Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dess-Martin Periodinane (DMP) in Organic Synthesis-A Septennial Update (2015-till Date)

Author(s): Ravi Varala*, Vittal Seema, Mohammed Mujahid Alam*, Mohammed Amanullah and Narsimhaswamy Dubasi

Volume 27, Issue 17, 2023

Published on: 25 October, 2023

Page: [1504 - 1530] Pages: 27

DOI: 10.2174/0113852728262311231012060626

Price: $65

Abstract

Dess-Martin periodinane (DMP) is one of the hypervalent iodines that is most frequently utilized as an oxidizing agent in organic chemistry. The authors of this septennial review have critically and methodically presented representative applications of DMP in organic synthesis from 2015 to the present, including oxidations, dehydrogenations, hetero and homo-dimerizations, aromatizations, thiocyanations, halogenations, dearylations, ring expansions, cyclizations, heterocyclic ring formation, and other miscellaneous reactions. This review discusses the range and constraints of these transformations.

Graphical Abstract

[1]
Willgerodt, C. About some aromatic iodine chlorides. J. Prakt. Chem., 1886, 33, 154-160.
[http://dx.doi.org/10.1002/prac.18860330117]
[2]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547]
[3]
Sihag, M.; Soni, R.; Rani, N.; Kinger, M.; Kumar Aneja, D. Recent synthetic applications of hypervalent iodine reagents. A review in three installments. Installment I. Org. Prep. Proced. Int., 2023, 55(1), 1-62.
[http://dx.doi.org/10.1080/00304948.2022.2113964]
[4]
Richardson, R.D.; Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem. Int. Ed., 2006, 45(27), 4402-4404.
[http://dx.doi.org/10.1002/anie.200601817]
[5]
Chipman, A. The mechanistic perspective of IV iodoxolones. Asian J. Org. Chem., 2022, 11(1), e202100522.
[http://dx.doi.org/10.1002/ajoc.202100522]
[6]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154]
[7]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c]
[8]
Zhdankin, V.V. Application of hypervalent iodine compounds in advanced green technologies; Resource-Efficient Technologies, 2021, pp. 1-16.
[9]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, 16(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e]
[10]
Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine(III) reagents and their use in cross-nucleophile coupling. Chem. Sci. (Camb.), 2021, 12(3), 853-864.
[http://dx.doi.org/10.1039/D0SC03266B]
[11]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. Arkivoc, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[12]
Silva, L.F., Jr; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28(10), 1722-1754.
[http://dx.doi.org/10.1039/c1np00028d]
[13]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57(2), 189-214.
[http://dx.doi.org/10.1007/s11426-013-5043-1]
[14]
Shetgaonkar, S.E.; Mamgain, R.; Kikushima, K.; Dohi, T.; Singh, F.V. Palladium-catalyzed organic reactions involving hypervalent iodine reagents. Molecules, 2022, 27(12), 3900.
[http://dx.doi.org/10.3390/molecules27123900]
[15]
Shetgaonkar, S.E.; Krishnan, M.; Singh, F.V. Hypervalent iodine reagents for oxidative rearrangements. Mini Rev. Org. Chem., 2021, 18(2), 138-158.
[http://dx.doi.org/10.2174/1570193X17999200727204349]
[16]
Zhang, B.; Li, X.; Guo, B.; Du, Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem. Commun. (Camb.), 2020, 56(91), 14119-14136.
[http://dx.doi.org/10.1039/D0CC05354F]
[17]
Soni, R.; Sihag, M.; Rani, N.; Kinger, M.; Aneja, D.K. Aqueous mediated reactions involving hypervalent iodine reagents. Asian J. Org. Chem., 2022, 11(9), e202200125.
[http://dx.doi.org/10.1002/ajoc.202200125]
[18]
Rani, N.; Soni, R.; Sihag, M.; Kinger, M.; Aneja, D.K.; Aneja, D.K. Combined approach of hypervalent iodine reagents and transition metals in organic reactions. Adv. Synth. Catal., 2022, 364(11), 1798-1848.
[http://dx.doi.org/10.1002/adsc.202200088]
[19]
Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent iodine-mediated azidation reactions. Eur. J. Org. Chem., 2022, 2022(34), e202200754.
[http://dx.doi.org/10.1002/ejoc.202200754]
[20]
Varala, R.; Seema, V.; Dubasi, N. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis. Organics, 2022, 4(1), 1-40.
[http://dx.doi.org/10.3390/org4010001]
[21]
Stirling, A. Assessing hypervalency in iodanes. Chemistry, 2018, 24(7), 1709-1713.
[http://dx.doi.org/10.1002/chem.201705285]
[22]
Dohi, T.; Zhdankin, V.V.; Kumar, R.; Rimi, R.; Soni, S.; Uttam, B.; China, H. Recyclable hypervalent iodine reagents in modern organic synthesis. Synthesis, 2022, 54(12), 2731-2748.
[http://dx.doi.org/10.1055/s-0041-1737909]
[23]
Dess, D.B.; Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
[24]
Boeckman, R.J.; George, K.M. 1,1,1-triacetoxy-1,1-dihydro-1,2- benziodoxol-3(1H)-one 2009.
[http://dx.doi.org/10.1002/047084289X.rt157m.pub2]
[25]
Schröckeneder, A.; Stichnoth, D.; Mayer, P.; Trauner, D. The crystal structure of the Dess-Martin periodinane. Beilstein J. Org. Chem., 2012, 8, 1523-1527.
[http://dx.doi.org/10.3762/bjoc.8.172]
[26]
Plumb, J.B.; Harper, D. J. Chemical safety: 2-Iodoxybenzoic acid. Chem. Eng. News, 1990, 68, 3.
[27]
Boeckman, R.K., Jr; Shao, P.; Mullins, J.J. “The Dess-Martin periodinane”. Organic syntheses. Collective Volume, 2004, 10, 696.
[28]
Dess, D.B.; Martin, J.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113(19), 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[29]
Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem., 1999, 64(12), 4537-4538.
[http://dx.doi.org/10.1021/jo9824596]
[30]
Ireland, R.E.; Liu, L. An improved procedure for the preparation of the Dess-Martin periodinane. J. Org. Chem., 1993, 58(10), 2899.
[http://dx.doi.org/10.1021/jo00062a040]
[31]
Uchiyama, M.; Miyamoto, K.; Okada, T.; Toyama, T.; Imamura, S. Facile preparation of 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (IBX) and Dess-Martin reagent using sodium hypochlorite under carbon dioxide. Heterocycles, 2021, 103(2), 694-698.
[http://dx.doi.org/10.3987/COM-20-S(K)66]
[32]
Heravi, M.M.; Momeni, T.; Zadsirjan, V.; Mohammadi, L. Application of the Dess-Martin oxidation in total synthesis of natural products. Curr. Org. Synth., 2021, 18(2), 125-196.
[http://dx.doi.org/10.2174/1570179417666200917102634]
[33]
Kupwade, R.V. A concise review of hypervalent iodine with special reference to Dess-Martin periodinane. Mini Rev. Org. Chem., 2020, 17(8), 946-957.
[http://dx.doi.org/10.2174/1570193X17666200221124739]
[34]
Alam, M.M.; Seema, V.; Dubasi, N.; Kurra, M.; Varala, R. Dubasi. N. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-Covering up to march 2022. Mini Rev. Org. Chem., 2023, 20(7), 708-734.
[http://dx.doi.org/10.2174/1570193X20666221021104906]
[35]
Alam, M.M.; Seema, V.; Hussien, M.; Pisal, P.M.; Varala, R.; Amanullah, M. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update. ChemistrySelect, 2023, 8(1), e202204240.
[http://dx.doi.org/10.1002/slct.202204240]
[36]
Amanullah, M.; Varala, R.; Alam, M.M.; Hussien, M.; Bollikolla, H.; Seema, V. Dubasi. N. Applications of PIDA in heterocyclic ring formations: An update from 2015 to date. J. Het. Chem., 2023, 60(8), 1326-1355.
[http://dx.doi.org/10.1002/jhet.4627]
[37]
Varala, R.; Alam, M.M.; Bollikolla, H. Amanullah, M.; Hussein. M. Phenyliodoacetate: Applications in rearrangement/migration reactions. Curr. Org. Chem., 2023, 27(2), 93-107.
[http://dx.doi.org/10.2174/1385272827666230330105241]
[38]
Dong, J.J.; Browne, W.R.; Feringa, B.L. Palladium-catalyzed anti-Markovnikov oxidation of terminal alkenes. Angew. Chem. Int. Ed., 2015, 54(3), 734-744.
[http://dx.doi.org/10.1002/anie.201404856]
[39]
Aguado, J.; Serrano, D.P.; Van Grieken, R.; Escola, J.M.; García, R.; Carretero, S. Modified Wacker of long chain terminal olefins. Book of extended abstracts of the Fourth World Congress on Oxidation Catalysis, Berlin, Potsdam, Germany., 2001, pp. 493-497.
[40]
Chaudhari, D.A.; Fernandes, R.A. Fernandes. R.A. Hypervalent Iodine as terminal oxidant in Wacker type oxidation of terminal olefins to methyl ketones. J. Org. Chem., 2016, 81(5), 2113-2121.
[http://dx.doi.org/10.1021/acs.joc.6b00137]
[41]
Hazlitt, R.A.; Tran, Q-L.; Sowaileh, M.F.; Colby, D.A. Generation of magnesium pentafluoropropen-2-olate from hexafluoroisopropanol and synthesis of 2,2,4,4,4-pentafluoro-3,3-dihydroxyketones. J. Org. Chem., 2017, 82(4), 2231-2236.
[http://dx.doi.org/10.1021/acs.joc.6b02863]
[42]
Mao, L.L.; Li, Y-H.; Yang, S-D. Silver-catalyzed phosphonylation of unprotected propargylic alcohols for the synthesis of allenylphosphoryl compounds. Org. Chem. Front., 2017, 4(4), 608-611.
[http://dx.doi.org/10.1039/C6QO00767H]
[43]
Essid, I.; Laborde, C.; Legros, F.; Sevrain, N.; Touil, S.; Rolland, M.; Ayad, T.; Volle, J.N.; Pirat, J.L.; Virieux, D. Virieux. D. Phosphorus-containing bis-allenes: Synthesis and heterocyclization reactions mediated by iodine or copper dibromide. Org. Lett., 2017, 19(7), 1882-1885.
[http://dx.doi.org/10.1021/acs.orglett.7b00648]
[44]
Swamy, K.C.K.; Anitha, M.; Debnath, S.; Shankar, M. Reactivity of allenylphosphonates/allenylphosphine oxides-some new addition/cycloaddition and cyclization pathways. Pure Appl. Chem., 2019, 91(5), 773-784.
[http://dx.doi.org/10.1515/pac-2018-1111]
[45]
Clarke, P.A.; Santos, S. Strategies for the formation of tetrahydropyran rings in the synthesis of natural products. Eur. J. Org. Chem., 2006, 2006(9), 2045-2053.
[http://dx.doi.org/10.1002/ejoc.200500964]
[46]
Larrosa, I.; Romea, P.; Urpí, F. Synthesis of six-membered oxygenated heterocycles through carbon-oxygen bond-forming reactions. Tetrahedron, 2008, 64(12), 2683-2723.
[http://dx.doi.org/10.1016/j.tet.2007.11.092]
[47]
Nasir, N.M.; Ermanis, K.; Clarke, P.A. Strategies for the construction of tetrahydropyran rings in the synthesis of natural products. Org. Biomol. Chem., 2014, 12(21), 3323-3335.
[http://dx.doi.org/10.1039/C4OB00423J]
[48]
Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. Recent applications of the hetero Diels-Alder reaction in the total synthesis of natural products. RSC Advances, 2015, 5(123), 101999-102075.
[http://dx.doi.org/10.1039/C5RA17488K]
[49]
Glachet, T.; Fache, F.; Pelotier, B.; Piva, O. Olivier. P. Desymmetrization of hepta-1,6-dien-4-ol by a highly stereoselective tandem Prins-Ritter cyclization: Access to new THP acetamides. Synthesis, 2017, 49(23), 5197-5202.
[http://dx.doi.org/10.1055/s-0036-1588521]
[50]
Rulev, A.Y.; Romanov, A.R. Unsaturated polyfluoroalkyl ketones in the synthesis of nitrogen-bearing heterocycles. RSC Advances, 2016, 6(3), 1984-1998.
[http://dx.doi.org/10.1039/C5RA23759A]
[51]
Wang, T.; Niu, D.; Hoye, T.R. The hexadehydro-Diels-Alder cycloisomerization reaction proceeds by a stepwise mechanism. J. Am. Chem. Soc., 2016, 138(25), 7832-7835.
[http://dx.doi.org/10.1021/jacs.6b03786]
[52]
Murray, B.J.; Marsh, T.G.F.; Yufit, D.S.; Fox, M.A.; Harsanyi, A.; Boulton, L.T.; Sandford, G. HFO-1234yf as a CF3-building block: Synthesis and chemistry of CF3-ynones. Eur. J. Org. Chem., 2020, 2020(39), 6236-6244.
[http://dx.doi.org/10.1002/ejoc.202001071]
[53]
Brown, D.G.; Boström, J.J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone. J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409]
[54]
Boström, J.; Brown, D.G.; Young, R.J.; Keserü, G.M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov., 2018, 17(10), 709-727.
[http://dx.doi.org/10.1038/nrd.2018.116]
[55]
Fyfe, J.W.B.; Watson, A.J.B. Recent developments in organoboron chemistry: Old dogs, New tricks. Chem, 2017, 3(1), 31-55.
[http://dx.doi.org/10.1016/j.chempr.2017.05.008]
[56]
Li, J.; Ballmer, S.G.; Gillis, E.P.; Fujii, S.; Schmidt, M.J.; Palazzolo, A.M.E.; Lehmann, J.W.; Morehouse, G.F.; Burke, M.D. Synthesis of many different types of organic small molecules using one automated process. Science, 2015, 347(6227), 1221-1226.
[http://dx.doi.org/10.1126/science.aaa5414]
[57]
Ivon, Y.M.; Kuchkovska, Y.O.; Voitenko, Z.V.; Grygorenko, O.O. Aliphatic α-Boryl-α-bromoketones. Synthesis and Reactivity. Eur. J. Org. Chem., 2020, 2020(23), 3367-3377.
[http://dx.doi.org/10.1002/ejoc.202000078]
[58]
Cordero, F.M.; Giomi, D.; Lascialfari, L. Five-membered ring systems with O and N atoms. Prog. Het. Chem., 2017, 29, 353-382.
[http://dx.doi.org/10.1016/B978-0-08-102310-5.00011-4]
[59]
Cordero, F.M.; Giomi, D.; Lascialfari, L. Five-membered ring systems with O and N atoms. Prog. Het. Chem., 2018, 30, 279-309.
[http://dx.doi.org/10.1016/B978-0-08-102788-2.00011-8]
[60]
Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Five-membered heterocycles. The Chemistry of Heterocycles; Ram, V.; Sethi, A.; Nath, M; Pratap, R., Ed.; Elsevier: Amsterdam, 2019, pp. 149-478.
[61]
Dikošová, L.; Laceková, J.; Záborský, O.; Fischer, R. Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration-oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles. Beilstein J. Org. Chem., 2020, 16, 1313-1319.
[http://dx.doi.org/10.3762/bjoc.16.112]
[62]
Böttger, E.C.; Crich, D. Time for resurrection of a neglected class of antibacterials. ACS Infect. Dis., 2020, 6(2), 168-172.
[http://dx.doi.org/10.1021/acsinfecdis.9b00441]
[63]
Takahashi, Y.; Igarashi, M. Destination of aminoglycoside antibiotics in the ‘post-antibiotic era’. J. Antibiot. (Tokyo), 2018, 71(1), 4-14.
[http://dx.doi.org/10.1038/ja.2017.117]
[64]
Sonousi, A.; Vasella, A.; Crich, D. Synthesis of a pseudodisaccharide suitable for synthesis of ring I modified 4,5-2-deoxystreptamine type aminoglycoside antibiotics. J. Org. Chem., 2020, 85(11), 7583-7587.
[http://dx.doi.org/10.1021/acs.joc.0c00743]
[65]
Fringuelli, F.; Taticchi, A. The Diels-Alder reaction-Selected practical methods; Wiley: Chichester, 2002.
[66]
Jessen, B.M.; Taarning, E.; Madsen, R. Synthesis, stability, and Diels-Alder reactions of methyl 2-oxobut-3-enoate. Eur. J. Org. Chem., 2021, 2021(29), 4049-4053.
[http://dx.doi.org/10.1002/ejoc.202100370]
[67]
Valentina, B.; Alberto, S.; Matteo, B.; Manuela, A.; Aurora, Z.; Ugo, M. A practical, enantioselective synthesis of the fragrances canthoxal and silvial®, and evaluation of their olfactory activity. Synthesis, 2015, 47, 272-278.
[68]
Kaspar, M.; Kudova, E. Selectivity of oxidizing agents toward axial and equatorial hydroxyl groups. J. Org. Chem., 2022, 87(14), 9157-9170.
[http://dx.doi.org/10.1021/acs.joc.2c00877]
[69]
Gouverneur, V.; Muller, K. Fluorine in pharmaceutical and medicinal chemistry: From biophysical aspects to clinical applications; Imperial College Press: London, 2012.
[http://dx.doi.org/10.1142/p746]
[70]
Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev., 2015, 115(2), 650-682.
[http://dx.doi.org/10.1021/cr500223h]
[71]
Liu, H.; Ge, H.; Shen, Q. Reagents for direct trifluoromethylthiolation. Emerging Fluorinated Motifs Synth. Prop. Appl., 2020, 2, 309-341.
[72]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691]
[73]
Wang, H.; Yao, Y.; Zhang, Z.; Huang, Y.; Weng, Z. Synthesis of 2,3-bis(trifluoromethylseleno) indoles through an oxidative copper-mediated domino reaction. J. Org. Chem., 2022, 87(5), 3605-3612.
[http://dx.doi.org/10.1021/acs.joc.1c03156]
[74]
Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. FRET-based small-molecule fluorescent probes: Rational design and bioimaging applications. Acc. Chem. Res., 2013, 46(7), 1462-1473.
[http://dx.doi.org/10.1021/ar300273v]
[75]
Fan, J.; Hu, M.; Zhan, P.; Peng, X. Energy transfer cassettes based on organic fluorophores: Construction and applications in ratiometric sensing. Chem. Soc. Rev., 2013, 42(1), 29-43.
[http://dx.doi.org/10.1039/C2CS35273G]
[76]
López de Guereñu, A.; Bastian, P.; Wessig, P.; John, L.; Kumke, M.U. Energy transfer between Tm-doped upconverting nanoparticles and a small organic dye with large Stokes shift. Biosensors (Basel), 2019, 9(1), 9.
[http://dx.doi.org/10.3390/bios9010009]
[77]
Mulvihill, M.J.; Ji, Q.S.; Coate, H.R.; Cooke, A.; Dong, H.; Feng, L.; Foreman, K.; Rosenfeld-Franklin, M.; Honda, A.; Mak, G.; Mulvihill, K.M.; Nigro, A.I.; O’Connor, M.; Pirrit, C.; Steinig, A.G.; Siu, K.; Stolz, K.M.; Sun, Y.; Tavares, P.A.R.; Yao, Y.; Gibson, N.W. Novel 2-phenylquinolin-7-yl-derived imidazo[1,5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors. Bioorg. Med. Chem., 2008, 16(3), 1359-1375.
[http://dx.doi.org/10.1016/j.bmc.2007.10.061]
[78]
Crew, A.P.; Bhagwat, S.V.; Dong, H.; Bittner, M.A.; Chan, A.; Chen, X.; Coate, H.; Cooke, A.; Gokhale, P.C.; Honda, A.; Jin, M.; Kahler, J.; Mantis, C.; Mulvihill, M.J.; Tavares-Greco, P.A.; Volk, B.; Wang, J.; Werner, D.S.; Arnold, L.D.; Pachter, J.A.; Wild, R.; Gibson, N.W. Imidazo[1,5-a]pyrazines: Orally efficacious inhibitors of mTORC1 and mTORC2. Bioorg. Med. Chem. Lett., 2011, 21(7), 2092-2097.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.139]
[79]
Jin, M.; Kleinberg, A.; Cooke, A.; Gokhale, P.C.; Foreman, K.; Dong, H.; Siu, K.W.; Bittner, M.A.; Mulvihill, K.M.; Yao, Y.; Landfair, D.; O’Connor, M.; Mak, G.; Pachter, J.A.; Wild, R.; Rosenfeld-Franklin, M.; Ji, Q.; Mulvihill, M.J. Potent and selective cyclohexyl-derived imidazopyrazine insulin-like growth factor 1 receptor inhibitors with in vivo efficacy. Bioorg. Med. Chem. Lett., 2011, 21(4), 1176-1180.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.094]
[80]
Tsizorik, N.M.; Hrynyshyn, Y.V.; Bol’but, A.V.; Vovk, M.V. Synthesis of 1-functionalized imidazo[1,5-а]pyrazolo[5,1-с]pyrazines. Chem. Heterocycl. Compd., 2018, 54(11), 1075-1078.
[http://dx.doi.org/10.1007/s10593-018-2395-7]
[81]
Bernard-Gauthier, V.; Bailey, J.J.; Liu, Z.; Wängler, B.; Wängler, C.; Jurkschat, K.; Perrin, D.M.; Schirrmacher, R. From unorthodox to established: The current status of 18F-trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug. Chem., 2016, 27(2), 267-279.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00560]
[82]
Neumann, C.N.; Ritter, T. Late-stage fluorination: Fancy novelty or useful tool. Angew. Chem. Int. Ed., 2015, 54(11), 3216-3221.
[http://dx.doi.org/10.1002/anie.201410288]
[83]
Scroggie, K.R.; Alcock, L.J.; Matos, M.J.; Bernardes, G.J.L.; Perkins, M.V.; Chalker, J.M. A silicon-labelled amino acid suitable for late-stage fluorination and unexpected oxidative cleavage reactions in the preparation of a key intermediate in the Strecker synthesis. Pept. Sci. (Hoboken), 2018, 110(3), e24069.
[http://dx.doi.org/10.1002/pep2.24069]
[84]
Shen, X.; Corey, D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res., 2018, 46(4), 1584-1600.
[http://dx.doi.org/10.1093/nar/gkx1239]
[85]
Malek-Adamian, E.; Guenther, D.C.; Matsuda, S.; Martínez-Montero, S.; Zlatev, I.; Harp, J.; Burai Patrascu, M.; Foster, D.J.; Fakhoury, J.; Perkins, L.; Moitessier, N.; Manoharan, R.M.; Taneja, N.; Bisbe, A.; Charisse, K.; Maier, M.; Rajeev, K.G.; Egli, M.; Manoharan, M.; Damha, M.J.; Egli, M.; Manoharan, M.; Damha, M.J. 4′-C-Methoxy-2′-deoxy-2′-fluoro modified ribonucleotides improve metabolic stability and elicit efficient RNAi-mediated gene silencing. J. Am. Chem. Soc., 2017, 139(41), 14542-14555.
[http://dx.doi.org/10.1021/jacs.7b07582]
[86]
Khvorova, A.; Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol., 2017, 35(3), 238-248.
[http://dx.doi.org/10.1038/nbt.3765]
[87]
Hagedorn, P.H.; Persson, R.; Funder, E.D.; Albæk, N.; Diemer, S.L.; Hansen, D.J.; Møller, M.R.; Papargyri, N.; Christiansen, H.; Hansen, B.R.; Hansen, H.F.; Jensen, M.A.; Koch, T. Locked nucleic acid: Modality, diversity, and drug discovery. Drug Discov. Today, 2018, 23(1), 101-114.
[http://dx.doi.org/10.1016/j.drudis.2017.09.018]
[88]
Mangla, P.; Maity, J.; Rungta, P.; Verma, V.; Sanghvi, Y.S.; Prasad, A.K. Synthesis of 6′‐Methyl‐2′‐O,4′‐C‐methylene‐α‐L‐ribofuranosyl‐pyrimidine Nucleosides. ChemistrySelect, 2019, 4(11), 3241-3246.
[http://dx.doi.org/10.1002/slct.201900809]
[89]
Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551.
[http://dx.doi.org/10.1039/C5CS00048C]
[90]
Boutureira, O.; Bernardes, G.J.L. Advances in chemical protein modification. Chem. Rev., 2015, 115(5), 2174-2195.
[http://dx.doi.org/10.1021/cr500399p]
[91]
Cal, P.M.S.D.; Bernardes, G.J.L.; Gois, P.M.P. Cysteine-selective reactions for antibody conjugation. Angew. Chem. Int. Ed., 2014, 53(40), 10585-10587.
[http://dx.doi.org/10.1002/anie.201405702]
[92]
Spicer, C.D.; Davis, B.G. Selective chemical protein modification. Nat. Commun., 2014, 5(1), 4740.
[http://dx.doi.org/10.1038/ncomms5740]
[93]
Gunnoo, S.B.; Madder, A. Chemical protein modification through cysteine. ChemBioChem, 2016, 17(7), 529-553.
[http://dx.doi.org/10.1002/cbic.201500667]
[94]
Smith, N.J.; Rohlfing, K.; Sawicki, L.A.; Kharkar, P.M.; Boyd, S.J.; Kloxin, A.M.; Fox, J.M. Fast, irreversible modification of cysteines through strain releasing conjugate additions of cyclopropenyl ketones. Org. Biomol. Chem., 2018, 16(12), 2164-2169.
[http://dx.doi.org/10.1039/C8OB00166A]
[95]
Fisher, L.A.; Smith, N.J.; Fox, J.M. Chiral cyclopropenyl ketones: Reactive and selective Diels-Alder dienophiles. J. Org. Chem., 2013, 78(7), 3342-3348.
[http://dx.doi.org/10.1021/jo302683t]
[96]
André-Joyaux, E.; Kuzovlev, A.; Tappin, N.D.C.; Renaud, P. General approach to deboronative radical chain reactions with pinacol alkylboronic esters. Angew. Chem. Int. Ed., 2020, 59(33), 13859-13864.
[http://dx.doi.org/10.1002/anie.202004012]
[97]
Sandford, C.; Aggarwal, V.K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. (Camb.), 2017, 53(40), 5481-5494.
[http://dx.doi.org/10.1039/C7CC01254C]
[98]
Zhang, G.; Li, M.Y.; Ye, W.B.; He, Z.T.; Feng, C.G.; Lin, G.Q. Borylation of unactivated C(sp3)-H bonds with bromide as a traceless directing group. Org. Lett., 2021, 23(8), 2948-2953.
[http://dx.doi.org/10.1021/acs.orglett.1c00617]
[99]
Davidson, S.J.; Pearce, A.N.; Copp, B.R.; Barker, D. opp, B.R.; Barker. D. Total synthesis of (−)-Bicubebin A, B, (+)-Bicubebin C and structural reassignment of (−)-cis-Cubebin. Org. Lett., 2017, 19(19), 5368-5371.
[http://dx.doi.org/10.1021/acs.orglett.7b02644]
[100]
Yu, Q.; Guo, P.; Jian, J.; Chen, Y.; Xu, J. Nine-step total synthesis of (−)-strychnofoline. Chem. Commun. (Camb.), 2018, 54(9), 1125-1128.
[http://dx.doi.org/10.1039/C7CC08938D]
[101]
Peng, C.; Arya, P.; Zhou, Z.; Snyder, S.A. Snyder. S. A. A concise total synthesis of (+)-Waihoensene guided by quaternary center analysis. Angew. Chem. Int. Ed., 2020, 59(32), 13521-13525.
[http://dx.doi.org/10.1002/anie.202004177]
[102]
Maity, A.; Hyun, S.M.; Wortman, A.K.; Powers, D.C. Oxidation catalysis by an aerobically generated Dess-Martin periodinane. Angew. Chem., 2018, 130, 7323-7327. Angew. Chem., 2018, 57(24), 7205-7209.
[http://dx.doi.org/10.1002/anie.201804159]
[103]
Olivier, W.J.; Bissember, A.C.; Smith, J.A. Unified total syntheses of (±)-sessilifoliamides B, C, and D. Org. Lett., 2021, 23(9), 3437-3441.
[http://dx.doi.org/10.1021/acs.orglett.1c00895]
[104]
Rodriguez, A.R.; Spur, B.W. First total synthesis of the pro-resolving lipid mediator 7(S),12(R),13(S)-Resolvin T2 and its 13(R)-epimer. Tetrahedron Lett., 2020, 61(20), 151857.
[http://dx.doi.org/10.1016/j.tetlet.2020.151857]
[105]
Oertell, K.; Kashemirov, B.A.; Negahbani, A.; Minard, C.; Haratipour, P.; Alnajjar, K.S.; Sweasy, J.B.; Batra, V.K.; Beard, W.A.; Wilson, S.H.; McKenna, C.E.; Goodman, M.F. Probing DNA base-dependent leaving group kinetic effects on the DNA polymerase transition state. Biochemistry, 2018, 57(26), 3925-3933.
[http://dx.doi.org/10.1021/acs.biochem.8b00417]
[106]
Panigrahi, K.; Fei, X.; Kitamura, M.; Berkowitz, D.B. Rapid entry into biologically relevant α,α-difluoroalkylphosphonates bearing allyl protection-Deblocking under Ru(II)/(IV)-catalysis. Org. Lett., 2019, 21(24), 9846-9851.
[http://dx.doi.org/10.1021/acs.orglett.9b03707]
[107]
Breuer, E. Karaman, R.; Goldblum, A.; Gibson, D.; Leader, H.; Potter, B.V.L.; Cummins, J.H. α-Oxyiminophosphonates: Chemical and physical properties. Reactions, theoretical calculations, and X-ray crystal structures of (E) and (Z)-dimethyl α-hydroxyiminobenzylphosphonates. J. Chem. Soc., Perkin Trans. 1, 1988, I(11), 3047-3057.
[http://dx.doi.org/10.1039/P19880003047]
[108]
Meier, C.; Laux, W.H.G.; Bats, J.W. Asymmetric synthesis of chiral, nonracemic dialkyl α-hydroxyarylmethyl-and α-, β- and γ-hydroxyalkylphos-phonates from keto phosphonates. Liebigs Ann., 1995, 1995(11), 1963-1979.
[http://dx.doi.org/10.1002/jlac.1995199511276]
[109]
Ravindra, V.K.; Satish, D.M.; Makarand, A.M.; Uday, V.D.; Prakash, W.P. Highly efficient and extremely simple protocol for the oxidation α-hydroxyphosphonates to α-ketophosphonates using Dess-Martin periodinane. ARKIVOC, 2020, iv, 50-58.
[110]
Li, D.D.; Yu, P.; Xiao, W.; Wang, Z.Z.; Zhao, L.G. A promising natural isoquinoline alkaloid for the development of hypolipidemic drugs. Curr. Top. Med. Chem., 2020, 20(28), 2634-2647.
[http://dx.doi.org/10.2174/1568026620666200908165913]
[111]
Yun, D.; Yoon, S.Y.; Park, S.J.; Park, Y.J. The anticancer effect of natural plant alkaloid isoquinolines. Int. J. Mol. Sci., 2021, 22(4), 1653.
[http://dx.doi.org/10.3390/ijms22041653]
[112]
Krane, B.D.; Shamma, M. The isoquinolone alkaloids. J. Nat. Prod., 1982, 45(4), 377-384.
[http://dx.doi.org/10.1021/np50022a001]
[113]
Yang, C.; Zhang, G.; Tang, S.; Pan, Y.; Shao, H.; Jiao, W. Dess-martin periodinane-mediated oxidative coupling reaction of isoquinoline with benzyl bromide. Molecules, 2023, 28(3), 923.
[http://dx.doi.org/10.3390/molecules28030923]
[114]
Siegemund, G.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. Fluorine Compounds, Organic. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/14356007.a11_349]
[115]
Ma, Z.; Wu, X.; Zhu, C. Merging fluorine incorporation and functional group migration. Chem. Rec., 2022, e202200221.
[116]
Britton, R.; Gouverneur, V.; Lin, J.H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J-C.; Hu, J. Contemporary synthetic strategies in organofluorine chemistry. Nat. Rev. Methods Primers, 2021, 1(47), 1-22.
[117]
Liu, Y.; Jiang, L.; Wang, H.; Wang, H.; Jiao, W.; Chen, G.; Zhang, P.; Hui, D.; Jian, X. A brief review for fluorinated carbon: Synthesis, properties and applications. Nanotechnol. Rev., 2019, 8(1), 573-586.
[http://dx.doi.org/10.1515/ntrev-2019-0051]
[118]
(a) Gouverneur, V.; Seppelt, K. Introduction: Fluorine chemistry. Chem. Rev., 2015, 115(2), 563-565.
[http://dx.doi.org/10.1021/cr500686k];
(b)) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, 2013.
[http://dx.doi.org/10.1002/9783527651351]
[119]
(a) Ojima, I. Ed.; Fluorine in Medicinal Chemistry and Chemical Biology; Wiley: Chichester, UK, 2009.
[http://dx.doi.org/10.1002/9781444312096];
(b) Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C]
[120]
López, S.E.; Salazar, J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J. Fluor. Chem., 2013, 156, 73-100.
[http://dx.doi.org/10.1016/j.jfluchem.2013.09.004]
[121]
Vinogradova, E.V.; Müller, P.; Buchwald, S.L. Structural reevaluation of the electrophilic hypervalent iodine reagent for trifluoromethylthiolation supported by the crystalline sponge method for X-ray analysis. Angew. Chem. Int. Ed., 2014, 53(12), 3125-3128.
[http://dx.doi.org/10.1002/anie.201310897]
[122]
Xu, C.; Ma, B.; Shen, Q. N-Trifluoromethylthiosaccharin: An easily accessible, shelf-stable, broadly applicable trifluoromethylthiolating reagent. Angew. Chem. Int. Ed., 2014, 53(35), 9316-9320.
[http://dx.doi.org/10.1002/anie.201403983]
[123]
Li, S.G.; Zard, S.Z. A convenient metal-free reagent for the generation and capture of trifluoromethanethiol. Org. Lett., 2013, 15(22), 5898-5901.
[http://dx.doi.org/10.1021/ol403038f]
[124]
Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.W. An air-Stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides. Angew. Chem. Int. Ed., 2013, 52(5), 1548-1552.
[http://dx.doi.org/10.1002/anie.201208432]
[125]
Wang, Y.; You, Y.; Weng, Z. Alkynyl trifluoromethyl selenide synthesis via oxidative trifluoromethylselenolation of terminal alkynes. Org. Chem. Front., 2015, 2(5), 574-577.
[http://dx.doi.org/10.1039/C5QO00045A]
[126]
Chemler, S.R. Evolution of copper(II) as a new alkene amination promoter and catalyst. J. Organomet. Chem., 2011, 696(1), 150-158.
[http://dx.doi.org/10.1016/j.jorganchem.2010.08.041]
[127]
Sanjaya, S.; Chiba, S. Copper-catalyzed aminooxygenation of N-allylamidines with PhI(OAc)2. Org. Lett., 2012, 14(20), 5342-5345.
[http://dx.doi.org/10.1021/ol302525m]
[128]
Fu, S.; Yang, H.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Copper(II)-catalyzed enantioselective intramolecular cyclization of N-alkenylureas. Org. Lett., 2015, 17(4), 1018-1021.
[http://dx.doi.org/10.1021/acs.orglett.5b00131]
[129]
Coman, S.M.; Parvulescu, V.I. Nonprecious metals catalyzing hydroamination and C-N coupling reactions. Org. Process Res. Dev., 2015, 19(10), 1327-1355.
[http://dx.doi.org/10.1021/acs.oprd.5b00010]
[130]
Chemler, S.R. Copper’s contribution to amination catalysis. Science, 2013, 341(6146), 624-626.
[http://dx.doi.org/10.1126/science.1237175]
[131]
Xiong, P.; Xu, F.; Qian, X.Y.; Yohannes, Y.; Song, J.; Lu, X.; Xu, H.C. Copper-catalyzed intramolecular oxidative amination of unactivated internal alkenes. Chemistry, 2016, 22(13), 4379-4383.
[http://dx.doi.org/10.1002/chem.201600329]
[132]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566]
[133]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879]
[134]
Isanbor, C.; O’Hagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem., 2006, 127(3), 303-319.
[http://dx.doi.org/10.1016/j.jfluchem.2006.01.011]
[135]
Kirk, K.L. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J. Fluor. Chem., 2006, 127(8), 1013-1029.
[http://dx.doi.org/10.1016/j.jfluchem.2006.06.007]
[136]
Babudri, F.; Farinola, G.M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: The role of the fluorine atom. Chem. Commun., 2007, (10), 1003-1022.
[http://dx.doi.org/10.1039/B611336B]
[137]
Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. The fluorous effect in biomolecular applications. Chem. Soc. Rev., 2012, 41(1), 31-42.
[http://dx.doi.org/10.1039/C1CS15084G]
[138]
Kassis, C.M.; Steehler, J.K.; Betts, D.E.; Guan, Z.; Romack, T.J.; DeSimone, J.M.; Linton, R.W. XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene. Macromolecules, 1996, 29(9), 3247-3254.
[http://dx.doi.org/10.1021/ma951782x]
[139]
Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res., 2012, 45(5), 723-733.
[http://dx.doi.org/10.1021/ar2002446]
[140]
Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem, 2004, 5(5), 570-589.
[http://dx.doi.org/10.1002/cbic.200300833]
[141]
Maienfisch, P.; Hall, R.G. The importance of fluorine in the life science industry. Chimia., 2004, 58(3), 93-99.
[http://dx.doi.org/10.2533/000942904777678091]
[142]
Kirsch, P. Modern fluoroorganic chemistry; Wiley-VCH: Weinheim, Germany, 2004.
[http://dx.doi.org/10.1002/352760393X]
[143]
Davis, F.A.; Yi, H.; Sundarababu, G. In enantiocontrolled synthesis of fluoro-organic compounds; Soloshonok, V.A., Ed.; Wiley: Chichester, U.K., 1999, p. 1.
[144]
Taylor, S.D.; Kotoris, C.C.; Hum, G. Recent advances in electrophilic fluorination. Tetrahedron, 1999, 55(43), 12431-12477.
[http://dx.doi.org/10.1016/S0040-4020(99)00748-6]
[145]
Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem., 2001, 109(1), 3-11.
[http://dx.doi.org/10.1016/S0022-1139(01)00375-X]
[146]
Schlosser, M. Introduction of fluorine into organic molecules: Why and how. Tetrahedron, 1978, 34(1), 3-17.
[http://dx.doi.org/10.1016/0040-4020(78)88031-4]
[147]
Xu, Y.S.; Tang, Y.; Feng, H.J.; Liu, J.T.; Hsung, R.P. A highly regio- and stereoselective synthesis of α-fluorinated Imides via fluorination of chiral enamides. Org. Lett., 2015, 17(3), 572-575.
[http://dx.doi.org/10.1021/ol503591d]
[148]
Shi, L.; Zhou, H.; Wu, J.; Li, X. Advances in the chemistry of quinoxalinone derivatives. Mini Rev. Org. Chem., 2014, 12(1), 96-112.
[http://dx.doi.org/10.2174/1570193X11666141029004418]
[149]
Shi, L.; Zhou, J.; Wu, J.; Cao, J.; Shen, Y.; Zhou, H.; Li, X. Quinoxalinone (Part II). Discovery of (Z)-3-(2-(pyridin-4-yl)vinyl)quinoxalinone derivates as potent VEGFR-2 kinase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1840-1852.
[http://dx.doi.org/10.1016/j.bmc.2016.03.008]
[150]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s]
[151]
Jayasree, A.; Varala, R.; Reddy, V.; Rao, A.T. Synthesis and biological evaluation of functionalized quinoxaline derivatives. Pharma Chem., 2014, 6(6), 73-78.
[152]
Sanichar, R.; Carroll, C.; Kimmis, R.; Reiz, B.; Vederas, J.C. Dess-Martin periodinane oxidative rearrangement for preparation of α-keto thioesters. Org. Biomol. Chem., 2018, 16(4), 593-597.
[http://dx.doi.org/10.1039/C7OB02959D]
[153]
Grove, J.F.; Reimann, E.; Roy, S. Progress in the Chemistry of Organic Natural Products; Herz, W.; Falk, H; Kirby, G.W., Ed.; Springer: Wien, 2007, Vol. 88, pp. 2-62.
[http://dx.doi.org/10.1007/978-3-211-49389-2]
[154]
He, M.; Qu, C.; Gao, O.; Hu, X.; Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Advances, 2015, 5(21), 16562-16574.
[http://dx.doi.org/10.1039/C4RA14666B]
[155]
Andreev, I.A.; Ratmanova, N.K.; Novoselov, A.M.; Belov, D.S.; Seregina, I.F.; Kurkin, A.V. Oxidative dearomatization of 4,5,6,7-tetrahydro-1H-indoles obtained by metal- and solvent-free thermal 5-endo-dig cyclization: The route to Erythrina and Lycorine alkaloids. Chemistry, 2016, 22(21), 7262-7267.
[http://dx.doi.org/10.1002/chem.201600273]
[156]
Hu, J.; Bian, M.; Ding, H. Recent application of oxa-Michael reaction in complex natural product synthesis. Tetrahedron Lett., 2016, 57(50), 5519-5539.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.007]
[157]
Teskey, C.J.; Adler, P.; Gonçalves, C.R.; Maulide, N. Chemoselective α,β‐dehydrogenation of saturated amides. Angew. Chem. Int. Ed., 2019, 58(2), 447-451.
[http://dx.doi.org/10.1002/anie.201808794]
[158]
Xu, Y.; Conner, M.L.; Brown, M.K. Cyclobutane and cyclobutene Synthesis: Catalytic enantioselective [2+2] cycloadditions. Angew. Chem. Int. Ed., 2015, 54(41), 11918-11928.
[http://dx.doi.org/10.1002/anie.201502815]
[159]
Margaretha, P. Electrochemical generation of the phenanthrene triplet. Helv. Chim. Acta, 2014, 97, 1027-1035.
[http://dx.doi.org/10.1002/hlca.201400037]
[160]
Dembitsky, V.M. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine, 2014, 21(12), 1559-1581.
[http://dx.doi.org/10.1016/j.phymed.2014.07.005]
[161]
Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med., 2007, 62(1), 1-33.
[http://dx.doi.org/10.1007/s11418-007-0166-3]
[162]
Cretton, S.; Bartholomeusz, T.A.; Jeannerat, D.; Munoz, O.; Christen, P.; Hostettmann, K. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med., 2009, 75, 916-916.
[163]
Hussein, A.A.; Ma, Y.; Al-Yasari, A. Hypervalent iodine-mediated styrene hetero- and homodimerization initiation proceeds with two-electron reductive cleavage. Eur. J. Org. Chem., 2020, 2020(46), 7219-7228.
[http://dx.doi.org/10.1002/ejoc.202001295]
[164]
Colomer, I.; Coura Barcelos, R.; Donohoe, T.J. Catalytic hypervalent iodine promoters lead to styrene dimerization H formation of tri- and tetrasubstituted cyclobutanes. Angew. Chem. Int. Ed., 2016, 55(15), 4748-4752.
[http://dx.doi.org/10.1002/anie.201511683]
[165]
Zhang, X.; Paton, R.S. Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chem. Sci. (Camb.), 2020, 11(34), 9309-9324.
[http://dx.doi.org/10.1039/D0SC03059G]
[166]
Reddy, T.R.K.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V.J.; Pratt, S.; Chen, B. Library Design, Synthesis, and screening: Pyridine dicarbonitriles as potential prion disease therapeutics. J. Med. Chem., 2006, 49(2), 607-615.
[http://dx.doi.org/10.1021/jm050610f]
[167]
May, B.C.H.; Zorn, J.A.; Witkop, J.; Sherrill, J.; Wallace, A.C.; Legname, G.; Prusiner, S.B.; Cohen, F.E. Structure-activity relationship study of prion inhibition by 2-aminopyridine-3,5-dicarbonitrile-based compounds: Parallel synthesis, bioactivity, and in vitro pharmacokinetics. J. Med. Chem., 2007, 50(1), 65-73.
[http://dx.doi.org/10.1021/jm061045z]
[168]
Srivastava, S.K.; Tripathi, R.P.; Ramachandran, R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. J. Biol. Chem., 2005, 280(34), 30273-30281.
[http://dx.doi.org/10.1074/jbc.M503780200]
[169]
Chang, L.C.W.; von Frijtag Drabbe Künzel, J.K.; Mulder-Krieger, T.; Spanjersberg, R.F.; Roerink, S.F.; van den Hout, G.; Beukers, M.W.; Brussee, J.; IJzerman, A.P. Mulder- Krieger, T.; Spanjersberg, R.F.; Roerink, S.F.; van den Hout, G.; Beukers, M.W.; Brussee, J.; Ijzerman, A.P. A series of ligands displaying a remarkable agonistic-antagonistic profile at the adenosine A1 receptor. J. Med. Chem., 2005, 48(6), 2045-2053.
[http://dx.doi.org/10.1021/jm049597+]
[170]
Kupwade, R.V.; Khot, S.S.; Kulkarni, M.A.; Desai, U.V.; Wadgaonkar, P.P. Diethylamine Dess-Martin periodinane: An efficient catalyst-oxidant combination in a sequential, one-pot synthesis of difficult to access 2-amino-3,5-dicarbonitrile-6-sulfanylpyridines at ambient temperature. RSC Advances, 2017, 7(62), 38877-38883.
[http://dx.doi.org/10.1039/C7RA07738F]
[171]
Tullo, A.H. Plasticizer makers want a piece of the phthalates pie. Chem. Eng. News, 2015, 93(25), 16-18.
[172]
Earla, A.; Li, L.; Costanzo, P.; Braslau, R. Phthalate plasticizers covalently linked to PVC via copper-free or copper catalyzed azide-alkyne cycloadditions. Polymer, 2017, 109, 1-12.
[http://dx.doi.org/10.1016/j.polymer.2016.12.014]
[173]
Kürti, L.; Czakó, B. Eds.; Strategic Applications of Named Reactions in Organic Synthesis; Elsevier, 2005.
[174]
Amaye, I.J.; Haywood, R.D.; Mandzo, E.M.; Wirick, J.J.; Jackson-Ayotunde, P.L. Enaminones as building blocks in drug development: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2021, 83, 131984.
[http://dx.doi.org/10.1016/j.tet.2021.131984]
[175]
Chen, K.; Zhao, B.; Liu, Y.; Wan, J.P. Thiazole-5-carbaldehyde synthesis by cascade annulation of enaminones and KSCN with Dess-Martin periodinane reagent. J. Org. Chem., 2022, 87(21), 14957-14964.
[http://dx.doi.org/10.1021/acs.joc.2c01881]
[176]
Russo, A.; De Fusco, C.; Lattanzi, A. Enantioselective organocatalytic α-heterofunctionalization of active methines. RSC Advances, 2012, 2(2), 385-397.
[http://dx.doi.org/10.1039/C1RA00612F]
[177]
Smith, A.M.R.; Hii, K.K.M. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev., 2011, 111(3), 1637-1656.
[http://dx.doi.org/10.1021/cr100197z]
[178]
Guillena, G.; Ramon, D.J. Recent advances on the organocatalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Curr. Org. Chem., 2011, 15, 296-327.
[http://dx.doi.org/10.2174/138527211794072551]
[179]
Plietker, B. New oxidative pathways for the synthesis of α-hydroxy ketones-the α-hydroxylation and ketohydroxylation. Tetrahedron Asymmetry, 2005, 16(21), 3453-3459.
[http://dx.doi.org/10.1016/j.tetasy.2005.08.057]
[180]
Janey, J.M. Recent advances in catalytic, enantioselective α-aminations and α-oxygenations of carbonyl compounds. Angew. Chem. Int. Ed., 2005, 44(28), 4292-4300.
[http://dx.doi.org/10.1002/anie.200462314]
[181]
Wan, Q.; Hou, Z.W.; Zhao, X.R.; Xie, X.; Wang, L. Organoelectrophotocatalytic C-H silylation of heteroarenes. Org. Lett., 2023, 25(6), 1008-1013.
[http://dx.doi.org/10.1021/acs.orglett.3c00144]
[182]
Müller, M. Enzymatic synthesis of tertiary alcohols. ChemBioEng Rev., 2014, 1(1), 14-26.
[http://dx.doi.org/10.1002/cben.201300005]
[183]
Streuff, J. An update on catalytic strategies for the synthesis of α-hydroxyketones. Synlett, 2012, 24(3), 276-280.
[http://dx.doi.org/10.1055/s-0032-1317716]
[184]
Li, H.L.; An, X-L.; Ge, L-S.; Luo, X.; Deng, W-P. Catalytic α-hydroxylation of ketones under CuBr2 or HBr/DMSO systems. Tetrahedron, 2015, 71(21), 3247-3252.
[http://dx.doi.org/10.1016/j.tet.2015.03.116]
[185]
Chen, T.; Peng, R.; Hu, W.; Zhang, F-M. Iron(III) chloride hexahydrate-promoted selective hydroxylation and chlorination of benzyl ketone derivatives for the construction of hetero-quaternary scaffolds. Org. Biomol. Chem., 2016, 14(41), 9859-9867.
[http://dx.doi.org/10.1039/C6OB01733A]
[186]
Zhang, F.; Zheng, D.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Synthesis of aromatic sulfonamides through a copper-catalyzed coupling of aryldiazonium tetrafluoroborates, DABCO·(SO2)2, and N-chloroamines. Org. Lett., 2018, 20(4), 1167-1170.
[http://dx.doi.org/10.1021/acs.orglett.8b00093]
[187]
Nematollahi, D.; Davarani, S.S.H.; Mirahmadpour, P.; Varmaghani, F. A facile electrochemical method for the synthesis of new sulfonamide derivatives of potential biological significance. Chin. Chem. Lett., 2014, 25(4), 593-595.
[http://dx.doi.org/10.1016/j.cclet.2014.01.005]
[188]
Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J.; Xue, Y. Synthesis of (E)-β-Selenovinyl Sulfones through a multicomponent regio- and stereospecific selenosulfonation of alkynes with insertion of sulfur dioxide. Org. Lett., 2018, 20(21), 6687-6690.
[http://dx.doi.org/10.1021/acs.orglett.8b02733]
[189]
Gong, X.; Xia, H.; Wu, J. A palladium-catalyzed tandem reaction of 2-alkynylbenzenesulfonamides with 2-(2-bromoarylidene)cyclobutanones. Org. Chem. Front., 2016, 3(6), 697-700.
[http://dx.doi.org/10.1039/C6QO00091F]
[190]
Yu, J.; Liu, S.S.; Cui, J.; Hou, X.S.; Zhang, C. A mild and efficient direct α-amination of β-dicarbonyl compounds using iodosobenzene and p-toluenesulfonamide catalyzed by perchlorate zinc hexahydrate. Org. Lett., 2012, 14(3), 832-835.
[http://dx.doi.org/10.1021/ol203358f]
[191]
Xiang, Y.; Kuang, Y.; Wu, J. Generation of benzosultams via trifluoromethylation of 2-ethynylbenzenesulfonamide under visible light. Org. Chem. Front., 2016, 3(7), 901-905.
[http://dx.doi.org/10.1039/C6QO00120C]
[192]
Yao, B.; Zhang, Y. Sulfonylation of arenes with sulfonamides. Tetrahedron Lett., 2008, 49(37), 5385-5388.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.114]
[193]
Song, M.; Zhang, Z.; Zheng, D.; Li, X.; Liang, R.; Zhao, X.; Shi, L.; Zhang, G. Hypervalent organoiodine promoted dearylation reaction of N-aryl sulfonamides. Youji Huaxue, 2020, 40(8), 2433-2441.
[http://dx.doi.org/10.6023/cjoc202001007]
[194]
Namyslo, J.C.; Kaufmann, D.E. The application of cyclobutane derivatives in organic synthesis. Chem. Rev., 2003, 103(4), 1485-1538.
[http://dx.doi.org/10.1021/cr010010y]
[195]
Lee-Ruff, E.; Mladenova, G. Enantiomerically pure cyclobutane derivatives and their use in organic synthesis. Chem. Rev., 2003, 103(4), 1449-1484.
[http://dx.doi.org/10.1021/cr010013a]
[196]
Secci, F.; Frongia, A.; Piras, P. Stereocontrolled synthesis and functionalization of cyclobutanes and cyclobutanones. Molecules, 2013, 18(12), 15541-15572.
[http://dx.doi.org/10.3390/molecules181215541]
[197]
Ghisu, L.; Melis, N.; Secci, F.; Caboni, P.; Frongia, A. Synthesis of quarter-nary α-benzyl-and α-allyl-α-methylamino cyclobutanones. Tetrahedron, 2016, 72(50), 8201-8209.
[http://dx.doi.org/10.1016/j.tet.2016.10.024]
[198]
Afifi, H.; Ebead, A.; Pignatelli, J.; Lee-Ruff, E. Synthesis of cyclobutane nucleosides 2-preparation of thymine and uracil analogues. Nucleosides Nucleotides Nucleic Acids, 2015, 34(11), 786-798.
[http://dx.doi.org/10.1080/15257770.2015.1075551]
[199]
Melis, N.; Secci, F.; Boddaert, T.; Aitken, D.J.; Frongia, A. Synthesis of functionalized tryptamines by Brønsted acid catalysed cascade reactions. Chem. Commun. (Camb.), 2015, 51(83), 15272-15275.
[http://dx.doi.org/10.1039/C5CC06855J]
[200]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem., 2013, 15(3), 584-595.
[http://dx.doi.org/10.1039/c3gc37065h]
[201]
Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Tetrahydrofuran-containing macrolides: A fascinating gift from the deep sea. Chem. Rev., 2013, 113(7), 4567-4610.
[http://dx.doi.org/10.1021/cr3004778]
[202]
Liu, X.; He, L.N. Synthesis of lactones and other heterocycles. Top. Curr. Chem. (Cham), 2017, 375(2), 21.
[http://dx.doi.org/10.1007/s41061-017-0108-9]
[203]
Ghisu, L.; Melis, N.; Secci, F.; Caboni, P.; Arca, M.; Guillot, R.; Boddaert, T.; Aitken, D.J.; Frongia, A. Synthesis of 2,2-bis(pyridin-2-yl amino)cyclobutanols and their conversion into 5-(pyridin-2-ylamino)-dihydrofuran-2(3H)-ones. Org. Biomol. Chem., 2017, 15(46), 9779-9784.
[http://dx.doi.org/10.1039/C7OB02567J]
[204]
Yang, W.C.; Zhang, M.M.; Sun, Y.; Chen, C.Y.; Wang, L. Electrochemical trifluoromethylthiolation and spirocyclization of alkynes with AgSCF3: Access to SCF3-containing spiro[5,5]trienones. Org. Lett., 2021, 23(17), 6691-6696.
[http://dx.doi.org/10.1021/acs.orglett.1c02260]
[205]
Yang, W.C.; Sun, Y.; Bao, X.B.; Zhang, S.P.; Shen, L.Y. A general electron donor-acceptor complex enabled cascade cyclization of alkynes to access sulfur-containing heterocycles. Green Chem., 2023, 25(8), 3111-3116.
[http://dx.doi.org/10.1039/D3GC00716B]
[206]
Yang, W.C.; Sun, Y.; Shen, L.Y.; Xie, X.; Yu, B. Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. Molecular Catalysis, 2023, 535, 112819.
[http://dx.doi.org/10.1016/j.mcat.2022.112819]
[207]
Zhang, K.; Ke, M.; Liu, Z.; Zuo, S.; Chen, F. One-Pot synthesis of cyclopentenols from vinylethylene carbonates via palladium-catalyzed decarboxylative allylation and cascade oxidation-cyclization. Bull. Chem. Soc. Jpn., 2022, 95(4), 634-638.
[http://dx.doi.org/10.1246/bcsj.20210451]
[208]
Liew, S.K.; Holownia, A.; Tilley, A.J.; Carrera, E.I.; Seferos, D.S.; Yudin, A.K. Study of boratriazaroles: An underdeveloped class of heterocycles. J. Org. Chem., 2016, 81(21), 10444-10453.
[http://dx.doi.org/10.1021/acs.joc.6b01565]
[209]
Paulvannan, K.; Hale, R.; Sedehi, D.; Chen, T. Cyclization of 1,2,4-triazenes to 1,2,4-triazoles using oxidizing reagents-NaClO, Ca(ClO)2, Dess-Martin periodinane and Ley’s TPAP/NMO. Tetrahedron, 2001, 57(48), 9677-9682.
[http://dx.doi.org/10.1016/S0040-4020(01)00976-0]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy