi.org/10.1007/s00253-020-10585-0] [PMID: 32300853]
[57]
Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J.; Devine, P.N.; Huisman, G.W.; Hughes, G.J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 2010, 329(5989), 305-309.
[http://dx.doi.org/10.1126/science.1188934] [PMID: 20558668]
[58]
Slabu, I.; Galman, J.L.; Lloyd, R.C.; Turner, N.J. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal., 2017, 7(12), 8263-8284.
[http://dx.doi.org/10.1021/acscatal.7b02686]
[59]
Kelly, S.A.; Pohle, S.; Wharry, S.; Mix, S.; Allen, C.C.R.; Moody, T.S.; Gilmore, B.F. Application of ω-Transaminases in the Pharmaceutical Industry. Chem. Rev., 2018, 118(1), 349-367.
[http://dx.doi.org/10.1021/acs.chemrev.7b00437] [PMID: 29251912]
[60]
Coelho, P.S.; Wang, Z.J.; Ener, M.E.; Baril, S.A.; Kannan, A.; Arnold, F.H.; Brustad, E.M. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol., 2013, 9(8), 485-487.
[http://dx.doi.org/10.1038/nchembio.1278] [PMID: 23792734]
[61]
Ducrot, L.; Bennett, M.; Caparco, A.A.; Champion, J.A.; Bommarius, A.S.; Zaparucha, A.; Grogan, G.; Vergne-Vaxelaire, C. Biocatalytic reductive amination by native amine dehydrogenases to access short chiral al-kyl amines and amino alcohols. Front. Catal., 2021, 26, 1-14.
[62]
Wandrey, C.; Liese, A.; Kihumbu, D. Industrial Biocatalysis: Past, Present, and Future. Org. Process Res. Dev., 2000, 4(4), 286-290.
[http://dx.doi.org/10.1021/op990101l]
[63]
Huffman, M.A.; Fryszkowska, A.; Alvizo, O.; Borra-Garske, M.; Campos, K.R.; Canada, K.A.; Devine, P.N.; Duan, D.; Forstater, J.H.; Grosser, S.T.; Halsey, H.M.; Hughes, G.J.; Jo, J.; Joyce, L.A.; Kolev, J.N.; Liang, J.; Malo-ney, K.M.; Mann, B.F.; Marshall, N.M.; McLaughlin, M.; Moore, J.C.; Murphy, G.S.; Nawrat, C.C.; Nazor, J.; Novick, S.; Patel, N.R.; Rodriguez-Granillo, A.; Robaire, S.A.; Sherer, E.C.; Truppo, M.D.; Whittaker, A.M.; Verma, D.; Xiao, L.; Xu, Y.; Yang, H. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science, 2019, 366(6470), 1255-1259.
[http://dx.doi.org/10.1126/science.aay8484] [PMID: 31806816]
[64]
The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[65]
Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res., 2019, 47(D1), D94-D99.
[http://dx.doi.org/10.1093/nar/gky989] [PMID: 30365038]
[66]
Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imler, H.J.; Sadkhin, B.; Slater, D.R. Tools and strategies for dis-covering novel enzymes and metabolic pathways. Perspect. Sci. (Neth.), 2016, 9, 24-32.
[http://dx.doi.org/10.1016/j.pisc.2016.07.001] [PMID: 25900361]
[67]
Sandoval, B.A.; Hyster, T.K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol., 2020, 55, 45-51.
[http://dx.doi.org/10.1016/j.cbpa.2019.12.006] [PMID: 31935627]
[68]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[69]
Boratyn, G.M.; Camacho, C.; Cooper, P.S.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk, Y.; Raytselis, Y.; Sayers, E.W.; Tao, T.; Ye, J.; Zaretskaya, I. BLAST: A more efficient re-port with usability improvements. Nucleic Acids Res., 2013, 41(W1), W29-W33.
[http://dx.doi.org/10.1093/nar/gkt282] [PMID: 23609542]
[70]
Rodríguez Benítez, A.; Tweedy, S.E.; Baker Dockrey, S.A.; Lukowski, A.L.; Wymore, T.; Khare, D.; Brooks, C.L., III; Palfey, B.A.; Smith, J.L.; Narayan, A.R.H. Structural basis for selectivity in flavin-dependent monooxygen-ase-catalyzed oxidative dearomatization. ACS Catal., 2019, 9(4), 3633-3640.
[http://dx.doi.org/10.1021/acscatal.8b04575] [PMID: 31346489]
[71]
Pearson, W.R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinf., 2013, 42, 1-8.
[http://dx.doi.org/10.1002/0471250953.bi0301s42]
[72]
Madden, T. The BLAST Sequence Analysis Tool; George Mason University: Virginia, 2013.
[73]
Cai, X.H.; Jaroszewski, L.; Wooley, J.; Godzik, A. Internal organization of large protein families: Relation-ship between the sequence, structure, and function-based clustering. Proteins, 2011, 79(8), 2389-2402.
[http://dx.doi.org/10.1002/prot.23049] [PMID: 21671455]
[74]
Rokas, A. Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAXML) Program. Curr. Protoc. Mol. Biol., 2011, 96, 1-14.
[75]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739.
[http://dx.doi.org/10.1093/molbev/msr121] [PMID: 21546353]
[76]
Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol., 2013, 30(5), 1229-1235.
[http://dx.doi.org/10.1093/molbev/mst012] [PMID: 23486614]
[77]
Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; Marugán, J.C.; Cummins, C.; Davidson, C.; Dodiya, K.; Fatima, R.; Gall, A.; Giron, C.G.; Gil, L.; Grego, T.; Haggerty, L.; Haskell, E.; Hourlier, T.; Izuogu, O.G.; Janacek, S.H.; Juettemann, T.; Kay, M.; Lavidas, I.; Le, T.; Lemos, D.; Martinez, J.G.; Maurel, T.; McDowall, M.; McMahon, A.; Mohanan, S.; Moore, B.; Nuhn, M.; Oheh, D.N.; Parker, A.; Parton, A.; Patricio, M.; Sakthivel, M.P.; Abdul Salam, A.I.; Schmitt, B.M.; Schuilenburg, H.; Sheppard, D.; Sycheva, M.; Szuba, M.; Taylor, K.; Thormann, A.; Threadgold, G.; Vullo, A.; Walts, B.; Winterbottom, A.; Zadissa, A.; Chakiachvili, M.; Flint, B.; Frankish, A.; Hunt, S.E. IIsley, G.; Kostadima, M.; Langridge, N.; Loveland, J.E.; Martin, F.J.; Morales, J.; Mudge, J.M.; Muffato, M.; Perry, E.; Ruffi-er, M.; Trevanion, S.J.; Cunningham, F.; Howe, K.L.; Zerbino, D.R.; Flicek, P. Ensembl 2020. Nucleic Acids Res., 2019, 48(D1), gkz966.
[http://dx.doi.org/10.1093/nar/gkz966] [PMID: 31691826]
[78]
Jones, C.M.; Stres, B.; Rosenquist, M.; Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol., 2008, 25(9), 1955-1966.
[http://dx.doi.org/10.1093/molbev/msn146] [PMID: 18614527]
[79]
Cavalcanti, J.H.F.; Esteves-Ferreira, A.A.; Quinhones, C.G.S.; Pereira-Lima, I.A.; Nunes-Nesi, A.; Fernie, A.R.; Araújo, W.L. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol. Evol., 2014, 6(10), 2830-2848.
[http://dx.doi.org/10.1093/gbe/evu221] [PMID: 25274566]
[80]
Siddiq, M.A.; Hochberg, G.K.A.; Thornton, J.W. Evolution of protein specificity: Insights from ancestral protein reconstruction. Curr. Opin. Struct. Biol., 2017, 47, 113-122.
[http://dx.doi.org/10.1016/j.sbi.2017.07.003] [PMID: 28841430]
[81]
Thornton, J.W. Resurrecting ancient genes: Experimental analysis of extinct molecules. Nat. Rev. Genet., 2004, 5(5), 366-375.
[http://dx.doi.org/10.1038/nrg1324] [PMID: 15143319]
[82]
Furukawa, R.; Toma, W.; Yamazaki, K.; Akanuma, S. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci. Rep., 2020, 10(1), 15493.
[http://dx.doi.org/10.1038/s41598-020-72418-4] [PMID: 32968141]
[83]
O’Brien, P.J.; Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol., 1999, 6(4), R91-R105.
[http://dx.doi.org/10.1016/S1074-5521(99)80033-7] [PMID: 10099128]
[84]
Rodríguez Benítez, A.; Narayan, A.R.H. Frontiers in Biocatalysis: Profiling Function across Sequence Space. ACS Cent. Sci., 2019, 5(11), 1747-1749.
[http://dx.doi.org/10.1021/acscentsci.9b01112] [PMID: 31807675]
[85]
Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(8), 1019-1037.
[http://dx.doi.org/10.1016/j.bbapap.2015.04.015] [PMID: 25900361]
[86]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ide-ker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[87]
Atkinson, H.J.; Morris, J.H.; Ferrin, T.E.; Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009, 4(2), e4345.
[http://dx.doi.org/10.1371/journal.pone.0004345] [PMID: 19190775]
[88]
Fisher, B.F.; Snodgrass, H.M.; Jones, K.A.; Andorfer, M.C.; Lewis, J.C. Site-Selective C–H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Cent. Sci., 2019, 5(11), 1844-1856.
[http://dx.doi.org/10.1021/acscentsci.9b00835] [PMID: 31807686]
[89]
Wages, J.M. Polymerase Chain Reaction. Encyclopedia of Analytical Science,; 2nd ed; Worsfold, P.; Townshend, A.; Poole, C., Eds.; Elsevier: Amsterdam,, 2005, pp. 243-250.
[90]
Smalla, K.; Jechalke, S.; Top, E.M. Plasmid Detection, Characterization, and Ecology. Microbiol. Spectr., 2015, 3(1), 3.1.17.
[http://dx.doi.org/10.1128/microbiolspec.PLAS-0038-2014] [PMID: 26104560]
[91]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed; Taylor and Francis: Milton Park, 2002, pp. 45-47.
[92]
Hughes, R.A.; Ellington, A.D. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harb. Perspect. Biol., 2017, 9(1), a023812.
[http://dx.doi.org/10.1101/cshperspect.a023812] [PMID: 28049645]
[93]
Pal, S.K.; Bandyopadhyay, S.; Ray, S.S. Evolutionary computation in bioinformatics: A review. IEEE Trans. Syst. Man Cybern. C, 2006, 36(5), 601-615.
[http://dx.doi.org/10.1109/TSMCC.2005.855515]
[94]
Yang, P.; Yang, Y.H.; Zhou, B.B.; Zomaya, A.Y. A Review of Ensemble Methods in Bioinformatics. Curr. Bioinform., 2010, 5, 296-308.
[http://dx.doi.org/10.2174/157489310794072508]
[95]
Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol., 2015, 33(10), 1061-1072.
[http://dx.doi.org/10.1038/nbt.3365] [PMID: 26448090]
[96]
Angov, E. Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnol. J., 2011, 6(6), 650-659.
[http://dx.doi.org/10.1002/biot.201000332] [PMID: 21567958]
[97]
Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M.G.; Moosburner, M.; Shrock, E.; Pruitt, B.W.; Conway, N.; Goodman, D.B.; Gardner, C.L.; Tyree, G.; Gonzales, A.; Wanner, B.L.; Norville, J.E.; Lajoie, M.J.; Church, G.M. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301), 819-822.
[http://dx.doi.org/10.1126/science.aaf3639] [PMID: 27540174]
[98]
Guell, M. Conjugative Assembly Genome Engineering (CAGE). Methods Mol Biol. 2020;2075:399-40 , 2020, 2075, 399-40.
[http://dx.doi.org/10.1007/978-1-4939-9877-7_28]
[99]
Kudla, G.; Murray, A.W.; Tollervey, D.; Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science, 2009, 324(5924), 255-258.
[http://dx.doi.org/10.1126/science.1170160] [PMID: 19359587]
[100]
Terpe, K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60(5), 523-533.
[http://dx.doi.org/10.1007/s00253-002-1158-6] [PMID: 12536251]
[101]
Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell, 2016, 164(6), 1185-1197.
[http://dx.doi.org/10.1016/j.cell.2016.02.004] [PMID: 26967285]
[102]
Gonzalo, G.; Lavandera, I. Biocatal. Pract; de Gonzalo, G; Lavandera, I., Ed.; Wiley-VCH: Weinheim, 2021, pp. 467-485.
[http://dx.doi.org/10.1002/9783527824465.ch16]
[103]
Whittall, J.; Sutton, P.W. Applied Biocatalysis: The Chemist’s Enzyme Toolbox; Wiley; Hoboken: New Jersey, 2020, pp. 1-560.
[http://dx.doi.org/10.1002/9781119487043]
[104]
Mitsukura, K.; Suzuki, M.; Tada, K.; Yoshida, T.; Nagasawa, T. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org. Biomol. Chem., 2010, 8(20), 4533-4535.
[http://dx.doi.org/10.1039/C0OB00353K] [PMID: 20820664]
[105]
Mangas-Sanchez, J.; France, S.P.; Montgomery, S.L.; Aleku, G.A.; Man, H.; Sharma, M.; Ramsden, J.I.; Grogan, G.; Turner, N.J. Imine reductases (IREDs). Curr. Opin. Chem. Biol., 2017, 37, 19-25.
[http://dx.doi.org/10.1016/j.cbpa.2016.11.022] [PMID: 28038349]
[106]
Müller, H.; Terholsen, H.; Godehard, S.P.; Badenhorst, C.P.S.; Bornscheuer, U.T. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal., 2021, 11(24), 14906-14915.
[http://dx.doi.org/10.1021/acscatal.1c04543]
[107]
Aleku, G.A.; France, S.P.; Man, H.; Mangas-Sanchez, J.; Montgomery, S.L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.; Turner, N.J. A reductive aminase from Aspergillus oryzae. Nat. Chem., 2017, 9(10), 961-969.
[http://dx.doi.org/10.1038/nchem.2782] [PMID: 28937665]
[108]
Grogan, G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS Au, 2021, 1(9), 1312-1329.
[http://dx.doi.org/10.1021/jacsau.1c00251] [PMID: 34604841]
[109]
Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol., 2019, 37(8), 882-897.
[http://dx.doi.org/10.1016/j.tibtech.2019.01.001] [PMID: 30739814]
[110]
Fessner, N.D.; Badenhorst, C.P.S.; Bornscheuer, U.T. Enzyme kits to facilitate the integration of Biocatalysis in Organic Chemistry-first Aid for synthetic Chemists. ChemCatChem, 2022, 14(11), e202200156.
[http://dx.doi.org/10.1002/cctc.202200156]
[111]
He, Y.; Cox, R.J. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. (Camb.), 2016, 7(3), 2119-2127.
[http://dx.doi.org/10.1039/C5SC04027B] [PMID: 29899939]
[112]
Fahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J. Avramović M.; Butts, C.P.; Piel, J.; Simp-son, T.J.; Cox, R.J. Oxidative dearomatisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. (Camb.), 2014, 5(2), 523-527.
[http://dx.doi.org/10.1039/C3SC52911H] [PMID: 25580210]
[113]
Baker Dockrey, S.A.; Doyon, T.J.; Perkins, J.C.; Narayan, A.R.H. Whole cell biocatalysis platform for gram scale oxidative dearomatization of phenols. Chem. Biol. Drug Des., 2019, 93(6), 1207-1213.
[http://dx.doi.org/10.1111/cbdd.13443] [PMID: 30485666]
[114]
France, S.P.; Hepworth, L.J.; Turner, N.J.; Flitsch, S.L. Constructing biocatalytic cascades: In vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal., 2017, 7(1), 710-724.
[http://dx.doi.org/10.1021/acscatal.6b02979]
[115]
On advances and challenges in biocatalysis. Nat. Catal., 2018, 1(9), 635-636.
[http://dx.doi.org/10.1038/s41929-018-0157-7]
[116]
Sib, A.; Gulder, T.A.M. Stereoselective total synthesis of Bisorbicillinoid natural products by enzymatic oxidative dearomatization/dimerization. Angew. Chem. Int. Ed., 2017, 56(42), 12888-12891.
[http://dx.doi.org/10.1002/anie.201705976] [PMID: 28771960]
[117]
Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: A guide to integrating biocatalysis in synthesis. Chem. Soc. Rev., 2012, 41(4), 1585-1605.
[http://dx.doi.org/10.1039/c2cs15286j] [PMID: 22234546]
[118]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194.
[http://dx.doi.org/10.1038/nature11117] [PMID: 22575958]
[119]
Faber, K. Biotransformations in Organic Chemistry: A Textbook, 6th ed; Springer: Cham, 2011, pp. 1-423.
[http://dx.doi.org/10.1007/978-3-642-17393-6]
[120]
Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci., 2021, 7(1), 55-71.
[http://dx.doi.org/10.1021/acscentsci.0c01496] [PMID: 33532569]
[121]
Urlacher, V.B.; Girhard, M. Cytochrome P450 monooxygenases: An update on perspectives for synthetic application. Trends Biotechnol., 2012, 30(1), 26-36.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.012] [PMID: 21782265]
[122]
Schrewe, M.; Julsing, M.K.; Bühler, B.; Schmid, A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem. Soc. Rev., 2013, 42(15), 6346-6377.
[http://dx.doi.org/10.1039/c3cs60011d] [PMID: 23475180]
[123]
Corey, E.J.; Wipke, W.T. Computer-assisted design of complex organic syntheses. Science, 1969, 166(3902), 178-192.
[http://dx.doi.org/10.1126/science.166.3902.178] [PMID: 17731475]
[124]
Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. J. Chem. Inf. Model., 2022, 62(6), 1357-1367.
[http://dx.doi.org/10.1021/acs.jcim.1c01074] [PMID: 35258953]
[125]
Zhang, X.; Lin, L.; Huang, H.; Linhardt, R.J. Chemoenzymatic Synthesis of Glycosaminoglycans. Acc. Chem. Res., 2020, 53(2), 335-346.
[http://dx.doi.org/10.1021/acs.accounts.9b00420] [PMID: 31714740]
[126]
Pyser, J.B.; Chakrabarty, S.; Romero, E.O.; Narayan, A.R.H. State-of-the-Art Biocatalysis. ACS Cent. Sci., 2021, 7(7), 1105-1116.
[http://dx.doi.org/10.1021/acscentsci.1c00273] [PMID: 34345663]
[127]
Jiang, Y.; Yu, Y.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, Z.; Yao, H.; Zou, J.; Coley, C.W.; Wei, Y. Artificial Intelligence for Retrosynthesis Prediction. Engineering, 2022, 2022, 1-8.
[http://dx.doi.org/10.1016/j.eng.2022.04.021]
[128]
Corey, E.J.; Cheng, X.M. The Logic of Chemical Reactions; Wiley Interscience: New York, 1995.
[129]
Warren, S.; Wyatt, P. Organic Synthesis: The Disconnection Approach; Wiley: New York, 2008, pp. 1-34.
[130]
de Souza, R.O.M.A.; Miranda, L.S.M.; Bornscheuer, U.T.; Bornscheuer, U.T. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry, 2017, 23(50), 12040-12063.
[http://dx.doi.org/10.1002/chem.201702235] [PMID: 28514518]
[131]
Girvan, H.M.; Munro, A.W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol., 2016, 31, 136-145.
[http://dx.doi.org/10.1016/j.cbpa.2016.02.018] [PMID: 27015292]
[132]
Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M.; Zou, J.; Archelas, A.; Bottalla, A.L.; Naworyta, A.; Mowbray, S.L. Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc., 2009, 131(21), 7334-7343.
[http://dx.doi.org/10.1021/ja809673d] [PMID: 19469578]
[133]
Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in Organic Synthesis –Regio- and Stereoselective Biotransformations, 2nd eds; Wiley-VCH: Weinheim, 2006, pp. 396-403.
[http://dx.doi.org/10.1002/3527607544]
[134]
Bornscheuer, U.T. Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol. Rev., 2002, 26(1), 73-81.
[http://dx.doi.org/10.1111/j.1574-6976.2002.tb00599.x] [PMID: 12007643]
[135]
DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc., 2002, 124, 9024-9025.
[http://dx.doi.org/10.1021/ja0259842] [PMID: 12148986]
[136]
Kazumi, J.; Haggblom, M.M.; Young, L.Y. Degradation of Monochlorinated and Nonchlorinated aromatic compounds under Iron-Reducing Conditions. Appl. Environ. Microbiol., 1996, 62(9), 3554-3556.
[http://dx.doi.org/10.1128/aem.62.9.3554-3556.1996] [PMID: 16535416]
[137]
Schallmey, A.; Schallmey, M. Recent advances on halohydrin dehalogenases—from enzyme identification to novel biocatalytic applications. Appl. Microbiol. Biotechnol., 2016, 100(18), 7827-7839.
[http://dx.doi.org/10.1007/s00253-016-7750-y] [PMID: 27502414]
[138]
Bučko, M.; Gemeiner, P.; Schenkmayerová, A.; Krajčovič, T.; Rudroff, F.; Mihovilovič, M.D. Baeyer-Villiger oxidations: Biotechnological approach. Appl. Microbiol. Biotechnol., 2016, 100(15), 6585-6599.
[http://dx.doi.org/10.1007/s00253-016-7670-x] [PMID: 27328941]
[139]
Corey, E.J.; Link, J.O. A new process for the generation of 1,3,2-oxazaborolidines, catalysts for enantioselective synthesis. Tetrahedron Lett., 1992, 33(29), 4141-4144.
[http://dx.doi.org/10.1016/S0040-4039(00)74673-9]
[140]
Nugent, T.C. Chiral Amine Synthesis: Methods, Developments and Applications; Wiley: New York, 2010, pp. 1-520.
[http://dx.doi.org/10.1002/9783527629541]
[141]
Wang, M.X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res., 2015, 48(3), 602-611.
[http://dx.doi.org/10.1021/ar500406s] [PMID: 25699471]
[142]
Gotor-Fernández, V.; Gotor, V. Biocatalytic routes to chiral amines and amino acids. Curr. Opin. Drug Discov. Devel., 2009, 12(6), 784-797.
[PMID: 19894190]
[143]
Durchschein, K.; Hall, M.; Faber, K. Unusual reactions mediated by FMN-dependent ene- and nitro-reductases. Green Chem., 2013, 15(7), 1764-1772.
[http://dx.doi.org/10.1039/c3gc40588e]
[144]
Kohls, H.; Steffen-Munsberg, F.; Höhne, M. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr. Opin. Chem. Biol., 2014, 19, 180-192.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.021] [PMID: 24721252]
[145]
Edmondson, D.E.; Mattevi, A.; Binda, C.; Li, M.; Hubálek, F. Structure and mechanism of monoamine oxi-dase. Curr. Med. Chem., 2004, 11(15), 1983-1993.
[http://dx.doi.org/10.2174/0929867043364784] [PMID: 15279562]
[146]
Bracco, P.; Busch, H.; von Langermann, J.; Hanefeld, U. Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases – a review. Org. Biomol. Chem., 2016, 14(27), 6375-6389.
[http://dx.doi.org/10.1039/C6OB00934D] [PMID: 27282284]
[147]
Fuchs, M.; Farnberger, J.E.; Kroutil, W. The industrial age of biocatlytic transamination. Eur. J. Org. Chem., 2015, 2015(32), 6965-6982.
[http://dx.doi.org/10.1002/ejoc.201500852] [PMID: 26726292]
[148]
Balkenhohl, F.; Ditrich, K.; Hauer, B.; Ladner, W. Optisch active Amine durch Lipase-katalysierte methox-yacetylierung. J. Prakt. Chem. Chem.-Zeitung, 1997, 339(1), 381-384.
[http://dx.doi.org/10.1002/prac.19973390166]
[149]
Chen, D.F.; Zhang, C.; Hu, Y.; Han, Z-Y.; Gong, L-Z. Catalytic enantioselective synthesis of quaternary 3,3′-indolyloxindoles by combination of Rh( II ) complexes and chiral phosphines. Org. Chem. Front., 2015, 2(8), 956-960.
[http://dx.doi.org/10.1039/C5QO00151J]
[150]
Ruinatscha, R.; Höllrigl, V.; Otto, K.; Schmid, A. Productivity of selective electroenzymatic reduction and oxidation reactions:Theoretical and practical considerations. Adv. Synth. Catal., 2006, 348(15), 2015-2026.
[http://dx.doi.org/10.1002/adsc.200600257]
[151]
Wang, Y.; San, K.Y.; Bennett, G.N. Cofactor engineering for advancing chemical biotechnology. Curr. Opin. Biotechnol., 2013, 24(6), 994-999.
[http://dx.doi.org/10.1016/j.copbio.2013.03.022] [PMID: 23611567]
[152]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[153]
Lowell, A. N.; DeMars, M. D.; Slocum, S. T.; Yu, F.; Anand, K.; Chemler, J. A.; Korakavi, N.; Priessnitz, J. K.; Park, S. R.; Koch, A. A. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and CH functionalization. J. Am.Chem. Soc. , 2017, 139, 7913-7920.
[http://dx.doi.org/10.1021/jacs.7b02875] [PMID: 28525276]
[154]
Wang, J.; Zhang, Y.; Liu, H.; Shang, Y.; Zhou, L.; Wei, P.; Yin, W.-B.; Deng, Z.; Qu, X.; Zhou, Q. A biocatalytic hydroxylation enabled unified approach to C19-hydroxylated steroids. Nat. Commun., 2019, 10, 3378.
[http://dx.doi.org/10.1038/s41467-019-11344-0]
[155]
Nakamura, H.; Schultz, E. E.; Balskus, E. P. A new strategy for aromatic ring alkylation in cylindrocyclo-phane biosynthesis. Nat.Chem. Biol. , 2017, 13, 916-921.
[http://dx.doi.org/10.1038/nchembio.2421 ] [PMID: 28671684]
[156]
Staunton, J.; Weissman, K.J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep., 2001, 18(4), 380-416.
[http://dx.doi.org/10.1039/a909079g] [PMID: 11548049]
[157]
Marienhagen, J.; Bott, M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J. Biotechnol., 2013, 163(2), 166-178.
[http://dx.doi.org/10.1016/j.jbiotec.2012.06.001] [PMID: 22687248]
[158]
Firn, R.D.; Jones, C.G. Natural products? a simple model to explain chemical diversity. Nat. Prod. Rep., 2003, 20(4), 382-391.
[http://dx.doi.org/10.1039/b208815k] [PMID: 12964834]
[159]
Mitsukura, K.; Suzuki, M.; Shinoda, S.; Kuramoto, T.; Yoshida, T.; Nagasawa, T. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587. Biosci. Biotechnol. Biochem., 2011, 75(9), 1778-1782.
[http://dx.doi.org/10.1271/bbb.110303] [PMID: 21897027]
[160]
Adams, J.P.; Brown, M.J.B.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G-D. Biocatalysis: A pharma perspective. Adv. Synth. Catal., 2019, 361(11), 2421-2432.
[http://dx.doi.org/10.1002/adsc.201900424]
[161]
Schober, M.; MacDermaid, C.; Ollis, A.A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L.A.F.; Brown, M.J.B.; Fuerst, D.; Sanganee, M.J.; Roiban, G-D. Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase. Nat. Catal., 2019, 2(10), 909-915.
[http://dx.doi.org/10.1038/s41929-019-0341-4]
[162]
Kumar, R.; Karmilowicz, M.J.; Burke, D.; Burns, M.P.; Clark, L.A.; Connor, C.G.; Cordi, E.; Do, N.M.; Doyle, K.M.; Hoagland, S.; Lewis, C.A.; Mangan, D.; Martinez, C.A.; McInturff, E.L.; Meldrum, K.; Pearson, R.; Steflik, J.; Rane, A.; Weaver, J. Biocatalytic reductive amination from discovery to commercial manufacturing applied to abrocitinib JAK1 inhibitor. Nat. Catal., 2021, 4(9), 775-782.
[http://dx.doi.org/10.1038/s41929-021-00671-5]
[163]
Montalbetti, C.A.G.N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852.
[http://dx.doi.org/10.1016/j.tet.2005.08.031]
[164]
Philpott, H.K.; Thomas, P.J.; Tew, D.; Fuerst, D.E.; Lovelock, S.L. A versatile biosynthetic approach to amide bond formation. Green Chem., 2018, 20(15), 3426-3431.
[http://dx.doi.org/10.1039/C8GC01697F]
[165]
Chen, Q.; Ji, C.; Song, Y.; Huang, H.; Ma, J.; Tian, X.; Ju, J. Discovery of McbB, an enzyme catalyzing the β-carboline skeleton construction in the marinacarboline biosynthetic pathway. Angew. Chem. Int. Ed., 2013, 52(38), 9980-9984.
[http://dx.doi.org/10.1002/anie.201303449] [PMID: 23913777]
[166]
Ji, C.; Chen, Q.; Li, Q.; Huang, H.; Song, Y.; Ma, J.; Ju, J. Chemoenzymatic synthesis of β-carboline derivatives using McbA, a new ATP-dependent amide synthetase. Tetrahedron Lett., 2014, 55(35), 4901-4904.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.004]
[167]
Petchey, M.; Cuetos, A.; Rowlinson, B.; Dannevald, S.; Frese, A.; Sutton, P.W.; Lovelock, S.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. The broad aryl acid specificity of the amide bond synthetase McbA suggests potential for the biocatalytic synthesis of amides. Angew. Chem. Int. Ed., 2018, 57(36), 11584-11588.
[http://dx.doi.org/10.1002/anie.201804592] [PMID: 30035356]
[168]
Petchey, M.R.; Rowlinson, B.; Lloyd, R.C.; Fairlamb, I.J.S.; Grogan, G. Biocatalytic synthesis of moclobe-mide using the amide bond synthetase McbA coupled with an ATP recycling system. ACS Catal., 2020, 10(8), 4659-4663.
[http://dx.doi.org/10.1021/acscatal.0c00929] [PMID: 32337091]
[169]
Andexer, J.N.; Richter, M. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem, 2015, 16(3), 380-386.
[http://dx.doi.org/10.1002/cbic.201402550] [PMID: 25619338]
[170]
Lubberink, M.; Schnepel, C.; Citoler, J.; Derrington, S.R.; Finnigan, W.; Hayes, M.A.; Turner, N.J.; Flitsch, S.L. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal., 2020, 10(17), 10005-10009.
[http://dx.doi.org/10.1021/acscatal.0c02228]
[171]
Wood, A.J.L.; Weise, N.J.; Frampton, J.D.; Dunstan, M.S.; Hollas, M.A.; Derrington, S.R.; Lloyd, R.C.; Quaglia, D.; Parmeggiani, F.; Leys, D.; Turner, N.J.; Flitsch, S.L. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Ed., 2017, 56(46), 14498-14501.
[http://dx.doi.org/10.1002/anie.201707918] [PMID: 28940631]
[172]
Hetzler, B.E.; Trauner, D.; Lawrence, A.L. Natural product anticipation through synthesis. Nat. Rev. Chem., 2022, 6(3), 170-181.
[http://dx.doi.org/10.1038/s41570-021-00345-7] [PMID: 36747591]
[173]
Novak, A.J.E.; Grigglestone, C.E.; Trauner, D. A biomimetic synthesis elucidates the origin of preuisolactone A. J. Am. Chem. Soc., 2019, 141(39), 15515-15518.
[http://dx.doi.org/10.1021/jacs.9b08892] [PMID: 31518120]
[174]
Powers, Z.; Scharf, A.; Cheng, A.; Yang, F.; Himmelbauer, M.; Mitsuhashi, T.; Barra, L.; Taniguchi, Y.; Kiku-chi, T.; Fujita, M.; Abe, I.; Porco, J.A., Jr Biomimetic synthesis of meroterpenoids by dearomatization-driven polycyclization. Angew. Chem. Int. Ed., 2019, 58(45), 16141-16146.
[http://dx.doi.org/10.1002/anie.201910710] [PMID: 31515901]
[175]
Gu, J.H.; Wang, W.J.; Chen, J.Z.; Liu, J.S.; Li, N.P.; Cheng, M.J.; Hu, L.J.; Li, C.C.; Ye, W.C.; Wang, L. Leptos-perols A and B, two cinnamoylphloroglucinol–sesquiterpenoid hybrids from Leptospermum scoparium: Structural elucidation and biomimetic synthesis. Org. Lett., 2020, 22(5), 1796-1800.
[http://dx.doi.org/10.1021/acs.orglett.0c00109] [PMID: 32091219]
[176]
Kries, H.; O’Connor, S.E. Biocatalysts from alkaloid producing plants. Curr. Opin. Chem. Biol., 2016, 31, 22-30.
[http://dx.doi.org/10.1016/j.cbpa.2015.12.006] [PMID: 26773811]
[177]
Zhao, J.; Méndez-Sánchez, D.; Roddan, R.; Ward, J.M.; Hailes, H.C. Norcoclaurine synthase-mediated stereoselective synthesis of 1,10 -disubstituted, spiro- and bis-tetrahydroisoquinoline alkaloids. ACS Catal., 2021, 11(1), 131-138.
[http://dx.doi.org/10.1021/acscatal.0c04704]
[178]
Schneider, P.; Henßen, B.; Paschold, B.; Chapple, B.P.; Schatton, M.; Seebeck, F.P.; Classen, T.; Pietruszka, J. Biocatalytic C3-indole methylation—A useful tool for the natural-product-inspired stereoselective synthesis of pyrroloindoles. Angew. Chem. Int. Ed., 2021, 60(43), 23412-23418.
[http://dx.doi.org/10.1002/anie.202107619] [PMID: 34399441]
[179]
Liao, C.; Seebeck, F.P. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat. Catal., 2019, 2(8), 696-701.
[http://dx.doi.org/10.1038/s41929-019-0300-0]
[180]
Brufani, M.; Castellano, C.; Marta, M.; Oliverio, A.; Pagella, P.G.; Pavone, F.; Pomponi, M.; Rugarli, P.L. A long-lasting cholinesterase inhibitor affecting neural and behavioral processes. Pharmacol. Biochem. Behav., 1987, 26(3), 625-629.
[http://dx.doi.org/10.1016/0091-3057(87)90176-6] [PMID: 3575379]
[181]
Iijima, S.; Greig, N.H.; Garofalo, P.; Spangler, E.L.; Heller, B.; Brossi, A.; Ingram, D.K. Phenserine: A physostigmine derivative that is a long-acting inhibitor of cholinesterase and demonstrates a wide dose range for at-tenuating a scopolamine-induced learning impairment of rats in a 14-unit T-maze. Psychopharmacology (Berl.), 1993, 112(4), 415-420.
[http://dx.doi.org/10.1007/BF02244888] [PMID: 7871051]
[182]
Winand, L.; Schneider, P.; Kruth, S.; Greven, N.J.; Hiller, W.; Kaiser, M.; Pietruszka, J.; Nett, M. Mutasyn-thesis of Physostigmines in Myxococcus xanthus. Org. Lett., 2021, 23(16), 6563-6567.
[http://dx.doi.org/10.1021/acs.orglett.1c02374] [PMID: 34355569]
[183]
Zhao, J. Synthesis of Tetrahydroisoquinoline Alkaloids using Norcoclaurine Synthase and Phosphate Buffer mediated Pictet- Spengler Reactions., PhD thesis, University College London., 2020.
[184]
Schneider, A.; Jegl, P.; Hauer, B. Stereoselective directed cationic cascades enabled by molecular anchoring in terpene cyclases. Angew. Chem. Int. Ed., 2021, 60(24), 13251-13256.
[http://dx.doi.org/10.1002/anie.202101228] [PMID: 33769659]
[185]
Cosgrove, S.C.; Miller, G.J. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin. Drug Discov., 2022, 17(4), 355-364.
[http://dx.doi.org/10.1080/17460441.2022.2039620] [PMID: 35133222]
[186]
Nyhan, W.L. Nucleotide synthesis via salvage pathway.Encyclopedia of Life Sciences; John Wiley & Sons: Hoboken, New Jersey, 2021.
[http://dx.doi.org/10.1002/9780470015902.a0001399.pub3]
[187]
Taylor, L.L.; Goldberg, F.W.; Hii, K.K.M. Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective aza-Michael reaction. Org. Biomol. Chem., 2012, 10(22), 4424-4432.
[http://dx.doi.org/10.1039/c2ob25122a] [PMID: 22565504]
[188]
Englund, J.A.; Baker, C.J.; Raskino, C.; McKinney, R.E.; Petrie, B.; Fowler, M.G.; Pearson, D.; Gershon, A.; McSherry, G.D.; Abrams, E.J.; Schliozberg, J.; Sullivan, J.L.; Behrman, R.; Connor, J.C.; Hetherington, S.; Lifschitz, M.H.; McLaren, C.; Mendez, H.; Millison, K.; Moye, J.; Nozyce, M.; O’Donnell, K.; Purdue, L.; Schoenfeld, D.; Scott, G.; Spector, S.A.; Wara, D.W. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children. AIDS Clinical Trials Group (ACTG) Study 152 Team. N. Engl. J. Med., 1997, 336(24), 1704-1712.
[http://dx.doi.org/10.1056/NEJM199706123362403] [PMID: 9182213]
[189]
Nawrat, C.C.; Whittaker, A.M.; Huffman, M.A.; McLaughlin, M.; Cohen, R.D.; Andreani, T.; Ding, B.; Li, H.; Weisel, M.; Tschaen, D.M. Nine-step stereoselective synthesis of islatravir from deoxyribose. Org. Lett., 2020, 22(6), 2167-2172.
[http://dx.doi.org/10.1021/acs.orglett.0c00239] [PMID: 32108487]
[190]
Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â€2-methylthioadenosine. IUBMB Life, 2009, 61(12), 1132-1142.
[http://dx.doi.org/10.1002/iub.278] [PMID: 19946895]
[191]
Kamel, S.; Weiß, M.; Klare, H.F.T.; Mikhailopulo, I.A.; Neubauer, P.; Wagner, A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis, 2018, 458, 52-59.
[http://dx.doi.org/10.1016/j.mcat.2018.07.028]
[192]
Kaspar, F.; Giessmann, R.T.; Neubauer, P.; Wagner, A.; Gimpel, M. Thermodynamic reaction control of nucleoside phosphorolysis. Adv. Synth. Catal., 2020, 362(4), 867-876.
[http://dx.doi.org/10.1002/adsc.201901230]
[193]
Alexeev, C.S.; Kulikova, I.V.; Gavryushov, S.; Tararov, V.I.; Mikhailov, S.N. Quantitative prediction of yield in transglycosylation reaction catalyzed by nucleoside phosphorylases. Adv. Synth. Catal., 2018, 360(16), 3090-3096.
[http://dx.doi.org/10.1002/adsc.201800411]
[194]
McIntosh, J.A.; Benkovics, T.; Silverman, S.M.; Huffman, M.A.; Kong, J.; Maligres, P.E.; Itoh, T.; Yang, H.; Verma, D.; Pan, W.; Ho, H.I.; Vroom, J.; Knight, A.M.; Hurtak, J.A.; Klapars, A.; Fryszkowska, A.; Morris, W.J.; Strotman, N.A.; Murphy, G.S.; Maloney, K.M.; Fier, P.S. Engineered Ribosyl-1-Kinase enables concise synthesis of molnupiravir, an anti-viral for COVID-19. ACS Cent. Sci., 2021, 7(12), 1980-1985.
[http://dx.doi.org/10.1021/acscentsci.1c00608] [PMID: 34963891]
[195]
Bennett, J.W. From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can. J. Bot., 1995, 73(S1), 917-924.
[http://dx.doi.org/10.1139/b95-339]
[196]
Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527.
[http://dx.doi.org/10.1016/j.tips.2008.07.004] [PMID: 18752857]
[197]
Demiray, M.; Tang, X.; Wirth, T.; Faraldos, J.A.; Allemann, R.K. An efficient chemoenzymatic synthesis of dihydroartemisinic aldehyde. Angew. Chem. Int. Ed., 2017, 56(15), 4347-4350.
[http://dx.doi.org/10.1002/anie.201609557] [PMID: 28294491]
[198]
Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed., 2012, 51(7), 1706-1709.
[http://dx.doi.org/10.1002/anie.201107446] [PMID: 22250044]
[199]
Ro, D.K.; Paradise, E.M.; Ouellet, M.; Fisher, K.J.; Newman, K.L.; Ndungu, J.M.; Ho, K.A.; Eachus, R.A.; Ham, T.S.; Kirby, J.; Chang, M.C.Y.; Withers, S.T.; Shiba, Y.; Sarpong, R.; Keasling, J.D. Production of the antimalar-ial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086), 940-943.
[http://dx.doi.org/10.1038/nature04640] [PMID: 16612385]
[200]
Botta, B.; Monache, G.; Misiti, D.; Vitali, A.; Zappia, G. Aryltetralin lignans: Chemistry, pharmacology and biotransformations. Curr. Med. Chem., 2001, 8(11), 1363-1381.
[http://dx.doi.org/10.2174/0929867013372292] [PMID: 11562272]
[201]
Li, J.; Zhang, X.; Renata, H. Asymmetric chemoenzymatic synthesis of (-)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed., 2019, 58(34), 11657-11660.
[http://dx.doi.org/10.1002/anie.201904102] [PMID: 31241812]
[202]
DeMartino, M.P.; Chen, K.; Baran, P.S. Intermolecular enolate heterocoupling: Scope, mechanism, and application. J. Am. Chem. Soc., 2008, 130(34), 11546-11560.
[http://dx.doi.org/10.1021/ja804159y] [PMID: 18680297]
[203]
Chang, W.; Yang, Z.J.; Tu, Y.H.; Chien, T.C. Reaction mechanism of a nonheme iron enzyme catalyzed oxi-dative cyclization via C–C bond formation. Org. Lett., 2019, 21(1), 228-232.
[http://dx.doi.org/10.1021/acs.orglett.8b03670] [PMID: 30550285]
[204]
Lazzarotto, M.; Hammerer, L.; Hetmann, M.; Borg, A.; Schmermund, L.; Steiner, L.; Hartmann, P.; Belaj, F.; Kroutil, W.; Gruber, K.; Fuchs, M. Chemoenzymatic total synthesis of deoxy-, epi-, and podophyllotoxin and a biocatalytic kinetic resolution of dibenzylbutyrolactones. Angew. Chem. Int. Ed., 2019, 58(24), 8226-8230.
[http://dx.doi.org/10.1002/anie.201900926] [PMID: 30920120]
[205]
Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259.
[http://dx.doi.org/10.1021/cr100307m] [PMID: 21830756]
[206]
Cosgrove, S.C.; Hussain, S.; Turner, N.J.; Marsden, S.P. Synergistic Chemo/Biocatalytic Synthesis of Alkaloidal Tetrahydroquinolines. ACS Catal., 2018, 8(6), 5570-5573.
[http://dx.doi.org/10.1021/acscatal.8b01220]
[207]
Ghislieri, D.; Green, A.P.; Pontini, M.; Willies, S.C.; Rowles, I.; Frank, A.; Grogan, G.; Turner, N.J. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J. Am. Chem. Soc., 2013, 135(29), 10863-10869.
[http://dx.doi.org/10.1021/ja4051235] [PMID: 23808566]
[208]
Deng, G.; Wan, N.; Qin, L.; Cui, B.; An, M.; Han, W.; Chen, Y. Deracemization of Phenyl-Substituted 2 Methyl-1,2,3,4 Tetrahydroquinolines by a Recombinant Monoamine Oxidase from Pseudomo-nas monteilii ZMU-T01. ChemCatChem, 2018, 10(11), 2374-2377.
[http://dx.doi.org/10.1002/cctc.201701995]
[209]
Yao, P.; Cong, P.; Gong, R.; Li, J.; Li, G.; Ren, J.; Feng, J.; Lin, J.; Lau, P.C.K.; Wu, Q.; Zhu, D. Biocatalytic Route to Chiral 2-Substituted-1,2,3,4-Tetrahydroquinolines Using Cyclohexylamine Oxidase Muteins. ACS Catal., 2018, 8(3), 1648-1652.
[http://dx.doi.org/10.1021/acscatal.7b03552]
[210]
Chapman, J.; Ismail, A.; Dinu, C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 2018, 8(6), 238.
[http://dx.doi.org/10.3390/catal8060238]
[211]
Liese, A.; Seelbach, K.; Wandrey, C. Industrial biotransformations; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2006.
[http://dx.doi.org/10.1002/3527608184]
[212]
Neto, R.N.M.; Barros Gomes, E.; Weba-Soares, L.; Dias, L.R.L.; da Silva, L.C.N.; de Miranda, R.C.M. Bio-technological Production of Statins: Metabolic Aspects and Genetic Approaches. Curr. Pharm. Biotechnol., 2019, 20(15), 1244-1259.
[http://dx.doi.org/10.2174/1389201020666190718165746] [PMID: 31333127]
[213]
Walsh, G. Biopharmaceuticals: Biochemistry and biotechnology; John Wiley & Sons; Hoboken: New Jersey, 2018, pp. 1-576.
[214]
Bartsch, T.; Becker, M.; Rolf, J.; Rosenthal, K.; Lütz, S. Biotechnological production of cyclic dinucleo-tides—Challenges and opportunities. Biotechnol. Bioeng., 2022, 119(3), 677-684.
[http://dx.doi.org/10.1002/bit.28027] [PMID: 34953086]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy