Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Nrf2 Regulates the Expression of CYP2D6 by Inhibiting the Activity of Krüppel-Like Factor 9 (KLF9)

Author(s): Ferbian Milas Siswanto*, Maria Dara Novi Handayani, Rita Dewi Firmasyah, Ami Oguro and Susumu Imaoka*

Volume 24, Issue 9, 2023

Published on: 24 October, 2023

Page: [667 - 681] Pages: 15

DOI: 10.2174/0113892002271342231013095255

Price: $65

conference banner
Abstract

Aims: The aim of the present study is to gain insight into the biology of Parkinson’s disease (PD) and cancer to drive translational advances enabling more effective prevention and/or potential treatments.

Background: The expression of Cytochrome P450 2D6 (CYP2D6) is correlated with various diseases such as PD and cancer; therefore, exploring its regulatory mechanism at transcriptional levels is of interest. NF-E2-related factor 2 (Nrf2) has been known to be responsible for regulating phase II and phase III drug-metabolizing genes.

Objectives: The objectives of this study are to investigate the transcriptional regulation of CYP2D6 by Nrf2 and to analyze its role in PD and cancer.

Methods: Nrf2 was transiently expressed in human hepatoma Hep3B cells, and the expression of CYP2D6 was examined by RT-qPCR. The promoter activity of CYP2D6 and the DNA binding of Nrf2 were examined by luciferase and ChIP assay, respectively. We then investigated the expression and correlation of Nrf2 and CYP2D6 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets.

Results: In the present study, we demonstrated that Nrf2 down-regulated CYP2D6 mRNA expression in hepatoma Hep3B cells. Mechanistically, Nrf2 binds to the antioxidant responsive element (ARE) in the proximity of krüppel- like factor 9 (KLF9)-binding site within the −550/+51 of CYP2D6 promoter. The inhibition and activation of Nrf2 enhanced and suppressed KLF9 effects on CYP2D6 expression, respectively. The expression levels of Nrf2 and CYP2D6 were upregulated and downregulated in the PD patient GEO datasets compared to the healthy control tissues, and Nrf2 was negatively correlated with CYP2D6. In liver cancer patients, decreased CYP2D6 levels were apparent and associated with a lower probability of survival.

Conclusion: Our work revealed the inhibitory role of Nrf2 in regulating CYP2D6 expression. Moreover, Nrf2- dependent regulation of CYP2D6 can be used as a prognostic factor and therapeutic strategy in PD and liver cancer.

« Previous
Graphical Abstract

[1]
Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the important role of CYP2D6 in pharmacogenomics. Genes (Basel), 2020, 11(11), 1295.
[http://dx.doi.org/10.3390/genes11111295] [PMID: 33143137]
[2]
Meloche, M.; Khazaka, M.; Kassem, I.; Barhdadi, A.; Dubé, M.P.; de Denus, S. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: A systematic review and meta-analysis. Br. J. Clin. Pharmacol., 2020, 86(6), 1015-1033.
[http://dx.doi.org/10.1111/bcp.14247] [PMID: 32090368]
[3]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[4]
Rodríguez-Antona, C.; Donato, M.T.; Pareja, E.; Gómez-Lechón, M.J.; Castell, J.V. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch. Biochem. Biophys., 2001, 393(2), 308-315.
[http://dx.doi.org/10.1006/abbi.2001.2499] [PMID: 11556818]
[5]
Zanger, U.M.; Fischer, J.; Raimundo, S.; Stüven, T.; Evert, B.O.; Schwab, M.; Eichelbaum, M. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics, 2001, 11(7), 573-585.
[http://dx.doi.org/10.1097/00008571-200110000-00004] [PMID: 11668217]
[6]
Temesvári, M.; Kóbori, L.; Paulik, J.; Sárváry, E.; Belic, A.; Monostory, K. Estimation of drug-metabolizing capacity by cytochrome P450 genotyping and expression. J. Pharmacol. Exp. Ther., 2012, 341(1), 294-305.
[http://dx.doi.org/10.1124/jpet.111.189597] [PMID: 22262920]
[7]
Pan, X.; Ning, M.; Jeong, H. Transcriptional regulation of CYP2D6 expression. Drug Metab. Dispos., 2017, 45(1), 42-48.
[http://dx.doi.org/10.1124/dmd.116.072249] [PMID: 27698228]
[8]
Sneha, S.; Baker, S.C.; Green, A.; Storr, S.; Aiyappa, R.; Martin, S.; Pors, K. Intratumoural cytochrome P450 expression in breast cancer: Impact on standard of care treatment and new efforts to develop tumour-selective therapies. Biomedicines, 2021, 9(3), 290.
[http://dx.doi.org/10.3390/biomedicines9030290] [PMID: 33809117]
[9]
Khamis, Z.I.; Pang, X.; Cui, Z.; Sang, Q.X.A.; Zhang, J. Cytochrome P450-2D6: A novel biomarker in liver cancer health disparity. PLoS One, 2021, 16(10), e0257072.
[http://dx.doi.org/10.1371/journal.pone.0257072] [PMID: 34597305]
[10]
Mann, A.; Miksys, S.L.; Gaedigk, A.; Kish, S.J.; Mash, D.C.; Tyndale, R.F. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol. Aging, 2012, 33(9), 2160-2171.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.08.014] [PMID: 21958961]
[11]
Jover, R.; Bort, R.; Gómez-Lechón, M.J.; Castell, J.V. Re-expression of C/EBPα induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett., 1998, 431(2), 227-230.
[http://dx.doi.org/10.1016/S0014-5793(98)00746-7] [PMID: 9708908]
[12]
Cairns, W.; Smith, C.D.; McLaren, A.W.; Wolf, C.R. Characterization of the human cytochrome P4502D6 promoter. A potential role for antagonistic interactions between members of the nuclear receptor family. J. Biol. Chem., 1996, 271(41), 25269-25276.
[http://dx.doi.org/10.1074/jbc.271.41.25269] [PMID: 8810289]
[13]
Koh, K.H.; Pan, X.; Zhang, W.; McLachlan, A.; Urrutia, R.; Jeong, H. Krüppel-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice. Mol. Pharmacol., 2014, 86(6), 727-735.
[http://dx.doi.org/10.1124/mol.114.093666] [PMID: 25217496]
[14]
Rada, P.; Rojo, A.I.; Chowdhry, S.; McMahon, M.; Hayes, J.D.; Cuadrado, A. SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell. Biol., 2011, 31(6), 1121-1133.
[http://dx.doi.org/10.1128/MCB.01204-10] [PMID: 21245377]
[15]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[16]
Lo, J.Y.; Spatola, B.N.; Curran, S.P. WDR23 regulates NRF2 independently of KEAP1. PLoS Genet., 2017, 13(4), e1006762.
[http://dx.doi.org/10.1371/journal.pgen.1006762] [PMID: 28453520]
[17]
Siswanto, F.M.; Oguro, A.; Arase, S.; Imaoka, S. WDR23 regulates the expression of Nrf2-driven drug-metabolizing enzymes. Drug Metab. Pharmacokinet., 2020, 35(5), 441-455.
[http://dx.doi.org/10.1016/j.dmpk.2020.06.007] [PMID: 32839090]
[18]
Kang, H.J.; Yi, Y.W.; Hong, Y.B.; Kim, H.J.; Jang, Y.J.; Seong, Y.S.; Bae, I. HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci. Rep., 2014, 4(1), 7201.
[http://dx.doi.org/10.1038/srep07201] [PMID: 25467193]
[19]
Aleksunes, L.M.; Klaassen, C.D. Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab. Dispos., 2012, 40(7), 1366-1379.
[http://dx.doi.org/10.1124/dmd.112.045112] [PMID: 22496397]
[20]
Wu, K.C.; Cui, J.Y.; Klaassen, C.D. Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver. PLoS One, 2012, 7(7), e39006.
[http://dx.doi.org/10.1371/journal.pone.0039006] [PMID: 22808024]
[21]
Ashino, T.; Ohkubo-Morita, H.; Yamamoto, M.; Yoshida, T.; Numazawa, S. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5. Redox Biol., 2014, 2, 284-288.
[http://dx.doi.org/10.1016/j.redox.2013.12.025] [PMID: 24494203]
[22]
Siswanto, F.M.; Tamura, A.; Sakuma, R.; Imaoka, S. Yeast β -glucan increases etoposide sensitivity in lung cancer cell line A549 by suppressing nuclear factor erythroid 2-related factor 2 via the noncanonical nuclear factor kappa B pathway. Mol. Pharmacol., 2022, 101(4), 257-273.
[http://dx.doi.org/10.1124/molpharm.121.000475] [PMID: 35193967]
[23]
Wang, J.; Yang, J.; Cao, M.; Zhao, Z.; Cao, B.; Yu, S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. Curr. Res. Pharmacol. Drug Dis., 2021, 2, 100028.
[http://dx.doi.org/10.1016/j.crphar.2021.100028] [PMID: 34909662]
[24]
Oguro, A.; Ishihara, Y.; Siswanto, F.M.; Yamazaki, T.; Ishida, A.; Imaishi, H.; Imaoka, S. Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson’s disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(2), 158858.
[http://dx.doi.org/10.1016/j.bbalip.2020.158858] [PMID: 33279658]
[25]
Parga, J.A.; Rodriguez-Perez, A.I.; Garcia-Garrote, M.; Rodriguez-Pallares, J.; Labandeira-Garcia, J.L. NRF2 activation and downstream effects: Focus on Parkinson’s disease and brain angiotensin. Antioxidants, 2021, 10(11), 1649.
[http://dx.doi.org/10.3390/antiox10111649] [PMID: 34829520]
[26]
Zucker, S.N.; Fink, E.E.; Bagati, A.; Mannava, S.; Bianchi-Smiraglia, A.; Bogner, P.N.; Wawrzyniak, J.A.; Foley, C.; Leonova, K.I.; Grimm, M.J.; Moparthy, K.; Ionov, Y.; Wang, J.; Liu, S.; Sexton, S.; Kandel, E.S.; Bakin, A.V.; Zhang, Y.; Kaminski, N.; Segal, B.H.; Nikiforov, M.A. Nrf2 amplifies oxidative stress via induction of Klf9. Mol. Cell, 2014, 53(6), 916-928.
[http://dx.doi.org/10.1016/j.molcel.2014.01.033] [PMID: 24613345]
[27]
Siswanto, F.M.; Okukawa, K.; Tamura, A.; Oguro, A.; Imaoka, S. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress. Free Radic. Res., 2023, 57(3), 223-238.
[http://dx.doi.org/10.1080/10715762.2023.2229509] [PMID: 37364176]
[28]
Siswanto, F.M.; Oguro, A.; Imaoka, S. Sp1 is a substrate of Keap1 and regulates the activity of CRL4AWDR23 ubiquitin ligase toward Nrf2. J. Biol. Chem., 2021, 296, 100704.
[http://dx.doi.org/10.1016/j.jbc.2021.100704] [PMID: 33895141]
[29]
Baba, K.; Morimoto, H.; Imaoka, S. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2). J. Biol. Chem., 2013, 288(25), 18393-18405.
[http://dx.doi.org/10.1074/jbc.M112.438762] [PMID: 23645672]
[30]
Clough, E.; Barrett, T. The Gene Expression Omnibus Database. 2016. Available From: https://www.ncbi.nlm.nih.gov/geo/
[31]
Lesnick, T.G.; Papapetropoulos, S.; Mash, D.C.; Ffrench-Mullen, J.; Shehadeh, L.; de Andrade, M.; Henley, J.R.; Rocca, W.A.; Ahlskog, J.E.; Maraganore, D.M. A genomic pathway approach to a complex disease: Axon guidance and Parkinson disease. PLoS Genet., 2007, 3(6), e98.
[http://dx.doi.org/10.1371/journal.pgen.0030098] [PMID: 17571925]
[32]
Botta-Orfila, T.; Sànchez-Pla, A.; Fernández, M.; Carmona, F.; Ezquerra, M.; Tolosa, E. Brain transcriptomic profiling in idiopathic and LRRK2-associated Parkinson’s disease. Brain Res., 2012, 1466, 152-157.
[http://dx.doi.org/10.1016/j.brainres.2012.05.036] [PMID: 22634372]
[33]
Zhang, Y.; James, M.; Middleton, F.A.; Davis, R.L. Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 137B(1), 5-16.
[http://dx.doi.org/10.1002/ajmg.b.30195] [PMID: 15965975]
[34]
Suzuki, T.; Muramatsu, A.; Saito, R.; Iso, T.; Shibata, T.; Kuwata, K.; Kawaguchi, S.; Iwawaki, T.; Adachi, S.; Suda, H.; Morita, M.; Uchida, K.; Baird, L.; Yamamoto, M. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell Rep., 2019, 28(3), 746-758.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.06.047] [PMID: 31315052]
[35]
Hayes, J.D.; Chowdhry, S.; Dinkova-Kostova, A.T.; Sutherland, C. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem. Soc. Trans., 2015, 43(4), 611-620.
[http://dx.doi.org/10.1042/BST20150011] [PMID: 26551701]
[36]
Nakamura, M.; Yamanaka, H.; Oguro, A.; Imaoka, S. Bisphenol A induces Nrf2-dependent drug-metabolizing enzymes through nitrosylation of Keap1. Drug Metab. Pharmacokinet., 2018, 33(4), 194-202.
[http://dx.doi.org/10.1016/j.dmpk.2018.04.003] [PMID: 29960846]
[37]
Siswanto, F.M.; Sakuma, R.; Oguro, A.; Imaoka, S. Chlorogenic Acid Activates Nrf2/SKN-1 and Prolongs the Lifespan of Caenorhabditis elegansvia the Akt-FOXO3/DAF16a-DDB1 Pathway and Activation of DAF16f. J. Gerontol. A Biol. Sci. Med. Sci., 2022, 77(8), 1503-1516.
[http://dx.doi.org/10.1093/gerona/glac062] [PMID: 35279029]
[38]
Farkhondeh, T.; Folgado, S.L.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Samarghandian, S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother., 2020, 127, 110234.
[http://dx.doi.org/10.1016/j.biopha.2020.110234] [PMID: 32559855]
[39]
Fornes, O.; Castro-Mondragon, J.A.; Khan, A.; van der Lee, R.; Zhang, X.; Richmond, P.A.; Modi, B.P.; Correard, S.; Gheorghe, M. Baranašić, D.; Santana-Garcia, W.; Tan, G.; Chèneby, J.; Ballester, B.; Parcy, F.; Sandelin, A.; Lenhard, B.; Wasserman, W.W.; Mathelier, A. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res., 2019, gkz1001.
[http://dx.doi.org/10.1093/nar/gkz1001] [PMID: 31701148]
[40]
Cicali, E.J.; Smith, D.M.; Duong, B.Q.; Kovar, L.G.; Cavallari, L.H.; Johnson, J.A. A scoping review of the evidence behind cytochrome P450 2D6 isoenzyme inhibitor classifications. Clin. Pharmacol. Ther., 2020, 108(1), 116-125.
[http://dx.doi.org/10.1002/cpt.1768] [PMID: 31910286]
[41]
Lee, Y.H.; Bae, S.C. Association between functional CYP2D6 polymorphisms and susceptibility to autoimmune diseases: A meta-analysis. Immunol. Invest., 2017, 46(2), 109-122.
[http://dx.doi.org/10.1080/08820139.2016.1226898] [PMID: 27749127]
[42]
Schroth, W.; Goetz, M.P.; Hamann, U.; Fasching, P.A.; Schmidt, M.; Winter, S.; Fritz, P.; Simon, W.; Suman, V.J.; Ames, M.M.; Safgren, S.L.; Kuffel, M.J.; Ulmer, H.U.; Boländer, J.; Strick, R.; Beckmann, M.W.; Koelbl, H.; Weinshilboum, R.M.; Ingle, J.N.; Eichelbaum, M.; Schwab, M.; Brauch, H. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA, 2009, 302(13), 1429-1436.
[http://dx.doi.org/10.1001/jama.2009.1420] [PMID: 19809024]
[43]
Pan, X.; Lee, Y.K.; Jeong, H.; Farnesoid, X. Farnesoid X receptor agonist represses cytochrome P450 2D6 expression by upregulating small heterodimer partner. Drug Metab. Dispos., 2015, 43(7), 1002-1007.
[http://dx.doi.org/10.1124/dmd.115.064758] [PMID: 25926433]
[44]
Blume, N.; Leonard, J.; Xu, Z.J.; Watanabe, O.; Remotti, H.; Fishman, J. Characterization of Cyp2d22, a novel cytochrome P450 expressed in mouse mammary cells. Arch. Biochem. Biophys., 2000, 381(2), 191-204.
[http://dx.doi.org/10.1006/abbi.2000.1978] [PMID: 11032406]
[45]
Yu, A.M.; Haining, R.L. Expression, purification, and characterization of mouse CYP2d22. Drug Metab. Dispos., 2006, 34(7), 1167-1174.
[http://dx.doi.org/10.1124/dmd.105.008870] [PMID: 16595712]
[46]
Liu, P.; Rojo de la Vega, M.; Sammani, S.; Mascarenhas, J.B.; Kerins, M.; Dodson, M.; Sun, X.; Wang, T.; Ooi, A.; Garcia, J.G.N.; Zhang, D.D. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc. Natl. Acad. Sci. USA, 2018, 115(44), E10352-E10361.
[http://dx.doi.org/10.1073/pnas.1812125115] [PMID: 30309964]
[47]
Kim, S.W.; Lee, H.K.; Shin, J.H.; Lee, J.K. Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving It from p65. Free Radic. Biol. Med., 2013, 65, 468-476.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.028] [PMID: 23891677]
[48]
Robledinos-Antón, N.; Fernández-Ginés, R.; Manda, G.; Cuadrado, A. Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid. Med. Cell. Longev., 2019, 2019, 1-20.
[http://dx.doi.org/10.1155/2019/9372182] [PMID: 31396308]
[49]
Kim, J.E.; You, D.J.; Lee, C.; Ahn, C.; Seong, J.Y.; Hwang, J.I. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell. Signal., 2010, 22(11), 1645-1654.
[http://dx.doi.org/10.1016/j.cellsig.2010.06.004] [PMID: 20600852]
[50]
Nose, K.; Ohba, M. Functional activation of the egr -1 (early growth response-1) gene by hydrogen peroxide. Biochem. J., 1996, 316(2), 381-383.
[http://dx.doi.org/10.1042/bj3160381] [PMID: 8687376]
[51]
Huang, H-X.; Yang, G.; Yang, Y.; Yan, J.; Tang, X-Y.; Pan, Q. TFAP2A is a novel regulator that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 signalling axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(9), 4745-4755.
[http://dx.doi.org/10.26355/eurrev_202005_21163] [PMID: 32432738]
[52]
Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr. Cancer, 2019, 71(6), 1007-1018.
[http://dx.doi.org/10.1080/01635581.2019.1578387] [PMID: 31032633]
[53]
Xu, G.; Ma, Y.; Jin, J.; Wang, X. Activation of AMPK/p38/Nrf2 is involved in resveratrol alleviating myocardial ischemia-reperfusion injury in diabetic rats as an endogenous antioxidant stress feedback. Ann. Transl. Med., 2022, 10(16), 890-890.
[http://dx.doi.org/10.21037/atm-22-3789] [PMID: 36111006]
[54]
Zhao, Y.; Song, W.; Wang, Z.; Wang, Z.; Jin, X.; Xu, J.; Bai, L.; Li, Y.; Cui, J.; Cai, L. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol., 2018, 14, 609-617.
[http://dx.doi.org/10.1016/j.redox.2017.11.007] [PMID: 29154192]
[55]
Liu, J.; Chen, J.; Zhang, J.; Fan, Y.; Zhao, S.; Wang, B.; Wang, P. Mechanism of resveratrol improving ischemia-reperfusion injury by regulating microglial function through microRNA-450b-5p/KEAP1/Nrf2 pathway. Mol. Biotechnol., 2023, 65(9), 1498-1507.
[http://dx.doi.org/10.1007/s12033-022-00646-2] [PMID: 36656498]
[56]
Chhunchha, B.; Kubo, E.; Singh, D.P. Sulforaphane-induced Klf9/Prdx6 axis acts as a molecular switch to control redox signaling and determines fate of cells. Cells, 2019, 8(10), 1159.
[http://dx.doi.org/10.3390/cells8101159] [PMID: 31569690]
[57]
Yang, D.; Lv, Z.; Zhang, H.; Liu, B.; Jiang, H.; Tan, X.; Lu, J.; Baiyun, R.; Zhang, Z. Activation of the Nrf2 signaling pathway involving KLF9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol. Trace Elem. Res., 2017, 176(1), 192-200.
[http://dx.doi.org/10.1007/s12011-016-0821-1] [PMID: 27561292]
[58]
Zhang, H.; Davies, K.J.A.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med., 2015, 88(Pt B), 314-336.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.036] [PMID: 26066302]
[59]
Zhou, L.; Zhang, H.; Davies, K.J.A.; Forman, H.J. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol., 2018, 14, 35-40.
[http://dx.doi.org/10.1016/j.redox.2017.08.014] [PMID: 28863281]
[60]
Ma, R.; Liang, W.; Sun, Q.; Qiu, X.; Lin, Y.; Ge, X.; Jueraitetibaike, K.; Xie, M.; Zhou, J.; Huang, X.; Wang, Q.; Chen, L.; Yao, B. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging (Albany NY), 2018, 10(10), 2991-3004.
[http://dx.doi.org/10.18632/aging.101609] [PMID: 30368232]
[61]
Suh, J.H.; Shenvi, S.V.; Dixon, B.M.; Liu, H.; Jaiswal, A.K.; Liu, R.M.; Hagen, T.M. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3381-3386.
[http://dx.doi.org/10.1073/pnas.0400282101] [PMID: 14985508]
[62]
Li, Y.; Zhao, X.; Hu, Y.; Sun, H.; He, Z.; Yuan, J.; Cai, H.; Sun, Y.; Huang, X.; Kong, W.; Kong, W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int. J. Mol. Med., 2018, 42(6), 3371-3385.
[http://dx.doi.org/10.3892/ijmm.2018.3907] [PMID: 30272261]
[63]
Hindle, J.V. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing, 2010, 39(2), 156-161.
[http://dx.doi.org/10.1093/ageing/afp223] [PMID: 20051606]
[64]
von Otter, M.; Bergström, P.; Quattrone, A.; De Marco, E.V.; Annesi, G.; Söderkvist, P.; Wettinger, S.B.; Drozdzik, M.; Bialecka, M.; Nissbrandt, H.; Klein, C.; Nilsson, M.; Hammarsten, O.; Nilsson, S.; Zetterberg, H. Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease - a multicenter study. BMC Med. Genet., 2014, 15(1), 131.
[http://dx.doi.org/10.1186/s12881-014-0131-4] [PMID: 25496089]
[65]
Ramsey, C.P.; Glass, C.A.; Montgomery, M.B.; Lindl, K.A.; Ritson, G.P.; Chia, L.A.; Hamilton, R.L.; Chu, C.T.; Jordan-Sciutto, K.L. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2007, 66(1), 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939]
[66]
Chattopadhyay, M.; Chowdhury, A.R.; Feng, T.; Assenmacher, C.A.; Radaelli, E.; Guengerich, F.P.; Avadhani, N.G. Mitochondrially targeted cytochrome P450 2D6 is involved in monomethylamine-induced neuronal damage in mouse models. J. Biol. Chem., 2019, 294(26), 10336-10348.
[http://dx.doi.org/10.1074/jbc.RA119.008848] [PMID: 31113867]
[67]
Niu, Y.; Zhang, J.; Dong, M. Nrf2 as a potential target for Parkinson’s disease therapy. J. Mol. Med. (Berl.), 2021, 99(7), 917-931.
[http://dx.doi.org/10.1007/s00109-021-02071-5] [PMID: 33844027]
[68]
Yang, X.; Yang, R.; Zhang, F. Role of Nrf2 in Parkinson’s disease: Toward new perspectives. Front. Pharmacol., 2022, 13, 919233.
[http://dx.doi.org/10.3389/fphar.2022.919233] [PMID: 35814229]
[69]
Zhong, Y.; Cai, X.; Ding, L.; Liao, J.; Liu, X.; Huang, Y.; Chen, X.; Long, L. Nrf2 inhibits the progression of Parkinson’s disease by upregulating AABR07032261.5 to repress pyroptosis. J. Inflamm. Res., 2022, 15, 669-685.
[http://dx.doi.org/10.2147/JIR.S345895] [PMID: 35140498]
[70]
Lu, Y.; Peng, Q.; Zeng, Z.; Wang, J.; Deng, Y.; Xie, L.; Mo, C.; Zeng, J.; Qin, X.; Li, S. CYP2D6 phenotypes and Parkinson’s disease risk: A meta-analysis. J. Neurol. Sci., 2014, 336(1-2), 161-168.
[http://dx.doi.org/10.1016/j.jns.2013.10.030] [PMID: 24211060]
[71]
Zhang, M.; Zhang, C.; Zhang, L.; Yang, Q.; Zhou, S.; Wen, Q.; Wang, J. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer, 2015, 15(1), 531.
[http://dx.doi.org/10.1186/s12885-015-1541-1] [PMID: 26194347]
[72]
Raghunath, A.; Sundarraj, K.; Arfuso, F.; Sethi, G.; Perumal, E. Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers (Basel), 2018, 10(12), 481.
[http://dx.doi.org/10.3390/cancers10120481] [PMID: 30513925]
[73]
Wang, X.J.; Sun, Z.; Villeneuve, N.F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G.T.; Wong, P.K.; Zhang, D.D. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 2008, 29(6), 1235-1243.
[http://dx.doi.org/10.1093/carcin/bgn095] [PMID: 18413364]
[74]
Kiyotani, K.; Mushiroda, T.; Sasa, M.; Bando, Y.; Sumitomo, I.; Hosono, N.; Kubo, M.; Nakamura, Y.; Zembutsu, H. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci., 2008, 99(5), 995-999.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00780.x] [PMID: 18294285]
[75]
Yazdi, M.F.; Rafieian, S.; Gholi-Nataj, M.; Sheikhha, M.H.; Nazari, T.; Neamatzadeh, H. CYP2D6 genotype and risk of recurrence in tamoxifen treated breast cancer patients. Asian Pac. J. Cancer Prev., 2015, 16(15), 6783-6787.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6783] [PMID: 26434912]
[76]
Hu, G.; Gao, F.; Wang, G.; Fang, Y.; Guo, Y.; Zhou, J.; Gu, Y.; Zhang, C.; Gao, N.; Wen, Q.; Qiao, H. Use of proteomics to identify mechanisms of hepatocellular carcinoma with the CYP2D6*10 polymorphism and identification of ANGPTL6 as a new diagnostic and prognostic biomarker. J. Transl. Med., 2021, 19(1), 359.
[http://dx.doi.org/10.1186/s12967-021-03038-3] [PMID: 34412629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy