Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Circadian Rhythms and Sleep Disorders Associated to Major Depressive Disorder: Pathophysiology and Therapeutic Opportunities

Author(s): Luana M. Manosso, Luciano A. Duarte, Nicoly S. Martinello, Gisiane B. Mathia and Gislaine Z. Réus*

Volume 23, Issue 9, 2024

Published on: 25 October, 2023

Page: [1085 - 1100] Pages: 16

DOI: 10.2174/0118715273254093231020052002

Price: $65

Abstract

Major depressive disorder (MDD) is a complex mood disorder. While much progress has been made in understanding the pathophysiology of MDD, no single mechanism can explain all facets of this disorder. Several studies show that disturbances in biological rhythms can lead to the development of MDD. Indeed, insomnia or hypersomnia are symptoms included in the MDD diagnostic criteria. Clinical studies and meta-analyses showed a strong relationship between MDD and sleep disorders. Sleep disorder and MDD are associated with activation in the hypothalamicpituitary- adrenal (HPA) axis and inflammation. The increase in inflammatory response can activate the kynurenine pathway, decrease serotonin synthesis, and affect other factors involved in the pathophysiology of neuropsychiatric conditions. Moreover, sleep disorders and MDD can change the gut microbiota and alter the microbiota-gut-brain axis. Thus, this review discusses the relationship between MDD, circadian rhythms, and sleep disorders, describing the potential pathophysiological mechanism shared in these conditions. In addition, therapeutic opportunities based on antiinflammatory, antioxidant, HPA axis regulatory, and synapse-modulating actions are raised. For the article search, we used the PubMed database. Both sleep disorders and changes in biological rhythms have a bidirectional relationship with MDD. Although some pathophysiological mechanisms, including inflammation, changes in the gut microbiota, and decreased neuroplasticity, may be involved in the relationship between sleep, circadian rhythms, and MDD, other mechanisms are not yet well understood. Therapeutic opportunities based on anti-inflammatory, antioxidant, HPA regulatory axis, and synapse modulating actions appear to be promising targets in preventing MDD, circadian rhythm disturbances, and sleep disorders.

Graphical Abstract

[1]
Malhi GS, Mann JJ. Depression. Lancet 2018; 392(10161): 2299-312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[2]
WHO Depression and Other Common Mental Disorders Global Health Estimates. 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf
[3]
Dudek KA, Dion-Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53(1): 183-221.
[http://dx.doi.org/10.1111/ejn.14547] [PMID: 31421056]
[4]
Irwin MR. Why sleep is important for health: A psychoneuroimmunology perspective. Annu Rev Psychol 2015; 66(1): 143-72.
[http://dx.doi.org/10.1146/annurev-psych-010213-115205] [PMID: 25061767]
[5]
Korostovtseva L, Bochkarev M, Sviryaev Y. Sleep and cardiovascular risk. Sleep Med Clin 2021; 16(3): 485-97.
[http://dx.doi.org/10.1016/j.jsmc.2021.05.001] [PMID: 34325825]
[6]
Hombali A, Seow E, Yuan Q, et al. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res 2019; 279: 116-22.
[http://dx.doi.org/10.1016/j.psychres.2018.07.009] [PMID: 30072039]
[7]
Murphy MJ, Peterson MJ. Sleep disturbances in depression. Sleep Med Clin 2015; 10(1): 17-23.
[http://dx.doi.org/10.1016/j.jsmc.2014.11.009] [PMID: 26055669]
[8]
Diagnostic and Statistical Manual of Mental Disorders Diagnostic and Statistical Manual of Mental Disorders. (5th ed.), Arlington: American Psychiatric Association 2013.
[9]
Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 2005; 493(1): 92-8.
[http://dx.doi.org/10.1002/cne.20770] [PMID: 16254994]
[10]
Au J, Reece J. The relationship between chronotype and depressive symptoms: A meta-analysis. J Affect Disord 2017; 218: 93-104.
[http://dx.doi.org/10.1016/j.jad.2017.04.021] [PMID: 28463712]
[11]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018; 391(10128): 1357-66.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[12]
McClintock SM, Husain MM, Wisniewski SR, et al. Residual symptoms in depressed outpatients who respond by 50% but do not remit to antidepressant medication. J Clin Psychopharmacol 2011; 31(2): 180-6.
[http://dx.doi.org/10.1097/JCP.0b013e31820ebd2c] [PMID: 21346613]
[13]
Inada K, Enomoto M, Yamato K, Marumoto T, Takeshima M, Mishima K. Effect of residual insomnia and use of hypnotics on relapse of depression: A retrospective cohort study using a health insurance claims database. J Affect Disord 2021; 281: 539-46.
[http://dx.doi.org/10.1016/j.jad.2020.12.040] [PMID: 33401142]
[14]
Delgado PL. Depression: The case for a monoamine deficiency. J Clin Psychiatry 2000; 61(S6): 7-11.
[PMID: 10775018]
[15]
Lener MS, Niciu MJ, Ballard ED, et al. Glutamate and GABA systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 2017; 81: 886-97.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.005] [PMID: 27449797]
[16]
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology 2012; 62(1): 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[17]
Réus GZ, Simões LR, Colpo GD, et al. Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life. Neuroscience 2017; 353: 17-25.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.016] [PMID: 28433652]
[18]
Keller J, Gomez R, Williams G, et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22(4): 527-36.
[http://dx.doi.org/10.1038/mp.2016.120] [PMID: 27528460]
[19]
Tata DA, Anderson BJ. The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: Implications for hippocampal volume reductions in depression. Physiol Behav 2010; 99(2): 186-93.
[http://dx.doi.org/10.1016/j.physbeh.2009.09.008] [PMID: 19786041]
[20]
Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007; 10(9): 1089-93.
[http://dx.doi.org/10.1038/nn1971] [PMID: 17726474]
[21]
Rana T, Behl T, Sehgal A, Srivastava P, Bungau S. Unfolding the role of BDNF as a biomarker for treatment of depression. J Mol Neurosci 2021; 71(10): 2008-21.
[http://dx.doi.org/10.1007/s12031-020-01754-x] [PMID: 33230708]
[22]
Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71(2): 171-86.
[http://dx.doi.org/10.1097/PSY.0b013e3181907c1b] [PMID: 19188531]
[23]
Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67(5): 446-57.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[24]
Smith KJ, Au B, Ollis L, Schmitz N. The association between C-reactive protein, Interleukin-6 and depression among older adults in the community: A systematic review and meta-analysis. Exp Gerontol 2018; 102: 109-32.
[http://dx.doi.org/10.1016/j.exger.2017.12.005] [PMID: 29237576]
[25]
Köhler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr Scand 2017; 135(5): 373-87.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[26]
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 2019; 81: 24-40.
[http://dx.doi.org/10.1016/j.bbi.2019.06.015] [PMID: 31195092]
[27]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[28]
Troubat R, Barone P, Leman S, et al. Neuroinflammation and depression: A review. Eur J Neurosci 2021; 53(1): 151-71.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[29]
Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015; 51: 164-75.
[http://dx.doi.org/10.1016/j.psyneuen.2014.09.025] [PMID: 25462890]
[30]
Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today 2020; 25(7): 1270-6.
[http://dx.doi.org/10.1016/j.drudis.2020.05.001] [PMID: 32404275]
[31]
Brown SJ, Huang XF, Newell KA. The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev 2021; 127: 917-27.
[http://dx.doi.org/10.1016/j.neubiorev.2021.05.018] [PMID: 34029552]
[32]
Hunt C, Macedo e Cordeiro T, Suchting R, et al. Effect of immune activation on the kynurenine pathway and depression symptoms - A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 118: 514-23.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.010] [PMID: 32853625]
[33]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[34]
Foster JA, McVey Neufeld KA. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5): 305-12.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[35]
Sanada K, Nakajima S, Kurokawa S, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord 2020; 266: 1-13.
[http://dx.doi.org/10.1016/j.jad.2020.01.102] [PMID: 32056863]
[36]
Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomed J 2018; 41(1): 5-8.
[http://dx.doi.org/10.1016/j.bj.2018.02.003] [PMID: 29673553]
[37]
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2020; 21(2): 67-84.
[http://dx.doi.org/10.1038/s41580-019-0179-2] [PMID: 31768006]
[38]
Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012; 35(1): 445-62.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153128] [PMID: 22483041]
[39]
Albrecht U, Ripperger JA. Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends Neurosci 2018; 41(10): 677-88.
[http://dx.doi.org/10.1016/j.tins.2018.07.007] [PMID: 30274603]
[40]
Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry 2014; 26(2): 139-54.
[http://dx.doi.org/10.3109/09540261.2014.911149] [PMID: 24892891]
[41]
Nabavi SM, Nabavi SF, Sureda A, et al. Anti-inflammatory effects of Melatonin: A mechanistic review. Crit Rev Food Sci Nutr 2019; 59(sup1): S4-S16.
[http://dx.doi.org/10.1080/10408398.2018.1487927] [PMID: 29902071]
[42]
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP. Melatonin receptor ligands: A pharmaco-chemical perspective. J Pineal Res 2020; 69(3): e12672.
[http://dx.doi.org/10.1111/jpi.12672] [PMID: 32531076]
[43]
Pandiperumal S, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85(3): 335-53.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.001] [PMID: 18571301]
[44]
Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev 2010; 90(3): 1063-102.
[http://dx.doi.org/10.1152/physrev.00009.2009] [PMID: 20664079]
[45]
Quante M, Mariani S, Weng J, et al. Zeitgebers and their association with rest-activity patterns. Chronobiol Int 2019; 36(2): 203-13.
[http://dx.doi.org/10.1080/07420528.2018.1527347] [PMID: 30365354]
[46]
Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Malgrange B. Cell “circadian” cycle: New role for mammalian core clock genes. Cell Cycle 2009; 8(6): 832-7.
[http://dx.doi.org/10.4161/cc.8.6.7869] [PMID: 19221497]
[47]
Mignot E, Takahashi JS. A circadian sleep disorder reveals a complex clock. Cell 2007; 128(1): 22-3.
[http://dx.doi.org/10.1016/j.cell.2006.12.024] [PMID: 17218251]
[48]
Borbély AA. Refining sleep homeostasis in the two-process model. J Sleep Res 2009; 18(1): 1-2.
[http://dx.doi.org/10.1111/j.1365-2869.2009.00750.x] [PMID: 19250170]
[49]
Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev 2019; 99(3): 1325-80.
[http://dx.doi.org/10.1152/physrev.00010.2018] [PMID: 30920354]
[50]
American Academy of Sleep Medicine International Classification of Sleep Disorders. (3rd ed.), Darien, IL: American Academy of Sleep Medicine 2014.
[51]
Sateia MJ. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014; 146(5): 1387-94.
[http://dx.doi.org/10.1378/chest.14-0970] [PMID: 25367475]
[52]
Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron 2017; 93(4): 747-65.
[http://dx.doi.org/10.1016/j.neuron.2017.01.014] [PMID: 28231463]
[53]
Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 2002; 16(10): 1959-73.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02257.x] [PMID: 12453060]
[54]
Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 2003; 18(6): 1627-39.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02861.x] [PMID: 14511341]
[55]
Fuller PM, Gooley JJ, Saper CB. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 2006; 21(6): 482-93.
[http://dx.doi.org/10.1177/0748730406294627] [PMID: 17107938]
[56]
Bonnet MH, Arand DL. Hyperarousal and insomnia: State of the science. Sleep Med Rev 2010; 14(1): 9-15.
[http://dx.doi.org/10.1016/j.smrv.2009.05.002] [PMID: 19640748]
[57]
Zhai L, Zhang H, Zhang D. Sleep duration and depression among adults: A meta-analysis of prospective studies. Depress Anxiety 2015; 32(9): 664-70.
[http://dx.doi.org/10.1002/da.22386] [PMID: 26047492]
[58]
Arenas DJ, Thomas A, Wang J, DeLisser HM. A systematic review and meta-analysis of depression, anxiety, and sleep disorders in US adults with food insecurity. J Gen Intern Med 2019; 34(12): 2874-82.
[http://dx.doi.org/10.1007/s11606-019-05202-4] [PMID: 31385212]
[59]
Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: State of the art. Sleep Med Rev 2013; 17(5): 377-90.
[http://dx.doi.org/10.1016/j.smrv.2012.11.001] [PMID: 23391633]
[60]
Garbarino S, Bardwell WA, Guglielmi O, Chiorri C, Bonanni E, Magnavita N. Association of anxiety and depression in obstructive sleep apnea patients: A systematic review and meta-analysis. Behav Sleep Med 2020; 18(1): 35-57.
[http://dx.doi.org/10.1080/15402002.2018.1545649] [PMID: 30453780]
[61]
Maghami M, Shariatpanahi SP, Habibi D, et al. Sleep disorders during pregnancy and postpartum depression: A systematic review and meta-analysis. Int J Dev Neurosci 2021; 81(6): 469-78.
[http://dx.doi.org/10.1002/jdn.10118] [PMID: 33942364]
[62]
Wang X, Cheng S, Xu H. Systematic review and meta-analysis of the relationship between sleep disorders and suicidal behaviour in patients with depression. BMC Psychiatry 2019; 19(1): 303.
[http://dx.doi.org/10.1186/s12888-019-2302-5] [PMID: 31623600]
[63]
Sequeira A, Morgan L, Walsh DM, et al. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide. PLoS One 2012; 7(4): e35367.
[http://dx.doi.org/10.1371/journal.pone.0035367] [PMID: 22558144]
[64]
Roberts RE, Duong HT. The prospective association between sleep deprivation and depression among adolescents. Sleep 2014; 37(2): 239-44.
[http://dx.doi.org/10.5665/sleep.3388] [PMID: 24497652]
[65]
Goldstone A, Javitz HS, Claudatos SA, et al. Sleep disturbance predicts depression symptoms in early adolescence: Initial findings from the adolescent brain cognitive development study. J Adolesc Health 2020; 66(5): 567-74.
[http://dx.doi.org/10.1016/j.jadohealth.2019.12.005] [PMID: 32046896]
[66]
Yu J, Rawtaer I, Fam J, et al. Sleep correlates of depression and anxiety in an elderly Asian population. Psychogeriatrics 2016; 16(3): 191-5.
[http://dx.doi.org/10.1111/psyg.12138] [PMID: 26179204]
[67]
Meijer AM, Reitz E, Deković M. van den Wittenboer GLH, Stoel RD. Longitudinal relations between sleep quality, time in bed and adolescent problem behaviour. J Child Psychol Psychiatry 2010; 51(11): 1278-86.
[http://dx.doi.org/10.1111/j.1469-7610.2010.02261.x] [PMID: 20456533]
[68]
Short MA, Louca M. Sleep deprivation leads to mood deficits in healthy adolescents. Sleep Med 2015; 16(8): 987-93.
[http://dx.doi.org/10.1016/j.sleep.2015.03.007] [PMID: 26141007]
[69]
Bourgouin PA, Rahayel S, Gaubert M, et al. Gray matter substrates of depressive and anxiety symptoms in idiopathic REM sleep behavior disorder. Parkinsonism Relat Disord 2019; 62: 163-70.
[http://dx.doi.org/10.1016/j.parkreldis.2018.12.020] [PMID: 30616869]
[70]
Cheng W, Rolls ET, Ruan H, Feng J. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry 2018; 75(10): 1052-61.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.1941] [PMID: 30046833]
[71]
Soria V, Martínez-Amorós È, Escaramís G, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010; 35(6): 1279-89.
[http://dx.doi.org/10.1038/npp.2009.230] [PMID: 20072116]
[72]
Gebara MA, Siripong N, DiNapoli EA, et al. Effect of insomnia treatments on depression: A systematic review and meta-analysis. Depress Anxiety 2018; 35(8): 717-31.
[http://dx.doi.org/10.1002/da.22776] [PMID: 29782076]
[73]
Irwin MR. Sleep and inflammation: Partners in sickness and in health. Nat Rev Immunol 2019; 19(11): 702-15.
[http://dx.doi.org/10.1038/s41577-019-0190-z] [PMID: 31289370]
[74]
Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 2016; 80(1): 40-52.
[http://dx.doi.org/10.1016/j.biopsych.2015.05.014] [PMID: 26140821]
[75]
Friedman EM, Hayney MS, Love GD, et al. Social relationships, sleep quality, and interleukin-6 in aging women. Proc Natl Acad Sci 2005; 102(51): 18757-62.
[http://dx.doi.org/10.1073/pnas.0509281102] [PMID: 16339311]
[76]
Kaufmann FN, Costa AP, Ghisleni G, et al. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64: 367-83.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[77]
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci 2008; 9(1): 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[78]
John GR, Lee SC, Brosnan CF. Cytokines: Powerful regulators of glial cell activation. Neuroscientist 2003; 9(1): 10-22.
[http://dx.doi.org/10.1177/1073858402239587] [PMID: 12580336]
[79]
Dantzer R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol Rev 2018; 98(1): 477-504.
[http://dx.doi.org/10.1152/physrev.00039.2016] [PMID: 29351513]
[80]
Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci 2018; 12: 494.
[http://dx.doi.org/10.3389/fncel.2018.00494] [PMID: 30618641]
[81]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[82]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[83]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[84]
Selemon LD, Zecevic N. Schizophrenia: A tale of two critical periods for prefrontal cortical development. Transl Psychiatry 2015; 5(8): e623.
[http://dx.doi.org/10.1038/tp.2015.115] [PMID: 26285133]
[85]
Goldstone A, Willoughby AR, de Zambotti M, et al. The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence. Brain Struct Funct 2018; 223(2): 669-85.
[http://dx.doi.org/10.1007/s00429-017-1509-9] [PMID: 28913599]
[86]
Hamo M, Ben , Larson TA, et al. Circadian forced desynchrony of the master clock leads to phenotypic manifestation of depression in rats. eNeuro 2017; 3 ENEURO.0237-16.2016.
[87]
Asarnow LD. Depression and sleep: What has the treatment research revealed and could the HPA axis be a potential mechanism? Curr Opin Psychol 2020; 34: 112-6.
[http://dx.doi.org/10.1016/j.copsyc.2019.12.002] [PMID: 31962280]
[88]
Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab 2005; 90(5): 3106-14.
[http://dx.doi.org/10.1210/jc.2004-1056] [PMID: 15728214]
[89]
van Dalfsen JH, Markus CR. The influence of sleep on human hypothalamic–pituitary–adrenal (HPA) axis reactivity: A systematic review. Sleep Med Rev 2018; 39: 187-94.
[http://dx.doi.org/10.1016/j.smrv.2017.10.002] [PMID: 29126903]
[90]
Szmyd B, Rogut M. Białasiewicz P, Gabryelska A. The impact of glucocorticoids and statins on sleep quality. Sleep Med Rev 2021; 55: 101380.
[http://dx.doi.org/10.1016/j.smrv.2020.101380] [PMID: 33010620]
[91]
Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol 2003; 15(8): 811-2.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01058.x] [PMID: 12834443]
[92]
Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology 2005; 30(9): 846-56.
[http://dx.doi.org/10.1016/j.psyneuen.2005.02.010] [PMID: 15961250]
[93]
Antonijevic I, Antonijevic I. HPA axis and sleep: Identifying subtypes of major depression. Stress 2008; 11(1): 15-27.
[http://dx.doi.org/10.1080/10253890701378967] [PMID: 17853067]
[94]
Wang ZJ, Zhang XQ, Cui XY, et al. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep 2015; 5(1): 9442.
[http://dx.doi.org/10.1038/srep09442] [PMID: 25801728]
[95]
Duric V, Duman RS. Depression and treatment response: Dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 2013; 70(1): 39-53.
[http://dx.doi.org/10.1007/s00018-012-1020-7] [PMID: 22585060]
[96]
Pandi-Perumal SR, Srinivasan V, Spence DW, Cardinali DP. Role of the melatonin system in the control of sleep: Therapeutic implications. CNS Drugs 2007; 21(12): 995-1018.
[http://dx.doi.org/10.2165/00023210-200721120-00004] [PMID: 18020480]
[97]
Satyanarayanan SK, Su H, Lin YW, Su KP. Circadian rhythm and melatonin in the treatment of depression. Curr Pharm Des 2018; 24(22): 2549-55.
[http://dx.doi.org/10.2174/1381612824666180803112304] [PMID: 30073921]
[98]
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 255-66.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[99]
Demirkan A, Lahti J, Direk N, et al. Somatic, positive and negative domains of the Center for Epidemiological Studies Depression (CES-D) scale: A meta-analysis of genome-wide association studies. Psychol Med 2016; 46(8): 1613-23.
[http://dx.doi.org/10.1017/S0033291715002081] [PMID: 26997408]
[100]
Partonen T, Treutlein J, Alpman A, et al. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 2007; 39(3): 229-38.
[http://dx.doi.org/10.1080/07853890701278795] [PMID: 17457720]
[101]
Lavebratt C, Sjöholm LK, Soronen P, et al. CRY2 is associated with depression. PLoS One 2010; 5(2): e9407.
[http://dx.doi.org/10.1371/journal.pone.0009407] [PMID: 20195522]
[102]
Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cell Mol Life Sci 2017; 74(21): 3863-81.
[http://dx.doi.org/10.1007/s00018-017-2609-7] [PMID: 28864909]
[103]
Chitimus DM, Popescu MR, Voiculescu SE, et al. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 2020; 10(9): 1211.
[http://dx.doi.org/10.3390/biom10091211] [PMID: 32825327]
[104]
Valdés-Tovar M, Estrada-Reyes R, Solís-Chagoyán H, et al. Circadian modulation of neuroplasticity by melatonin: A target in the treatment of depression. Br J Pharmacol 2018; 175(16): 3200-8.
[http://dx.doi.org/10.1111/bph.14197] [PMID: 29512136]
[105]
Wang YQ, Li R, Zhang MQ, Zhang Z, Qu WM, Huang ZL. The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol 2015; 13(4): 543-53.
[http://dx.doi.org/10.2174/1570159X13666150310002540] [PMID: 26412074]
[106]
López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 2009; 15(14): 1563-86.
[http://dx.doi.org/10.2174/138161209788168001] [PMID: 19442174]
[107]
He S, Zhang X, Qu S. Glutamate, glutamate transporters, and circadian rhythm sleep disorders in neurodegenerative diseases. ACS Chem Neurosci 2019; 10(1): 175-81.
[http://dx.doi.org/10.1021/acschemneuro.8b00419] [PMID: 30485059]
[108]
Charrier A, Olliac B, Roubertoux P, Tordjman S. Clock genes and altered sleep–wake rhythms: Their role in the development of psychiatric disorders. Int J Mol Sci 2017; 18(5): 938.
[http://dx.doi.org/10.3390/ijms18050938] [PMID: 28468274]
[109]
Bragantini D, Sivertsen B, Gehrman P, Lydersen S, Güzey IC. Variations in circadian genes and individual nocturnal symptoms of insomnia. The HUNT study. Chronobiol Int 2019; 36(5): 681-8.
[http://dx.doi.org/10.1080/07420528.2019.1582540] [PMID: 30862195]
[110]
Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci 2013; 110(24): 9950-5.
[http://dx.doi.org/10.1073/pnas.1305814110] [PMID: 23671070]
[111]
Gyorik D, Eszlari N, Gal Z, et al. Every night and every morn: Effect of variation in CLOCK gene on depression depends on exposure to early and recent stress. Front Psychiatry 2021; 12: 687487.
[http://dx.doi.org/10.3389/fpsyt.2021.687487] [PMID: 34512413]
[112]
Molendijk ML, Spinhoven P, Polak M, Bus B A A, Penninx BWJH, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 2014; 19(7): 791-800.
[http://dx.doi.org/10.1038/mp.2013.105] [PMID: 23958957]
[113]
Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. Interaction between stress and the BDNFVal66Met polymorphism in depression: aA systematic review and meta-analysis. BMC Med 2014; 12(1): 7.
[http://dx.doi.org/10.1186/1741-7015-12-7] [PMID: 24433458]
[114]
Bachmann V, Klein C, Bodenmann S, et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 2012; 35(3): 335-44.
[http://dx.doi.org/10.5665/sleep.1690] [PMID: 22379239]
[115]
Li Y, Hao Y, Fan F, Zhang B. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry 2018; 9: 669.
[http://dx.doi.org/10.3389/fpsyt.2018.00669] [PMID: 30568608]
[116]
Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-18.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[117]
Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-94.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[118]
Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 2014; 26(8): 1155-62.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[119]
Li Y, Zhang B, Zhou Y, et al. Gut microbiota changes and their relationship with inflammation in patients with acute and chronic insomnia. Nat Sci Sleep 2020; 12: 895-905.
[http://dx.doi.org/10.2147/NSS.S271927] [PMID: 33177907]
[120]
Zhang Q, Yun Y, An H, et al. Gut microbiome composition associated with major depressive disorder and sleep quality. Front Psychiatry 2021; 12: 645045.
[http://dx.doi.org/10.3389/fpsyt.2021.645045] [PMID: 34093266]
[121]
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl Res 2017; 179: 223-44.
[http://dx.doi.org/10.1016/j.trsl.2016.10.002] [PMID: 27832936]
[122]
Sharp T. Molecular and cellular mechanisms of antidepressant action. Curr Top Behav Neurosci 2012; 14: 309-25.
[http://dx.doi.org/10.1007/7854_2012_216] [PMID: 22865463]
[123]
Wichniak A, Wierzbicka A. Walęcka M, Jernajczyk W. Effects of antidepressants on sleep. Curr Psychiatry Rep 2017; 19(9): 63.
[http://dx.doi.org/10.1007/s11920-017-0816-4] [PMID: 28791566]
[124]
Schmid DA, Wichniak A, Uhr M, et al. Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, prolactin, melatonin, ghrelin, and leptin, and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology 2006; 31(4): 832-44.
[http://dx.doi.org/10.1038/sj.npp.1300923] [PMID: 16237393]
[125]
Jiang WG, Li SX, Zhou SJ, Sun Y, Shi J, Lu L. Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res 2011; 1399: 25-32.
[http://dx.doi.org/10.1016/j.brainres.2011.05.001] [PMID: 21621196]
[126]
Cheng YS, Sun CK, Yeh PY, Wu MK, Hung KC, Chiu HJ. Serotonergic antidepressants for sleep disturbances in perimenopausal and postmenopausal women: A systematic review and meta-analysis. Menopause 2021; 28(2): 207-16.
[http://dx.doi.org/10.1097/GME.0000000000001647] [PMID: 32898019]
[127]
Alberti S, Chiesa A, Andrisano C, Serretti A. Insomnia and somnolence associated with second-generation antidepressants during the treatment of major depression: A meta-analysis. J Clin Psychopharmacol 2015; 35(3): 296-303.
[http://dx.doi.org/10.1097/JCP.0000000000000329] [PMID: 25874915]
[128]
Phillips JL, Norris S, Talbot J, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: A randomized controlled trial. Am J Psychiatry 2019; 176(5): 401-9.
[http://dx.doi.org/10.1176/appi.ajp.2018.18070834] [PMID: 30922101]
[129]
Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. Am J Psychiatry 2013; 170(10): 1134-42.
[http://dx.doi.org/10.1176/appi.ajp.2013.13030392] [PMID: 23982301]
[130]
Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 2011; 6(8): e23982.
[http://dx.doi.org/10.1371/journal.pone.0023982] [PMID: 21887357]
[131]
Sato S, Bunney B, Mendoza-Viveros L, et al. Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2021; 1-12.
[PMID: 34837078]
[132]
Duncan WC Jr, Sarasso S, Ferrarelli F, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 2013; 16(2): 301-11.
[http://dx.doi.org/10.1017/S1461145712000545] [PMID: 22676966]
[133]
Kohtala S, Alitalo O, Rosenholm M, Rozov S, Rantamäki T. Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2021; 221: 107741.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107741] [PMID: 33189715]
[134]
Song B, Zhu JC. Mechanisms of the rapid effects of ketamine on depression and sleep disturbances: A narrative review. Front Pharmacol 2021; 12: 782457.
[http://dx.doi.org/10.3389/fphar.2021.782457] [PMID: 34970147]
[135]
Duncan WC Jr, Ballard ED, Zarate CA. Ketamine-induced glutamatergic mechanisms of sleep and wakefulness: Insights for developing novel treatments for disturbed sleep and mood. Handb Exp Pharmacol 2017; 253: 337-58.
[http://dx.doi.org/10.1007/164_2017_51] [PMID: 28939975]
[136]
Davies J, Rae TC, Montagu L. Long-term benzodiazepine and Z-drugs use in England: A survey of general practice. Br J Gen Pract 2017; 67(662): e609-13.
[http://dx.doi.org/10.3399/bjgp17X691865] [PMID: 28716996]
[137]
Lim B, Sproule BA, Zahra Z, Sunderji N, Kennedy SH, Rizvi SJ. Understanding the effects of chronic benzodiazepine use in depression: A focus on neuropharmacology. Int Clin Psychopharmacol 2020; 35(5): 243-53.
[http://dx.doi.org/10.1097/YIC.0000000000000316] [PMID: 32459725]
[138]
Kishi T, Matsunaga S, Iwata N. Efficacy and tolerability of Z-drug adjunction to antidepressant treatment for major depressive disorder: A systematic review and meta-analysis of randomized controlled trials. Eur Arch Psychiatry Clin Neurosci 2017; 267(2): 149-61.
[http://dx.doi.org/10.1007/s00406-016-0706-5] [PMID: 27318835]
[139]
Winkler D, Spies M, Al-Resheg Y, et al. Usage of therapeutic sleep deprivation: A survey in psychiatric hospitals in austria, germany, and Switzerland. Behav Sleep Med 2019; 17(6): 713-20.
[http://dx.doi.org/10.1080/15402002.2018.1469494] [PMID: 29775085]
[140]
Geoffroy PA, Palagini L. Biological rhythms and chronotherapeutics in depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106: 110158.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110158] [PMID: 33152388]
[141]
Gottlieb JF, Benedetti F, Geoffroy PA, et al. The chronotherapeutic treatment of bipolar disorders: A systematic review and practice recommendations from the ISBD task force on chronotherapy and chronobiology. Bipolar Disord 2019; 21(8): 741-73.
[http://dx.doi.org/10.1111/bdi.12847] [PMID: 31609530]
[142]
Dallaspezia S, Benedetti F. Sleep deprivation therapy for depression. Curr Top Behav Neurosci 2014; 25: 483-502.
[http://dx.doi.org/10.1007/7854_2014_363] [PMID: 25549913]
[143]
Rahmani M, Rahmani F, Rezaei N. The brain-derived neurotrophic factor: Missing link between sleep deprivation, insomnia, and depression. Neurochem Res 2020; 45(2): 221-31.
[http://dx.doi.org/10.1007/s11064-019-02914-1] [PMID: 31782101]
[144]
O’Brien EM, Chelminski I, Young D, Dalrymple K, Hrabosky J, Zimmerman M. Severe insomnia is associated with more severe presentation and greater functional deficits in depression. J Psychiatr Res 2011; 45(8): 1101-5.
[http://dx.doi.org/10.1016/j.jpsychires.2011.01.010] [PMID: 21306733]
[145]
Pigeon WR, Hegel M, Unützer J, et al. Is insomnia a perpetuating factor for late-life depression in the IMPACT cohort? Sleep 2008; 31(4): 481-8.
[http://dx.doi.org/10.1093/sleep/31.4.481] [PMID: 18457235]
[146]
Ferracioli-Oda E, Qawasmi A, Bloch MH. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS One 2013; 8(5): e63773.
[http://dx.doi.org/10.1371/journal.pone.0063773] [PMID: 23691095]
[147]
Li T, Jiang S, Han M, et al. Exogenous melatonin as a treatment for secondary sleep disorders: A systematic review and meta-analysis. Front Neuroendocrinol 2019; 52: 22-8.
[http://dx.doi.org/10.1016/j.yfrne.2018.06.004] [PMID: 29908879]
[148]
Fatemeh G, Sajjad M, Niloufar R, Neda S, Leila S, Khadijeh M. Effect of melatonin supplementation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2022; 269(1): 205-16.
[http://dx.doi.org/10.1007/s00415-020-10381-w] [PMID: 33417003]
[149]
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54: 100746.
[http://dx.doi.org/10.1016/j.yfrne.2019.04.003] [PMID: 31002895]
[150]
Hansen MV, Danielsen AK, Hageman I, Rosenberg J, Gögenur I. The therapeutic or prophylactic effect of exogenous melatonin against depression and depressive symptoms: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2014; 24(11): 1719-28.
[http://dx.doi.org/10.1016/j.euroneuro.2014.08.008] [PMID: 25224106]
[151]
Arioz BI, Tastan B, Tarakcioglu E, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 2019; 10: 1511.
[http://dx.doi.org/10.3389/fimmu.2019.01511] [PMID: 31327964]
[152]
Ali T, Hao Q, Ullah N, et al. Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci 2020; 13: 96.
[http://dx.doi.org/10.3389/fnmol.2020.00096] [PMID: 32595452]
[153]
Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB. Melatonin reverses the depression-associated behaviour and regulates microglia, fractalkine expression and neurogenesis in adult mice exposed to chronic mild stress. Neuroscience 2020; 440: 316-36.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.014] [PMID: 32417342]
[154]
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT 1 and MT 2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol 2016; 56(1): 361-83.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[155]
Mi WF, Tabarak S, Wang L, et al. Effects of agomelatine and mirtazapine on sleep disturbances in major depressive disorder: Evidence from polysomnographic and resting-state functional connectivity analyses. Sleep 2020; 43(11): zsaa092.
[http://dx.doi.org/10.1093/sleep/zsaa092] [PMID: 32406918]
[156]
Quera-Salva MA, Lemoine P, Guilleminault C. Impact of the novel antidepressant agomelatine on disturbed sleep-wake cycles in depressed patients. Hum Psychopharmacol 2010; 25(3): 222-9.
[http://dx.doi.org/10.1002/hup.1112] [PMID: 20373473]
[157]
Dmitrzak-Weglarz M, Banach E, Bilska K, et al. Molecular regulation of the melatonin biosynthesis pathway in unipolar and bipolar depression. Front Pharmacol 2021; 12: 666541.
[http://dx.doi.org/10.3389/fphar.2021.666541] [PMID: 33981243]
[158]
Chumboatong W, Khamchai S, Tocharus C, Govitrapong P, Tocharus J. Agomelatine exerts an anti-inflammatory effect by inhibiting microglial activation through TLR4/NLRP3 pathway in pMCAO rats. Neurotox Res 2022; 40(1): 259-66.
[http://dx.doi.org/10.1007/s12640-021-00447-6] [PMID: 34843079]
[159]
Saeed M, Naveed M, Arif M, et al. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomed Pharmacother 2017; 95: 1260-75.
[http://dx.doi.org/10.1016/j.biopha.2017.09.024] [PMID: 28938517]
[160]
Williams JL, Everett JM, D’Cunha NM, et al. The effects of green tea amino acid l-theanine consumption on the ability to manage stress and anxiety levels: A systematic review. Plant Foods Hum Nutr 2020; 75(1): 12-23.
[http://dx.doi.org/10.1007/s11130-019-00771-5] [PMID: 31758301]
[161]
Hidese S, Ogawa S, Ota M, et al. Effects of l-theanine administration on stress-related symptoms and cognitive functions in healthy adults: A randomized controlled trial. Nutrients 2019; 11(10): 2362.
[http://dx.doi.org/10.3390/nu11102362] [PMID: 31623400]
[162]
White D, de Klerk S, Woods W, Gondalia S, Noonan C, Scholey A. Anti-stress, behavioural and magnetoencephalography effects of an l-theanine-based nutrient drink: A randomised, double-blind, placebo-controlled, crossover trial. Nutrients 2016; 8(1): 53.
[http://dx.doi.org/10.3390/nu8010053] [PMID: 26797633]
[163]
Kotha RR, Luthria DL. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019; 24(16): 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[164]
Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: A meta-analysis. Crit Rev Food Sci Nutr 2020; 60(15): 2643-53.
[http://dx.doi.org/10.1080/10408398.2019.1653260] [PMID: 31423805]
[165]
Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical use of curcumin in depression: A meta-analysis. J Am Med Dir Assoc 2017; 18(6): 503-8.
[http://dx.doi.org/10.1016/j.jamda.2016.12.071] [PMID: 28236605]
[166]
Kumar A, Singh A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine 2008; 15(8): 577-86.
[http://dx.doi.org/10.1016/j.phymed.2008.02.003] [PMID: 18586477]
[167]
Noorafshan A, Karimi F, Karbalay-Doust S, Kamali AM. Using curcumin to prevent structural and behavioral changes of medial prefrontal cortex induced by sleep deprivation in rats. EXCLI J 2017; 16: 510-20.
[PMID: 28694754]
[168]
Saberi-Karimian M, Ghazizadeh H, Mohammadzadeh E, Ferns GA, Ghayour-Mobarhan M, Sahebkar A. Does curcumin have an effect on sleep duration in metabolic syndrome patients? Avicenna J Phytomed 2021; 11(2): 190-8.
[PMID: 33907677]
[169]
Tabrizi R, Vakili S, Akbari M, et al. The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33(2): 253-62.
[http://dx.doi.org/10.1002/ptr.6226] [PMID: 30402990]
[170]
Sarraf P, Parohan M, Javanbakht MH, Ranji-Burachaloo S, Djalali M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Res 2019; 69: 1-8.
[http://dx.doi.org/10.1016/j.nutres.2019.05.001] [PMID: 31279955]
[171]
Zhang W, Guo Y, Han W, et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int Immunopharmacol 2019; 67: 138-44.
[http://dx.doi.org/10.1016/j.intimp.2018.12.012] [PMID: 30551030]
[172]
Liao D, Lv C, Cao L, et al. Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats. Oxid Med Cell Longev 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/9268083] [PMID: 33014280]
[173]
Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ. Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: Possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1785-93.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.012] [PMID: 21741425]
[174]
Lopresti AL. The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? Adv Nutr 2018; 9(1): 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]
[175]
Cherasse Y, Urade Y. Dietary zinc acts as a sleep modulator. Int J Mol Sci 2017; 18(11): 2334.
[http://dx.doi.org/10.3390/ijms18112334] [PMID: 29113075]
[176]
Saito H, Cherasse Y, Suzuki R, Mitarai M, Ueda F, Urade Y. Zinc-rich oysters as well as zinc-yeast- and astaxanthin-enriched food improved sleep efficiency and sleep onset in a randomized controlled trial of healthy individuals. Mol Nutr Food Res 2017; 61(5): 1600882.
[http://dx.doi.org/10.1002/mnfr.201600882] [PMID: 28019085]
[177]
Jafari F, Tarrahi MJ, Farhang A, Amani R. Effect of zinc supplementation on quality of life and sleep quality in young women with premenstrual syndrome: A randomized, double-blind, placebo-controlled trial. Arch Gynecol Obstet 2020; 302(3): 657-64.
[http://dx.doi.org/10.1007/s00404-020-05628-w] [PMID: 32514756]
[178]
da Silva LEM, de Santana MLP, Costa PRF, et al. Zinc supplementation combined with antidepressant drugs for treatment of patients with depression: A systematic review and meta-analysis. Nutr Rev 2021; 79(1): 1-12.
[http://dx.doi.org/10.1093/nutrit/nuaa039] [PMID: 32885249]
[179]
Yosaee S, Clark CCT, Keshtkaran Z, Ashourpour M, Keshani P, Soltani S. Zinc in depression: From development to treatment: A comparative/dose response meta-analysis of observational studies and randomized controlled trials. Gen Hosp Psychiatry 2022; 74: 110-7.
[http://dx.doi.org/10.1016/j.genhosppsych.2020.08.001] [PMID: 32829928]
[180]
Nowak G. Zinc, future mono/adjunctive therapy for depression: Mechanisms of antidepressant action. Pharmacol Rep 2015; 67(3): 659-62.
[http://dx.doi.org/10.1016/j.pharep.2015.01.015] [PMID: 25933983]
[181]
Sensi SL, Paoletti P, Koh JY, Aizenman E, Bush AI, Hershfinkel M. The neurophysiology and pathology of brain zinc. J Neurosci 2011; 31(45): 16076-85.
[http://dx.doi.org/10.1523/JNEUROSCI.3454-11.2011] [PMID: 22072659]
[182]
Młyniec K, Singewald N, Holst B, Nowak G. GPR39 Zn2+-sensing receptor: A new target in antidepressant development? J Affect Disord 2015; 174: 89-100.
[http://dx.doi.org/10.1016/j.jad.2014.11.033] [PMID: 25490458]
[183]
Jarosz M, Olbert M, Wyszogrodzka G. Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017; 25(1): 11-24.
[http://dx.doi.org/10.1007/s10787-017-0309-4] [PMID: 28083748]
[184]
Młyniec K, Budziszewska B, Holst B, Ostachowicz B, Nowak G. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus. Int J Neuropsychopharmacol 2014; 18(3): 1-8.
[PMID: 25609596]
[185]
Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M. The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 2012; 12(10): 728-34.
[http://dx.doi.org/10.1038/nri3312] [PMID: 23007572]
[186]
Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 2019; 102: 13-23.
[http://dx.doi.org/10.1016/j.neubiorev.2019.03.023] [PMID: 31004628]
[187]
Irwin C, McCartney D, Desbrow B, Khalesi S. Effects of probiotics and paraprobiotics on subjective and objective sleep metrics: A systematic review and meta-analysis. Eur J Clin Nutr 2020; 74(11): 1536-49.
[http://dx.doi.org/10.1038/s41430-020-0656-x] [PMID: 32433598]
[188]
Lee HJ, Hong JK, Kim JK, et al. Effects of probiotic NVP-1704 on mental health and sleep in healthy adults: An 8-Week randomized, double-blind, placebo-controlled trial. Nutrients 2021; 13(8): 2660.
[http://dx.doi.org/10.3390/nu13082660] [PMID: 34444820]
[189]
Tian P, Chen Y, Zhu H, et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav Immun 2022; 100: 233-41.
[http://dx.doi.org/10.1016/j.bbi.2021.11.023] [PMID: 34875345]
[190]
Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019; 100: 213-22.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.010] [PMID: 30388595]
[191]
Dhaliwal J, Singh DP, Singh S, et al. Lactobacillus plantarum MTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. J Appl Microbiol 2018; 125(1): 257-69.
[http://dx.doi.org/10.1111/jam.13765] [PMID: 29575441]
[192]
Takada M, Nishida K, Kataoka-Kato A, et al. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol Motil 2016; 28(7): 1027-36.
[http://dx.doi.org/10.1111/nmo.12804] [PMID: 26896291]
[193]
Bivona G, Gambino CM, Iacolino G, Ciaccio M. Vitamin D and the nervous system. Neurol Res 2019; 41(9): 827-35.
[http://dx.doi.org/10.1080/01616412.2019.1622872] [PMID: 31142227]
[194]
Anglin RES, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. Br J Psychiatry 2013; 202(2): 100-7.
[http://dx.doi.org/10.1192/bjp.bp.111.106666] [PMID: 23377209]
[195]
Wang J, Liu N, Sun W, Chen D, Zhao J, Zhang W. Association between vitamin D deficiency and antepartum and postpartum depression: A systematic review and meta-analysis of longitudinal studies. Arch Gynecol Obstet 2018; 298(6): 1045-59.
[http://dx.doi.org/10.1007/s00404-018-4902-6] [PMID: 30264203]
[196]
Romano F, Muscogiuri G, Di Benedetto E, et al. Vitamin D and sleep regulation: Is there a role for vitamin D? Curr Pharm Des 2020; 26(21): 2492-6.
[http://dx.doi.org/10.2174/1381612826666200310145935] [PMID: 32156230]
[197]
Vellekkatt F, Menon V. Efficacy of vitamin D supplementation in major depression: A meta-analysis of randomized controlled trials. J Postgrad Med 2019; 65(2): 74-80.
[PMID: 29943744]
[198]
Cheng YC, Huang YC, Huang WL. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depress Anxiety 2020; 37(6): 549-64.
[http://dx.doi.org/10.1002/da.23025] [PMID: 32365423]
[199]
Shaffer JA, Edmondson D, Wasson LT, et al. Vitamin D supplementation for depressive symptoms: A systematic review and meta-analysis of randomized controlled trials. Psychosom Med 2014; 76(3): 190-6.
[http://dx.doi.org/10.1097/PSY.0000000000000044] [PMID: 24632894]
[200]
Jamilian H, Amirani E, Milajerdi A, et al. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94: 109651.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109651] [PMID: 31095994]
[201]
Abboud M, Vitamin D. Vitamin D supplementation and sleep: A systematic review and meta-analysis of intervention studies. Nutrients 2022; 14(5): 1076.
[http://dx.doi.org/10.3390/nu14051076] [PMID: 35268051]
[202]
Gao Q, Kou T, Zhuang B, Ren Y, Dong X, Wang Q. The association between vitamin D deficiency and sleep disorders: A systematic review and meta-analysis. Nutrients 2018; 10(10): 1395.
[http://dx.doi.org/10.3390/nu10101395] [PMID: 30275418]
[203]
Majid MS, Ahmad HS, Bizhan H, Hosein HZM, Mohammad A. The effect of vitamin D supplement on the score and quality of sleep in 20–50 year-old people with sleep disorders compared with control group. Nutr Neurosci 2018; 21(7): 511-9.
[http://dx.doi.org/10.1080/1028415X.2017.1317395] [PMID: 28475473]
[204]
Sedaghat K, Naderian R, Pakdel R, Bandegi AR, Ghods Z. Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area. Mol Biol Rep 2021; 48(12): 7865-73.
[http://dx.doi.org/10.1007/s11033-021-06810-2] [PMID: 34642830]
[205]
Sabir MS, Haussler MR, Mallick S, et al. Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr 2018; 13(1): 19.
[http://dx.doi.org/10.1186/s12263-018-0605-7] [PMID: 30008960]
[206]
Tangestani H, Boroujeni HK, Djafarian K, Emamat H, Shab-Bidar S. Vitamin D and the gut microbiota: A narrative literature review. Clin Nutr Res 2021; 10(3): 181-91.
[http://dx.doi.org/10.7762/cnr.2021.10.3.181] [PMID: 34386438]
[207]
Eby GA III, Eby KL. Magnesium for treatment-resistant depression: A review and hypothesis. Med Hypotheses 2010; 74(4): 649-60.
[http://dx.doi.org/10.1016/j.mehy.2009.10.051] [PMID: 19944540]
[208]
You HJ, Cho SE, Kang SG, Cho SJ, Na KS. Decreased serum magnesium levels in depression: A systematic review and meta-analysis. Nord J Psychiatry 2018; 72(7): 534-41.
[http://dx.doi.org/10.1080/08039488.2018.1538388] [PMID: 30444158]
[209]
Li B, Lv J, Wang W, Zhang D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Aust N Z J Psychiatry 2017; 51(3): 219-29.
[http://dx.doi.org/10.1177/0004867416676895] [PMID: 27807012]
[210]
Serefko A, Szopa A, Poleszak E. Magnesium and depression. Magnes Res 2016; 29(3): 112-9.
[PMID: 27910808]
[211]
Cao Y, Zhen S, Taylor A, Appleton S, Atlantis E, Shi Z. Magnesium intake and sleep disorder symptoms: Findings from the jiangsu nutrition study of chinese adults at five-year follow-up. Nutrients 2018; 10(10): 1354.
[http://dx.doi.org/10.3390/nu10101354] [PMID: 30248967]
[212]
Abbasi B, Kimiagar M, Sadeghniiat K, Shirazi MM, Hedayati M, Rashidkhani B. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. J Res Med Sci 2012; 17(12): 1161-9.
[PMID: 23853635]
[213]
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr 2019; 59(1): 72-88.
[http://dx.doi.org/10.1080/10408398.2017.1357534] [PMID: 28799778]
[214]
Ogawa S, Fujii T, Koga N, et al. Plasma L-tryptophan concentration in major depressive disorder: New data and meta-analysis. J Clin Psychiatry 2014; 75(9): e906-15.
[http://dx.doi.org/10.4088/JCP.13r08908] [PMID: 25295433]
[215]
Suga H, Asakura K, Kobayashi S, Nojima M, Sasaki S. Association between habitual tryptophan intake and depressive symptoms in young and middle-aged women. J Affect Disord 2018; 231: 44-50.
[http://dx.doi.org/10.1016/j.jad.2018.01.029] [PMID: 29438897]
[216]
Lindseth G, Helland B, Caspers J. The effects of dietary tryptophan on affective disorders. Arch Psychiatr Nurs 2015; 29(2): 102-7.
[http://dx.doi.org/10.1016/j.apnu.2014.11.008] [PMID: 25858202]
[217]
Lieberman HR, Agarwal S, Fulgoni VL III. Tryptophan intake in the us adult population is not related to liver or kidney function but is associated with depression and sleep outcomes. J Nutr 2016; 146(12): 2609S-15S.
[http://dx.doi.org/10.3945/jn.115.226969] [PMID: 27934652]
[218]
Kikuchi AM, Tanabe A, Iwahori Y. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. J Diet Suppl 2021; 18(3): 316-33.
[http://dx.doi.org/10.1080/19390211.2020.1746725] [PMID: 32272859]
[219]
van Dalfsen JH, Markus CR. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the sleep-promoting effects of tryptophan: A randomized placebo-controlled crossover study. J Psychopharmacol 2019; 33(8): 948-54.
[http://dx.doi.org/10.1177/0269881119855978] [PMID: 31237183]
[220]
van Lee L, Cai S, Loy SL, et al. Relation of plasma tryptophan concentrations during pregnancy to maternal sleep and mental well-being: The GUSTO cohort. J Affect Disord 2018; 225: 523-9.
[http://dx.doi.org/10.1016/j.jad.2017.08.069] [PMID: 28866296]
[221]
Bravo R, Matito S, Cubero J, et al. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 2013; 35(4): 1277-85.
[http://dx.doi.org/10.1007/s11357-012-9419-5] [PMID: 22622709]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy