Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Advancements in Synthesis and Application of 1,5-benzodiazepines a Privileged Scaffold with a Wide Scope of Bioactivities

Author(s): Sonali A. Dhabale, Sumit Kumar, Neeru Bhanwala and Gopal L. Khatik*

Volume 27, Issue 17, 2023

Published on: 25 October, 2023

Page: [1471 - 1483] Pages: 13

DOI: 10.2174/0113852728274525231011054716

Price: $65

Abstract

A heterocyclic scaffold-like benzodiazepine (BZD) has shown a wide variety of medicinal values and utmost importance in pharmaceutical industries. BZDs are sevenmembered heterocyclic molecules and have many structural isomers, such as 1,2; 1,3; 1,4; 1,5; 2,4; and 2,3. Among these BZDs, 1,5-BZDs play a significant role in pharmacological activities like anti-anxiety, anti-convulsion, antimicrobial, sedative, and hypnotics. These moieties have been the subject of extensive research with the development of synthetic methods, leading to the generation of numerous useful molecules over the last few decades. Therefore, we have further explored the recent literature on the 1,5-BZDs synthesis and associated biological activities to expand the role and utility of newer 1.5-BZDs. This review article gives a recent and insightful thought about the synthetic methods and therapeutic applications of 1,5-BZDs.

Next »
Graphical Abstract

[1]
Archer, G.A.; Sternbach, L.H. Chemistry of benzodiazepines. Chem. Rev., 1968, 68(6), 747-784.
[http://dx.doi.org/10.1021/cr60256a004]
[2]
Malcolm, R.J. GABA systems, benzodiazepines, and substance dependence. J. Clin. Psychiatry, 2003, 64(Suppl. 3), 36-40.
[PMID: 12662132]
[3]
Shukla, P.K.; Verma, A.; Mishra, P. Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. New Perspect. Agric. Hum. Heal., 2017, 100-126.
[4]
Hwang, C.S.; Kang, E.M.; Kornegay, C.J.; Staffa, J.A.; Jones, C.M.; McAninch, J.K. Trends in the concomitant prescribing of opioids and benzodiazepines, 2002−2014. Am. J. Prev. Med., 2016, 51(2), 151-160.
[http://dx.doi.org/10.1016/j.amepre.2016.02.014] [PMID: 27079639]
[5]
Neochoritis, C.G.; Tsoleridis, C.A.; Stephanidou-stephanatou, J.; Kontogiorgis, C.A. For antioxidant activity and lipid peroxidation inhibition., 2010, 8409-8420.
[6]
Babu, M.; Pitchumani, K.; Ramesh, P. Synthesis of 5-benzyl-4-aryl-octahydro-1H-benzo[b][1,5]diazepin-2-ones as potent antidepressant and antimicrobial agents. Med. Chem. Res., 2014, 23(4), 2070-2079.
[http://dx.doi.org/10.1007/s00044-013-0694-1]
[7]
Ismail, C.; Nocentini, A.; Supuran, C.T.; Winum, J.Y.; Gharbi, R. 1,5‐Benzodiazepines as a platform for the design of carbonic anhydrase inhibitors. Arch. Pharm., 2022, 355(3), 2100405.
[http://dx.doi.org/10.1002/ardp.202100405] [PMID: 34862650]
[8]
Wang, R.; Reddy, H. Role of glutamate and NMDA in Alzheimer’s desease. J. Alzheimer’s Desese, 2017, 57, 1041-1048.
[9]
Wang, L.; Zhang, P.; Zhang, X.; Zhang, Y.; Li, Y.; Wang, Y. Synthesis and biological evaluation of a novel series of 1,5-benzothiazepine derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2009, 44(7), 2815-2821.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.021] [PMID: 19144450]
[10]
Wang, L.Z.; Li, X.Q.; An, Y.S. 1,5-benzodiazepine derivatives as potential antimicrobial agents: Design, synthesis, biological evaluation, and structure-activity relationships. Org. Biomol. Chem., 2015, 13(19), 5497-5509.
[http://dx.doi.org/10.1039/C5OB00655D] [PMID: 25875695]
[11]
Najafi, N.; Pirali, M.; Dowlatabadi, R.; Bagheri, M.; Rastkari, N.; Abdollahi, M. Synthesis and analgesic and antiinflammatory properties of new benzodiazepine derivatives. Pharm. Chem. J., 2005, 39(12), 641-643.
[http://dx.doi.org/10.1007/s11094-006-0036-4]
[12]
Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement., 2011, 7(5), 532-539.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410] [PMID: 21889116]
[13]
Jainey, P.J.; Bhat, K.I.; Singh, M.K. Microwave induced synthesis of novel benzo [1,4] diazepines as potential antitubercular and antitumor agents. Indian J. Heterocycl. Chem., 2013, 23, 171-176.
[14]
Chen, Y.; Le, V.; Xu, X.; Shao, X.; Liu, J.; Li, Z. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(16), 3948-3951.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.041] [PMID: 25017036]
[15]
Al-Ghulikah, H.; Ibrahim, S.; Ghabi, A.; Mtiraoui, H.; Jeanneau, E.; Msaddek, M. Novel isoxazole linked 1,5-benzodiazepine derivatives: Design, synthesis, molecular docking and antimicrobial evaluation. J. Mol. Struct., 2023, 1272, 134235.
[http://dx.doi.org/10.1016/j.molstruc.2022.134235]
[16]
Kumar, S.; Sandhu, J.S. An efficient synthesis of 1,5-benzodiazepines catalysed by GaCl3 under solvent free conditions. Indian J. Chem., 2008, 47, 1463-1466.
[17]
Balakrishna, M.S.; Kaboudin, B. A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Lett., 2001, 42(6), 1127-1129.
[http://dx.doi.org/10.1016/S0040-4039(00)02168-7]
[18]
Caccia, S.; Garattini, S. Benzodiazepines. In: Antiepileptic drugs; StatPearls, 1985.
[19]
Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol., 2014, 88(4), 640-651.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[20]
Fisher, R.; Blum, D. Clobazam, oxcarbazepine, tiagabine, topiramate, and other new antiepileptic drugs. Epilepsia, 1995, 36(s2), S105-S114.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb05993.x] [PMID: 8784219]
[21]
Gaponov, A.A.; Zlenko, E.T.; Shishkina, S.V.; Shishkin, O.V.; Antypenko, O.M.; Tretiakov, S.V.; Palchikov, V.A. Synthesis, spectroscopic characterization, X-ray structure, and in vivo neurotropic activity of new 1,5-benzodiazepin-2-ones. Med. Chem. Res., 2016, 25(9), 1768-1780.
[http://dx.doi.org/10.1007/s00044-016-1605-z]
[22]
Bostwick, J.R.; Casher, M.I.; Yasugi, S. Benzodiazepines: A versatile clinical tool; Evidence supports their use for alcohol withdrawal, insomnia, anxiety disorders, and other conditions. Curr. Psychiatr., 2012, 11, 54.
[23]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22(1), 1-7.
[http://dx.doi.org/10.1021/jm00187a001] [PMID: 34039]
[24]
Page, C.; Curtis, M.; Walker, M.; Hoffman, B. Drugs used in anesthesia and critical care. Integr. Pharmacol., 2006, 571-587.
[25]
Pandeya, S.N.; Rajput, N. Synthesis and anticonvulsant activity of various mannich and schiff bases of 1,5-benzodiazepines. Int. J. Med. Chem., 2012, 2012
[26]
Nsira, A.; Karoui, A.; Gharbi, R.; Msaddek, M. Chemoselectivity of the 1,3-dipolar cycloaddition of some diazoalkanes with 1,5-benzodiazepine derivatives. J. Chem. Res., 2012, 36(3), 152-156.
[http://dx.doi.org/10.3184/174751912X13300109535030]
[27]
Bateson, A. Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal. Curr. Pharm. Des., 2002, 8(1), 5-21.
[http://dx.doi.org/10.2174/1381612023396681] [PMID: 11812247]
[28]
Tariq, S.H.; Pulisetty, S. Pharmacotherapy for insomnia. Clin. Geriatr. Med., 2008, 24(1), 93-105. vii.
[http://dx.doi.org/10.1016/j.cger.2007.08.009] [PMID: 18035234]
[29]
Balon, R.; Fava, G.A.; Rickels, K. Need for a realistic appraisal of benzodiazepines. World Psychiatry, 2015, 14(2), 243-244.
[http://dx.doi.org/10.1002/wps.20219] [PMID: 26043345]
[30]
Jann, M.; Kennedy, W.K.; Lopez, G. Benzodiazepines. J. Pharm. Pract., 2014, 27(1), 5-16.
[http://dx.doi.org/10.1177/0897190013515001] [PMID: 24436437]
[31]
Uddin, M.S.; Ashraf, G.M.; Mamun, A.A.; Mathew, B. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[32]
Kierner, K.A.; Weixler, D.; Masel, E.K.; Gartner, V.; Watzke, H.H. Polypharmacy in the terminal stage of cancer. Support. Care Cancer, 2016, 24(5), 2067-2074.
[http://dx.doi.org/10.1007/s00520-015-3007-z] [PMID: 26542274]
[33]
Julien, R.M. A Primer of Drug Action: A Concise Nontechnical Guide to the Actions, Uses, and Side Effects of Psychoactive Drugs, Revised and Updated; Holt Paperbacks, 2013.
[34]
Teli, S.; Teli, P.; Soni, S.; Sahiba, N.; Agarwal, S. Synthetic aspects of 1,4- and 1,5-benzodiazepines using o-phenylenediamine: A study of past quinquennial. RSC Advances, 2023, 13(6), 3694-3714.
[http://dx.doi.org/10.1039/D2RA06045K] [PMID: 36756601]
[35]
Bhathiwal, A.S.; Bendi, A.; Tiwari, A. A study on synthesis of benzodiazepine scaffolds using biologically active chalcones as precursors. J. Mol. Struct., 2022, 1258, 132649.
[http://dx.doi.org/10.1016/j.molstruc.2022.132649]
[36]
Mishra, R.; Sharma, A.K.; Kumar, R.; Baweja, V.; Mothsra, P.; Singh, M.K.; Yadav, S.B. Solid support based synthesis of 1,5-benzodiazepines: A mini review. Synth. Commun., 2022, 52(4), 481-503.
[http://dx.doi.org/10.1080/00397911.2021.2024855]
[37]
Ravi, V.; Vijay, K.; Ramu, E.; Ganapaty, S.; Rao, A.S. Synthesis of some 1, 5-benzodiazepine derivatives as a new class of antimicrobial agents. Asian J. Chem., 2007, 19, 5435.
[38]
Pozarentzi, M.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A.; Zika, C.; Demopoulos, V. A combinatorial access to 1,5-benzodiazepine derivatives and their evaluation for aldose reductase inhibition. Tetrahedron, 2009, 65(36), 7741-7751.
[http://dx.doi.org/10.1016/j.tet.2009.06.080]
[39]
Aastha, P.; Navneet, K.; Anshu, A.; Pratima, S.; Dharma, K. 5 benzodiazepines: Overview of properties and synthetic aspects. Res. J. Chem. Sci., 2013, 3, 90.
[40]
Humayun, M.J.; Samanta, D.; Carson, R.P. Clobazam; Treasure Island, 2023.
[41]
Freche, C. Study of an anxiolytic, clobazam, in otorhinolaryngology in psychosomatic pharyngeal manifestations Sem. Hop. Paris, Ther., 1975, 51(4), 261-263.
[PMID: 5777]
[42]
Arya, R.; Giridharan, N.; Anand, V.; Garg, S.K. Clobazam monotherapy for focal or generalized seizures. Cochrane Libr., 2018, 2018(7), CD009258.
[http://dx.doi.org/10.1002/14651858.CD009258.pub3] [PMID: 29995989]
[43]
Montenegro, M.A.; Arif, H.; Nahm, E.A.; Resor, S.R., Jr; Hirsch, L.J. Efficacy of clobazam as add-on therapy for refractory epilepsy: Experience at a US epilepsy center. Clin. Neuropharmacol., 2008, 31(6), 333-338.
[http://dx.doi.org/10.1097/WNF.0b013e31815cd960] [PMID: 19050410]
[44]
Arora, N.; Dhiman, P.; Kumar, S.; Singh, G.; Monga, V. Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorg. Chem., 2020, 97, 103668.
[http://dx.doi.org/10.1016/j.bioorg.2020.103668] [PMID: 32106040]
[45]
Onfi (clobazam) oral suspension 2.5mg/mL. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203993_onfi_toc.cfm (Accessed online on June 10, 2023)
[46]
Stolerman, I. 2023 Encyclopedia of Psychopharmacology; Springer, 2010.
[47]
Eveleigh, P.; Hulme, E.C.; Schudt, C.; Birdsall, N.J. The existence of stable enantiomers of telenzepine and their stereoselective interaction with muscarinic receptor subtypes. Mol. Pharmacol., 1989, 35(4), 477-483.
[PMID: 2704371]
[48]
Csanalosi, I. Triflubazam (ORF 8063), a new benzodiazepine in anxiety neurosis. Curr. Ther. Res. Clin. Exp., 1977, 22, 166-171.
[49]
Clobazam, B.A.; Km, K.; Mc, A.; Mg, V.; Eo, B.; Aa, B.; Dg, D.; Rf, M. Lofendazam, Available from: https://drugs.ncats.io/substance/V7O53S50SN
[50]
Müller, E. Benzodiazepine receptor interactions of arfendazam, a novel 1,5-benzodiazepine. Pharmacopsychiatry, 1985, 18(1), 10-11.
[http://dx.doi.org/10.1055/s-2007-1017288]
[51]
Montaner, J.S.G.; Reiss, P.; Cooper, D.; Vella, S.; Harris, M.; Conway, B.; Wainberg, M.A.; Smith, D.; Robinson, P.; Hall, D.; Myers, M.; Lange, J.M.A. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: The INCAS Trial. Italy, The Netherlands, Canada and Australia Study. JAMA, 1998, 279(12), 930-937.
[http://dx.doi.org/10.1001/jama.279.12.930] [PMID: 9544767]
[52]
Parienti, J.J.; Peytavin, G. Nevirapine once daily: Pharmacology, metabolic profile and efficacy data of the new extended-release formulation. Expert Opin. Drug Metab. Toxicol., 2011, 7(4), 495-503.
[http://dx.doi.org/10.1517/17425255.2011.565331] [PMID: 21417819]
[53]
Carli, M.; Ballabio, M.; Caccia, S.; Garattini, S.; Samanin, R. Studies on some pharmacological activities of 7-nitro-2-amino-5-phenyl-3H-1,5-benzodiazepine (CP 1414 S) in the rat. A comparison with diazepam. Arzneimittelforschung, 1981, 31(10), 1721-1723.
[PMID: 6119091]
[54]
Schimer, J. Cígler, P.; Veselý, J.; Grantz Šašková, K.; Lepšík, M.; Brynda, J.; Řezáčová, P.; Kožíšek, M.; Císařová, I.; Oberwinkler, H.; Kraeusslich, H.G.; Konvalinka, J. Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold. J. Med. Chem., 2012, 55(22), 10130-10135.
[http://dx.doi.org/10.1021/jm301249q] [PMID: 23050738]
[55]
Bethesda (MD): National Library of Medicine; (US), National Center for Biotechnology Information, 2004. Available from: https://Pubchem.Ncbi. Nlm.Nih.Gov/Compound/Tibo(Cited 2023 May 19)
[56]
Bowersox, J. Nevirapine approved by FDA. NIAID AIDS Agenda, 1996, 10.
[PMID: 11363918]
[57]
Afzal Pasha, M.; Puttaramegowda Jayashankara, V. Synthesis of 1,5-benzodiazepine derivatives catalysed by zinc chloride. Heterocycles, 2006, 68(5), 1017-1023.
[http://dx.doi.org/10.3987/COM-05-10647]
[58]
Verma, R.; Bhatia, R.; Singh, G.; Kumar, B.; Mehan, S.; Monga, V. Design, synthesis and neuropharmacological evaluation of new 2,4-disubstituted-1,5-benzodiazepines as CNS active agents. Bioorg. Chem., 2020, 101, 104010.
[http://dx.doi.org/10.1016/j.bioorg.2020.104010] [PMID: 32615464]
[59]
Feng, S.E.; Xu, F.; Shen, Q. An efficient synthesis of 1,5-benzodiazepine derivatives by lanthanide trichloride-catalyzed condensation of o-phenylenediamine with αβ-unsaturatedketone under mild conditions. Chin. J. Chem., 2008, 26(7), 1163-1167.
[http://dx.doi.org/10.1002/cjoc.200890213]
[60]
Kuo, C.; Wang, C.; Kavala, V.; Yao, C. Efficient TCT-catalyzed synthesis of 1,5-benzodiazepine derivatives under mild conditions. Molecules, 2008, 13(9), 2313-2325.
[61]
Majid, S.A.; Khanday, W.A.; Tomar, R. Synthesis of 1,5-benzodiazepine and its derivatives by condensation reaction using H-MCM-22 as catalyst. J. Biomed. Biotechnol., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/510650] [PMID: 22570531]
[62]
Gao, S.T.; Liu, W.H.; Ma, J.J.; Wang, C.; Liang, Q. NbCl5 as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives. Synth. Commun., 2009, 39(18), 3278-3284.
[http://dx.doi.org/10.1080/00397910902752238]
[63]
Kuo, C.W.; More, S.V.; Yao, C.F. NBS as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives under mild conditions. Tetrahedron Lett., 2006, 47(48), 8523-8528.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.128]
[64]
De, S.K.; Gibbs, R.A. Scandium(III) triflate as an efficient and reusable catalyst for synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2005, 46(11), 1811-1813.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.113]
[65]
Varala, R.; Enugala, R.; Nuvula, S.; Adapa, S.R. Ceric ammonium nitrate (CAN) promoted efficient synthesis of 1,5-benzodiazepine derivatives. Synlett, 2006, 1009-1014.
[66]
Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2001, 42(18), 3193-3195.
[http://dx.doi.org/10.1016/S0040-4039(01)00413-0]
[67]
Qian, J.; Liu, Y.; Cui, J.; Xu, Z. Gold(I)-catalyzed synthesis of 1,5-benzodiazepines directly from o-phenylenediamines and alkynes. J. Org. Chem., 2012, 77(9), 4484-4490.
[http://dx.doi.org/10.1021/jo300543n] [PMID: 22510002]
[68]
Kaboudin, B.; Navaee, K. Alumina/Phosphorus Pentoxide (APP) as an efficient reagent for the synthesis of 1,5-benzodiazepines under microwave irradiation. Heterocycles, 2001, 55(8), 1443-1446.
[http://dx.doi.org/10.3987/COM-01-9253]
[69]
Pozarentzi, M.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A. An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Lett., 2002, 43(9), 1755-1758.
[http://dx.doi.org/10.1016/S0040-4039(02)00115-6]
[70]
Shaikh, I.N.; Baseer, M.A.; Ahmed, D.B.; Farooq Adil, S.; Khan, M.; Alwarthan, A. Microwave-assisted green synthesis of 1,5-benzodiazepines using Cu(II)-clay nanocatalyst. J. King Saud Univ. Sci., 2020, 32(1), 979-985.
[http://dx.doi.org/10.1016/j.jksus.2019.08.001]
[71]
Baseer, M.A.; Khan, A.J. An efficient one-pot synthesis of 1,5-benzodiazepine derivatives catalyzed by TBAB under mild conditions. E-J. Chem., 2012, 9(1), 407-414.
[http://dx.doi.org/10.1155/2012/657439]
[72]
Thakuria, H.; Pramanik, A.; Borah, B.M.; Das, G. A one-pot synthesis and self-assembled superstructure of organic salts of a 1,5-benzodiazepine derivative. Tetrahedron Lett., 2006, 47(18), 3135-3138.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.137]
[73]
Jarikote, D.V.; Siddiqui, S.A.; Rajagopal, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions. Tetrahedron Lett., 2003, 44(9), 1835-1838.
[http://dx.doi.org/10.1016/S0040-4039(03)00096-0]
[74]
Das, P.J.; Sarkar, S. Tetraalkylammonium Bromate (TAAB) catalyzed cyclodehydration: A facile synthesis of 2,3-dihydro-1H-1,5-benzodiazepine in aqueous methanol. Indian J. Chem., 2015, 54, 1123-1127.
[75]
Naeimi, H.; Foroughi, H. Efficient, environmentally benign, one-pot procedure for the synthesis of 1,5-benzodiazepine derivatives using N-methyl-2-pyrrolidonium hydrogen sulphate as an ionic liquid catalyst under solvent-free conditions. Chin. J. Catal., 2015, 36(5), 734-741.
[http://dx.doi.org/10.1016/S1872-2067(14)60304-1]
[76]
Jamatia, R.; Gupta, A.; Dam, B.; Saha, M.; Pal, A.K. Graphite oxide: A metal free highly efficient carbocatalyst for the synthesis of 1,5-benzodiazepines under room temperature and solvent free heating conditions. Green Chem., 2017, 19(6), 1576-1585.
[http://dx.doi.org/10.1039/C6GC03110B]
[77]
Sabitha, G.; Reddy, G.S.K.K.; Reddy, K.B.; Reddy, N.M.; Yadav, J.S.A. New, efficient and environmentally benign protocol for the synthesis of 1,5‐benzodiazepines using cerium(iii) chloride/sodium iodide supported on silica gel. Adv. Synth. Catal., 2004, 346(8), 921-923.
[http://dx.doi.org/10.1002/adsc.200303196]
[78]
Bandgar, B.P.; Patil, A.V.; Chavan, O.S. Silica supported fluoroboric acid as a novel, efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines under solvent-free conditions. J. Mol. Catal. Chem., 2006, 256(1-2), 99-105.
[http://dx.doi.org/10.1016/j.molcata.2006.04.024]
[79]
Gholap, S.S.; Chaskar, S.C.; Gill, C.H. Synthesis of 1,5-benzodiazepines using silica perchloric acid: An Effective reusable heterogeneous catalyst under mild condition. Rasayan J. Chem., 2008, 1, 331-336.
[80]
Hazarika, P.; Gogoi, P.; Hatibaruah, S.; Konwar, D. A green synthesis of 3,4-dihydropyrimidin-2-ones and 1,5-benzodiazepines catalyzed by Sn(HPO4)2. H2O nanodisks under solvent-free condition at room temperature. Green Chem. Lett. Rev., 2011, 4(4), 327-339.
[http://dx.doi.org/10.1080/17518253.2011.571719]
[81]
Hazarika, P.; Gogoi, P.; Konwar, D. Efficient and green method for the synthesis of 1,5‐benzodiazepine and quinoxaline derivatives in water. Synth. Commun., 2007, 37(19), 3447-3454.
[http://dx.doi.org/10.1080/00397910701489388]
[82]
Murai, K.; Nakatani, R.; Kita, Y.; Fujioka, H. One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron, 2008, 64(49), 11034-11040.
[http://dx.doi.org/10.1016/j.tet.2008.09.076]
[83]
Mohlala, R.L.; Coyanis, E.M.; Fernandes, M.A.; Bode, M.L. Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4-dihydroquinoxalines using isocyanide-based one-pot, three- and four-component reactions. RSC Advances, 2021, 11(39), 24466-24473.
[http://dx.doi.org/10.1039/D1RA04444C] [PMID: 35479051]
[84]
Gawandi, S.J.; Desai, V.G.; Joshi, S.; Shingade, S.; Pissurlenkar, R.R. Assessment of elementary derivatives of 1,5-benzodiazepine as anticancer agents with synergy potential. Bioorg. Chem., 2021, 117, 105331.
[http://dx.doi.org/10.1016/j.bioorg.2021.105331] [PMID: 34689084]
[85]
El-Subbagh, H.I.; Hassan, G.S.; El-Messery, S.M.; Al-Rashood, S.T.; Al-Omary, F.A.M.; Abulfadl, Y.S.; Shabayek, M.I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modeling study. Eur. J. Med. Chem., 2014, 74, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.004] [PMID: 24469112]
[86]
Henke, B.R.; Aquino, C.J.; Birkemo, L.S.; Croom, D.K.; Dougherty, R.W., Jr; Ervin, G.N.; Grizzle, M.K.; Hirst, G.C.; James, M.K.; Johnson, M.F.; Queen, K.L.; Sherrill, R.G.; Sugg, E.E.; Suh, E.M.; Szewczyk, J.W.; Unwalla, R.J.; Yingling, J.; Willson, T.M. Optimization of 3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines as potent, orally active CCK-A agonists. J. Med. Chem., 1997, 40(17), 2706-2725.
[http://dx.doi.org/10.1021/jm970265x] [PMID: 9276016]
[87]
Willson, T.M.; Henke, B.R.; Momtahen, T.M.; Myers, P.L.; Sugg, E.E.; Unwalla, R.J.; Croom, D.K.; Dougherty, R.W.; Grizzle, M.K.; Johnson, M.F.; Queen, K.L.; Rimele, T.J.; Yingling, J.D.; James, M.K. 3-[2-(N-phenylacetamide)]-1,5-benzodiazepines: Orally active, binding selective CCK-A agonists. J. Med. Chem., 1996, 39(15), 3030-3034.
[http://dx.doi.org/10.1021/jm960205b] [PMID: 8709137]
[88]
Atwal, K.S.; Bergey, J.L.; Hedberg, A.; Moreland, S. Synthesis and biological activity of novel calcium channel blockers: 2,5-dihydro-4-methyl-2-phenyl-1,5-benzothiazepine-3-carboxylic acid esters and 2,5-dihydro-4-methyl-2-phenyl-1,5-benzodiazepine-3-carboxylic acid esters. J. Med. Chem., 1987, 30(4), 635-640.
[http://dx.doi.org/10.1021/jm00387a009] [PMID: 2435903]
[89]
An, Y.; Hao, Z.; Zhang, X.; Wang, L. Efficient synthesis and biological evaluation of a novel series of 1,5-benzodiazepine derivatives as potential antimicrobial agents. Chem. Biol. Drug Des., 2016, 88(1), 110-121.
[http://dx.doi.org/10.1111/cbdd.12739] [PMID: 26850700]
[90]
Misra, A.; Sharma, S.; Sharma, D.; Dubey, S.; Mishra, A.; Kishore, D.; Dwivedi, J. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J. Chem. Sci., 2018, 130(3), 31.
[http://dx.doi.org/10.1007/s12039-018-1430-7]
[91]
Kavali, J.R.; Badami, B.V. 1,5-Benzodiazepine derivatives of 3-arylsydnones: Synthesis and antimicrobial activity of 3-aryl-4-[2′-aryl-2′4′6′7′-tetrahydro-(1′H)-1′5′-benzodiazepine-4′-yl]sydnones. Farmaco, 2000, 55(5), 406-409.
[http://dx.doi.org/10.1016/S0014-827X(00)00061-6] [PMID: 10983288]
[92]
Nguema Ongone, T.; Achour, R.; El Ghoul, M.; El Ouasif, L.; El Jemli, M.; Chemlal, L.; Cherrah, Y.; Alaoui, K.; Zellou, A. Analgesic and antioxidant activities of 4-phenyl-1,5-benzodiazepin-2-one and its long carbon chains derivatives. J. Chem., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/9043570]
[93]
Ha, S.K.; Shobha, D.; Moon, E.; Chari, M.A.; Mukkanti, K.; Kim, S.H.; Ahn, K.H.; Kim, S.Y. Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2010, 20(13), 3969-3971.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.133] [PMID: 20537534]
[94]
Bhat, I.; Kumar, A. Synthesis and anti-inflammatory activity of some novel 1,5-benzodiazepine derivatives. Asian J. Pharm. Clin. Res., 2016, 9, 63-66.
[95]
Anil, S.M.; Shobith, R.; Kiran, K.R.; Swaroop, T.R.; Mallesha, N.; Sadashiva, M.P. Facile synthesis of 1,4-benzodiazepine-2,5-diones and quinazolinones from amino acids as anti-tubercular agents. New J. Chem., 2019, 43(1), 182-187.
[http://dx.doi.org/10.1039/C8NJ04936J]
[96]
Kumar, M.M.K.; Mohan, T.; Mai, G.K.; Sangeeta, G.P.V.; Nagasree, K.P. Synthesis, characterization and biological evaluation of novel 1,4-benzodiazepine derivatives as potent anti-tubercular agents. J. Young Pharm., 2018, 10, 267-271.
[http://dx.doi.org/10.5530/jyp.2018.10.60]
[97]
Roberts, K.; Ursini, A.; Barnaby, R.; Cassarà, P.G.; Corsi, M.; Curotto, G.; Donati, D.; Feriani, A.; Finizia, G.; Marchioro, C.; Niccolai, D.; Oliosi, B.; Polinelli, S.; Ratti, E.; Reggiani, A.; Tedesco, G.; Tranquillini, M.E.; Trist, D.G.; van Amsterdam, F.T.M. Synthesis and structure-activity relationship of new 1,5-dialkyl-1,5-benzodiazepines as cholecystokinin-2 receptor antagonists. Bioorg. Med. Chem., 2011, 19(14), 4257-4273.
[http://dx.doi.org/10.1016/j.bmc.2011.05.057] [PMID: 21689940]
[98]
Nsb, H.C.V.; Mcgowan, D.; Nyanguile, O.; Cummings, M.D.; Vendeville, S.; Vandyck, K.; Van Den Broeck, W.; Boutton, C.W.; De Bondt, H.; Quirynen, L.; Amssoms, K.; Bonfanti, J.; Last, S.; Rombauts, K.; Tahri, A.; Hu, L.; Delouvroy, F.; Vermeiren, K.; Vandercruyssen, G.; Van Der Helm, L.; Cleiren, E.; Mostmans, W.; Lory, P.; Pille, G.; Van Emelen, K.; Fanning, G.; Pauwels, F.; Lin, T.; Simmen, K.; Raboisson, P. Bioorganic & medicinal chemistry letters. Bioorg. Med. Chem. Lett., 2009, 19, 2492-2496.
[99]
Nyanguile, O.; Pauwels, F.; Van den Broeck, W.; Boutton, C.W.; Quirynen, L.; Ivens, T.; van der Helm, L.; Vandercruyssen, G.; Mostmans, W.; Delouvroy, F.; Dehertogh, P.; Cummings, M.D.; Bonfanti, J.F.; Simmen, K.A.; Raboisson, P. 1,5-benzodiazepines, a novel class of hepatitis C virus polymerase nonnucleoside inhibitors. Antimicrob. Agents Chemother., 2008, 52(12), 4420-4431.
[http://dx.doi.org/10.1128/AAC.00669-08] [PMID: 18852280]
[100]
Kaur, L.; Singh, M.P. Synthesis and pharmacological evaluation of substituted N-(3-formyl-4-oxo-4H-chromen-2-Yl)-N-phenylbenzenesulfonamide and its derivatives. Int. J. Pharm. Sci. Res., 2017, 8, 4461-4472.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy