Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Tools to Evaluate the Eco-efficiency of Analytical Methods in the Context of Green and White Analytical Chemistry: A Review

Author(s): Aline Sinzervinch, Ieda Maria Sapateiro Torres and Ana Carolina Kogawa*

Volume 29, Issue 31, 2023

Published on: 24 October, 2023

Page: [2442 - 2449] Pages: 8

DOI: 10.2174/0113816128266396231017072043

Price: $65

Abstract

Background: The release of a product in the consumer market requires an analysis by quality control. This sector makes use of reliable analytical methods, by high performance liquid chromatography (HPLC), spectrophotometry in the ultraviolet and visible regions (UV-Vis), spectrophotometry in the infrared region (IR) or thin layer chromatography (TLC), for example, to reach a result. The analysis conditions of most of these analytical methods currently still use toxic reagents, generate a greater amount of waste, sample preparation has more steps, the need for instrumentation and consumables in greater quantity, generating a cost and impact on health and the environment greater than if there were adoption of the Green Analytical Chemistry (GAC) and the White Analytical Chemistry (WAC).

Objective/Methods: The objective of this review is to show the relationship of analytical choices for current pharmaceutical analyzes with the GAC and the WAC.

Results: Analytical methods can be evaluated for greenness and whiteness using tools such as the National Environmental Method Index (NEMI), Eco-Scale Assessment (ESA), Analytical Greenness Metric (AGREE) and Green Analytical Procedure Index (GAPI).

Conclusion: The use of NEMI, ESA, AGREE and GAPI tools brings the objective evidence needed to discuss the greenness and whiteness of an analytical method, leaving the subjective level. Furthermore, semi or quantitative data facilitate the choice of an analytical method and its conditions, when the target is the concern with eco-efficiency.

[1]
Pedroso TM, Medeiros ACD, Salgado HRN. RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry. Talanta 2016; 160: 745-53.
[http://dx.doi.org/10.1016/j.talanta.2016.08.016] [PMID: 27591671]
[2]
Bystrzanowska M, Tobiszewski M. How can analysts use multicriteria decision analysis? Trends Analyt Chem 2018; 105: 98-105.
[http://dx.doi.org/10.1016/j.trac.2018.05.003]
[3]
Sajid M, Płotka-Wasylka J. Green analytical chemistry metrics: A review. Talanta 2022; 238(Pt 2): 123046.
[http://dx.doi.org/10.1016/j.talanta.2021.123046] [PMID: 34801903]
[4]
Keith LH, Gron LU, Young JL. Green analytical methodologies. Chem Rev 2007; 107(6): 2695-708.
[http://dx.doi.org/10.1021/cr068359e] [PMID: 17521200]
[5]
Mohamed D, Fouad MM. Application of NEMI, analytical eco-scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods. Microchem J 2020; 157: 104873-86.
[http://dx.doi.org/10.1016/j.microc.2020.104873]
[6]
Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Analyt Chem 2012; 37: 61-72.
[http://dx.doi.org/10.1016/j.trac.2012.03.013]
[7]
Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-analytical GREEnness metric approach and software. Anal Chem 2020; 92(14): 10076-82.
[http://dx.doi.org/10.1021/acs.analchem.0c01887] [PMID: 32538619]
[8]
Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018; 181: 204-9.
[http://dx.doi.org/10.1016/j.talanta.2018.01.013] [PMID: 29426502]
[9]
Mendes AS. Controle de qualidade em processo aplicado à manipulação magistral. Rev Racine 2000; 57: 1-7.
[10]
Seleme R, Stadler H. Controle da qualidade: As ferramentas essenciais. (2nd ed.), Brasil: Editora Ibepex Dialógica 2010.
[11]
Rocha TG, Galende SB. The importance of quality control in the pharmaceutical industry. Rev Uningá 2014; 20(2): 97-103.
[12]
Blum F. High performance liquid chromatography. Br J Hosp Med 2014; 75(Sup2): C18-21.
[http://dx.doi.org/10.12968/hmed.2014.75.Sup2.C18] [PMID: 24521830]
[13]
Gama RGM, Chaves MHC. Boas práticas para cromatografia líquida de alta eficiência: Uma abordagem para o controle de qualidade farmacêutico. Sci Chromatogr 2019; 11(3): 108-25.
[http://dx.doi.org/10.5935/sc.2019.010]
[14]
Dondelinger RM. Spectrophotometers. Biomed Instrum Technol 2011; 45(2): 139-43.
[http://dx.doi.org/10.2345/0899-8205-45.2.139] [PMID: 21466334]
[15]
Marco B, Kogawa A, Salgado H. New, green and miniaturized analytical method for determination of cefadroxil monohydrate in capsules. Drug Anal Res 2019; 3(1): 23-8.
[http://dx.doi.org/10.22456/2527-2616.91086]
[16]
da Silva TLA, Lustosa IA, Torres IMS, Kogawa AC. Eco-friendly UV spectrophotometric method for evaluation of marbofloxacino in tablets - Stability study. J AOAC Int 2022; 105(4): 1017-22.
[http://dx.doi.org/10.1093/jaoacint/qsac017] [PMID: 35148395]
[17]
Silverstein RM, Webster FX. Identificação espectrofotométrica de compostos orgânicos. (6th ed.), Rio de Janeiro, Brasil: LTC 2000.
[18]
Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentos de Química Analítica. (8th ed.), Thomson Learning, São Paulo, Brasil 2006.
[19]
Piantavini MS, Pontes FLD, Weisj LX, Sena MM, Pontarolo R. Synthesis and evaluation of thiazolyl-1H-benzo[d]imidazole inhibitors of mycobacterium tuberculosis inosine monophosphate dehydrogenase. J Braz Chem Soc 2015; 26: 1387-95.
[20]
Nascimento PA, Kogawa AC, Salgado HRN. A green and sustainable method by infrared for quantitative determination of sodium cephalothin. Austin J Anal Pharm Chem 2019; 6: 1117-21.
[21]
Rechelo BS, Kogawa AC, Salgado HRN. Quantitative analysis of cefazolin sodium in lyophilized powder by infrared spectrophotometry: Green, low cost, fast and effective. Spectrochim Acta A Mol Biomol Spectrosc 2019; 208: 157-61.
[http://dx.doi.org/10.1016/j.saa.2018.09.058] [PMID: 30312842]
[22]
Nascimento PA, Kogawa AC, Salgado HRN. A new and ecological method to quantify vancomycin in pharmaceutical product by infrared spectrometry. Acta Chim Slov 2021; 68(2): 313-9.
[http://dx.doi.org/10.17344/acsi.2020.6107] [PMID: 34738128]
[23]
Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Stability-indicating thin-layer chromatographic method for determination of darunavir in complex darunavir-β-cyclodextrin in the presence of its degradation products. Anal Methods 2014; 6(11): 3689-93.
[http://dx.doi.org/10.1039/C4AY00248B]
[24]
Hubicka U, Żuromska-Witek B, Komsta Ł, Krzek J. Lipophilicity study of fifteen fluoroquinolones by reversed-phase thin-layer chromatography. Anal Methods 2015; 7(9): 3841-8.
[http://dx.doi.org/10.1039/C4AY02203C]
[25]
Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Method indicative of stability for the determination of rifaximin and its degradation products by thin chromatographic. Curr Pharm Anal 2017; 13(6): 1-7.
[http://dx.doi.org/10.2174/1573412912666160801103712]
[26]
Collins TJ. Green Chemistry. New York: Macmillan Encyclopedia of Chemistry, Simon and Schuster Macmillan 1997; Vol. 2: pp. 691-7.
[27]
Anastas PT, Williamsont C. Green chemistry. In: Anastas PT, Williamson TC, Eds. ACS Symp Ser 1996; 626(7): 1-20.
[http://dx.doi.org/10.1021/bk-1996-0626]
[28]
Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press 1998; p. 30.
[29]
Zimmerman JB, Anastas PT, Miller GW. Green chemistry as a leadership opportunity for toxicology: We must take the wheel. Toxicol Sci 2014; 141(1): 4-5.
[http://dx.doi.org/10.1093/toxsci/kfu135] [PMID: 25232150]
[30]
Tang SY, Bourne RA, Smith RL, Poliakoff M. The 24 principles of green engineering and green chemistry: “IMPROVEMENTS PRODUCTIVELY”. Green Chem 2008; 10(3): 268-9.
[http://dx.doi.org/10.1039/b719469m]
[31]
Vaccaro L. Green chemistry. Beilstein J Org Chem 2016; 12: 2763-5.
[http://dx.doi.org/10.3762/bjoc.12.273] [PMID: 28144347]
[32]
Armenta S, Garrigues S, De La Guardia M, Esteve-Turrillas F. A Green Analytical Chemistry. (3rd ed.), Spain: Elsevier Encyclopedia of Analytical Science 2018.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.13980-0]
[33]
Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Analyt Chem 2013; 50: 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[34]
De La Guardia M, Garrigues S. Handbook of green analytical chemistry environmental chemistry industrial applications handbooks. Manuals 2012; Vol. 2.
[http://dx.doi.org/10.1002/9781119940722]
[35]
Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality. Trends Analyt Chem 2021; 138: 116223.
[http://dx.doi.org/10.1016/j.trac.2021.116223]
[36]
Hussain CM, Hussain CG, Keçili R. White analytical chemistry approaches for analytical and bioanalytical techniques: Applications and challenges. Trends Analyt Chem 2023; 159: 116905.
[http://dx.doi.org/10.1016/j.trac.2022.116905]
[37]
Nowak PM, Kościelniak P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal Chem 2019; 91(16): 10343-52.
[http://dx.doi.org/10.1021/acs.analchem.9b01872] [PMID: 31305064]
[38]
Attimarad M, Venugopala KN, Nair AB, et al. Environmental sustainable mathematically processed UV spectroscopic methods for quality control analysis of remogliflozin and teneligliptin: Evaluation of greenness and whiteness. Spectrochim Acta A Mol Biomol Spectrosc 2022; 278: 121303.
[http://dx.doi.org/10.1016/j.saa.2022.121303] [PMID: 35525182]
[39]
El-Hanboushy S, Marzouk HM, Fayez YM, Abdelkawy M, Lotfy HM. Sustainable spectrophotometric determination of antihypertensive medicines reducing COVID-19 risk via paired wavelength data processing technique - Assessment of purity, greenness and whiteness. Sustain Chem Pharm 2022; 29: 100806.
[http://dx.doi.org/10.1016/j.scp.2022.100806] [PMID: 35992213]
[40]
Elbordiny HS, Elonsy SM, Daabees HG, Belal TS, Belal TS. Sustainable quantitative determination of allopurinol in fixed dose combinations with benzbromarone and thioctic acid by capillary zone electrophoresis and spectrophotometry: Validation, greenness and whiteness studies. Sustain Chem Pharm 2022; 27: 100684.
[http://dx.doi.org/10.1016/j.scp.2022.100684]
[41]
Emergency Planning and Community Right-to-Know Act. 2017. Available from: http://www.epa.gov/tri/chemical/
[42]
Code of Federal Regulations, Protection of Environment, Identification and listing of hazardous waste. Environmental Protection Agency (EPA) 2016.
[43]
Van Aken K, Strekowski L, Patiny L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2006; 2(1): 3.
[http://dx.doi.org/10.1186/1860-5397-2-3] [PMID: 16542013]
[44]
Raynie D, Driver JL. Green assessment of chemical methods. (13th ed.), Washington, DC, USA: Green Chemistry and Engineering Conference 2009.
[45]
Billiard KM, Dershem AR, Gionfriddo E. Implementing green analytical methodologies using solid-phase microextraction: A review. Molecules 2020; 25(22): 5297-311.
[http://dx.doi.org/10.3390/molecules25225297] [PMID: 33202856]
[46]
Płotka-Wasylka J, Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem 2021; 23(21): 8657-65.
[http://dx.doi.org/10.1039/D1GC02318G]
[47]
Kogawa AC, Pires AEDT, Salgado HRN. Atorvastatin: A review of analytical methods for pharmaceutical quality control and monitoring. J AOAC Int 2019; 102(3): 801-9.
[http://dx.doi.org/10.5740/jaoacint.18-0200] [PMID: 30563586]
[48]
Do Nascimento PA, Kogawa AC, Salgado HRN. Current status of vancomycin analytical methods. J AOAC Int 2020; 103(3): 755-69.
[http://dx.doi.org/10.1093/jaocint/qsz024] [PMID: 33241378]
[49]
Nascimento PA, Kogawa AC, Salgado HRN. Cephalothin: Review of characteristics, properties and status of analytical methods. J AOAC Int 2021; 104(6): 1593-608.
[http://dx.doi.org/10.1093/jaoacint/qsaa163] [PMID: 33252646]
[50]
Teixeira MWS, Dias CVB, Kogawa AC. Status of physicochemical and microbiological analytical methods of gatifloxacin: A review. J AOAC Int 2022; 105(6): 1548-54.
[http://dx.doi.org/10.1093/jaoacint/qsac089] [PMID: 35861368]
[51]
Pereira Sousa JC, Kogawa AC. Overview of analytical methods for evaluating tinidazole. J AOAC Int 2023; 106(2): 309-15.
[http://dx.doi.org/10.1093/jaoacint/qsac142] [PMID: 36355444]
[52]
Environmental Health Criteria 154. World Health Organization 1993.
[53]
Methanol. World Health Organization. 1997. Available from: http://www.inchem.org/documents/ehc/ehc/ehc196.htm (Accessed on: May 30, 2023).
[54]
Kogawa AC, Cernic BG, do Couto LGD, Salgado HRN. Synthetic detergents: 100 years of history. Saudi Pharm J 2017; 25(6): 934-8.
[http://dx.doi.org/10.1016/j.jsps.2017.02.006] [PMID: 28951681]
[55]
Nascimento P A, Ac K, Hrn S. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage. J Chromatogr Sep Tech 2018; 9(1): 394-401.
[http://dx.doi.org/10.4172/2157-7064.1000394]
[56]
Ghidini L, Kogawa A, Salgado HRN. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products. Drug Analytical Research 2018; 2(2): 49-55.
[http://dx.doi.org/10.22456/2527-2616.89412]
[57]
Lima J, Kogawa A, Salgado HRN. Green analytical method for quantification of secnidazole in tablets by HPLC-UV. Drug Anal Res 2018; 2(2): 20-6.
[http://dx.doi.org/10.22456/2527-2616.89411]
[58]
Aleixa do Nascimento P, Kogawa AC, Salgado HRN. A new ecological HPLC method for determination of vancomycin dosage form. Curr Chromatogr 2020; 7(2): 82-90.
[http://dx.doi.org/10.2174/2213240607666200324140907]
[59]
Kogawa AC, Peltonen L, Salgado HRN, Chorillis M. Clean, safe and fast method by HPLC for quantification of rifaximin-based samples. Sci Chromatogr 2019; 11(3): 98-107.
[http://dx.doi.org/10.5935/sc.2019.009]
[60]
da Trindade MT, Kogawa AC, Salgado HRN. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC. J Chromatogr Sci 2022; 60(3): 260-6.
[http://dx.doi.org/10.1093/chromsci/bmab078] [PMID: 34131704]
[61]
Spagnol CM, Martins CJ, Kogawa AC, Isaac VLB, Salgado HRN, Corrêa MA. A new, fast and sustainable method by HPLC for simultaneous determination of ascorbic acid and nicotinamide in the study of cosmetic emulsions. Curr Chromatogr 2022; 9(1): e210322202441.
[http://dx.doi.org/10.2174/2213240609666220321095729]
[62]
de Souza MJM, Kogawa AC, Salgado HRN. New and miniaturized method for analysis of enrofloxacin in palatable tablets. Spectrochim Acta A Mol Biomol Spectrosc 2019; 209: 1-7.
[http://dx.doi.org/10.1016/j.saa.2018.10.014] [PMID: 30343104]
[63]
Motta C, Kogawa A, Chorilli M, Salgado H. Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets. Drug Anal Res 2019; 3(2): 23-9.
[http://dx.doi.org/10.22456/2527-2616.98376]
[64]
Nascimento P, Kogawa A, Salgado HRN. A new and ecological miniaturized method by spectrophotometry for quantification of vancomycin in dosage form. Drug Anal Res 2021; 5(1): 39-45.
[http://dx.doi.org/10.22456/2527-2616.112226]
[65]
Kogawa AC, Nunes Salgado HR. Spectrophotometry in infrared region: A new, low cost and green way to analyze tablets of rifaximin. Curr Pharm Anal 2018; 14(2): 108-11.
[http://dx.doi.org/10.2174/1573412913666161213103657]
[66]
Rebouças CT, Kogawa AC, Salgado HRN. A new green method for the quantitative analysis of enrofloxacin by fourier-transform infrared spectroscopy. J AOAC Int 2018; 101(6): 2001-5.
[http://dx.doi.org/10.5740/jaoacint.17-0431] [PMID: 29776457]
[67]
Kogawa A, Salgado HRN. Quantitative analysis of pharmaceutical products by spectrophotometry in the infrared region: A practical review. Drug Anal Res 2023; 6(2): 3-7.
[http://dx.doi.org/10.22456/2527-2616.127631]
[68]
Kogawa AC, Salgado HRN. Rifaximin in tablets: Is it possible to evaluate the quality by UV, IR, CE, HPLC and turbidimetric methods? EC Microbiol 2018; 14: 16-20.
[69]
Tobiszewski M. Metrics for green analytical chemistry. Anal Methods 2016; 8(15): 2993-9.
[http://dx.doi.org/10.1039/C6AY00478D]
[70]
de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm J 2019; 27(1): 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[71]
Imam MS, Abdelrahman MM. How environmentally friendly is the analytical process? A paradigm overview of ten greenness assessment metric approaches for analytical methods. Trends Environ Anal Chem 2023; 38: e00202.
[http://dx.doi.org/10.1016/j.teac.2023.e00202]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy