Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Psychosomatic Disorder: The Current Implications and Challenges

Author(s): Abhimanyu Chauhan and Chakresh Kumar Jain*

Volume 22, Issue 4, 2024

Published on: 23 October, 2023

Page: [399 - 406] Pages: 8

DOI: 10.2174/0118715257265832231009072953

Price: $65

Abstract

In recent years, there has been increasing global concern about the rising prevalence and rapid progression of psychosomatic disorders (PD). This surge can be attributed to irregular biological conditions and the increasingly stressful lifestyles that individuals lead, ultimately resulting in functional impairments of vital organs. PD arises from intricate interactions involving the central nervous, endocrine, and immune systems. Notably, the hypothalamic-pituitaryadrenal (HPA) axis plays an essential role, as its dysregulation is influenced by prolonged stress and psychological distress. Consequently, stress hormones, including cortisol, exert detrimental effects on immunological function, inflammation, and homeostatic equilibrium. It emerges as physical symptoms influenced by psychological factors, such as persistent pain, gastrointestinal disturbances, or respiratory complications, and is pertinent to highlight that excessive and chronic stress, anxiety, or emotional distress may engender the onset or exacerbation of cardiovascular disorders, namely hypertension and heart disease. Although several therapeutic strategies have been proposed so far, the precise etiology of PD remains elusive due to the intricate nature of disease progression and the underlying modalities of action. This comprehensive review seeks to elucidate the diverse classifications of psychosomatic disorders, explicate their intricate mechanisms, and shed light on their impact on the human body, which may act as catalysts for the development of various other diseases. Additionally, it explores the inherent medico-clinical challenges posed by PD and also explores the cutting-edge technologies, tools, and data analytics pipelines that are being applied in the contemporary era to effectively analyze psychosomatic data.

Next »
[1]
World Health Organization; World Health Organization, 2022.
[2]
Stress and illness – psychology. Available from: https://opentext.wsu.edu/psych105nusbaum/chapter/stress-and-illness/ (accessed on: 2023-07-17).
[3]
Nisar, H.; Srivastava, R. Fundamental concept of psychosomatic disorders: A review. Int. J. Contemp. Med. Res., 2018, 3(1), 12-18.
[4]
Buneviciene, I.; Bunevicius, R.; Bagdonas, S.; Bunevicius, A. The impact of pre-existing conditions and perceived health status on mental health during the COVID-19 pandemic. J. Public Health (Oxf.), 2022, 44(1), e88-e95.
[http://dx.doi.org/10.1093/pubmed/fdab248] [PMID: 34179996]
[5]
Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary lifestyle: overview of updated evidence of potential health risks. Korean J. Fam. Med., 2020, 41(6), 365-373.
[http://dx.doi.org/10.4082/kjfm.20.0165] [PMID: 33242381]
[6]
Martins, M.J.; Palmeira, L.; Xavier, A.; Castilho, P.; Macedo, A.; Pereira, A.T.; Pinto, A.M.; Carreiras, D.; Barreto-Carvalho, C. The Clinical Interview for Psychotic Disorders (CIPD): Preliminary results on interrater agreement, reliability and qualitative feedback. Psychiatry Res., 2019, 272, 723-729.
[http://dx.doi.org/10.1016/j.psychres.2018.12.176] [PMID: 30832192]
[7]
Barsky, A.J. Assessing the new DSM-5 diagnosis of somatic symptom disorder. Psychosom. Med., 2016, 78(1), 2-4.
[http://dx.doi.org/10.1097/PSY.0000000000000287] [PMID: 26599912]
[8]
Cuevas, A.G.; Williams, D.R.; Albert, M.A. Psychosocial factors and hypertension. Cardiol. Clin., 2017, 35(2), 223-230.
[http://dx.doi.org/10.1016/j.ccl.2016.12.004] [PMID: 28411896]
[9]
Mahmoud, N.; Abuzied, A. The prevalence of psychosomatic disorders among adolescent school girls in khartoum state –Sudan. Int. J. Res.-. GRANTHAALAYAH, 2019, 7(9), 71-81.
[http://dx.doi.org/10.29121/granthaalayah.v7.i9.2019.561]
[10]
Chinawa, J.M.; Nwokocha, A.R.C.; Manyike, P.C.; Chinawa, A.T.; Aniwada, E.C.; Ndukuba, A.C. Psychosomatic problems among medical students: a myth or reality? Int. J. Ment. Health Syst., 2016, 10(1), 72.
[http://dx.doi.org/10.1186/s13033-016-0105-3] [PMID: 27933098]
[11]
Adshead, G.; Sarkar, J. The nature of personality disorder. Adv. Psychiatr. Treat., 2012, 18(3), 162-172.
[http://dx.doi.org/10.1192/apt.bp.109.006981]
[12]
Tyrer, P. Personality disorder. Br. J. Psychiatry, 2001, 179(1), 81-84.
[http://dx.doi.org/10.1192/bjp.179.1.81] [PMID: 11435286]
[13]
Rinaldi, S.; Fontani, V.; Aravagli, L.; Mannu, P.; Castagna, A.; Margotti, M.; Rosettani, B. Stress-related psycho-physiological disorders: randomized single blind placebo controlled naturalistic study of psychometric evaluation using a radio electric asymmetric treatment. Health Qual. Life Outcomes, 2011, 9(1), 54.
[http://dx.doi.org/10.1186/1477-7525-9-54] [PMID: 21771304]
[14]
Crisp, A.H.; Ralph, P.C.; McGuinness, B.; Harris, G. Psychoneurotic profiles in the adult population. Br. J. Med. Psychol., 1978, 51(3), 293-301.
[http://dx.doi.org/10.1111/j.2044-8341.1978.tb02474.x] [PMID: 687532]
[15]
Cheng, P.W.C.; Chang, W.C.; Lo, G.G.; Chan, K.W.S.; Lee, H.M.E.; Hui, L.M.C.; Suen, Y.N.; Leung, Y.L.E.; Au Yeung, K.M.P.; Chen, S.; Mak, K.F.H.; Sham, P.C.; Santangelo, B.; Veronese, M.; Ho, C.L.; Chen, Y.H.E.; Howes, O.D. The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology, 2020, 45(11), 1870-1876.
[http://dx.doi.org/10.1038/s41386-020-0740-x] [PMID: 32612207]
[16]
González-Rodríguez, A.; Seeman, M.V. Differences between delusional disorder and schizophrenia: A mini narrative review. World J. Psychiatry, 2022, 12(5), 683-692.
[http://dx.doi.org/10.5498/wjp.v12.i5.683] [PMID: 35663297]
[17]
Wolman, B.B., Ed.;Psychosomatic Disorders; Springer US: Boston, MA, 1988.
[http://dx.doi.org/10.1007/978-1-4684-5520-5]
[18]
Cowen, P.J. Neuroendocrine and Neurochemical Processes in Depression; The Oxford Handbook of Mood Disorders, 2015, pp. 190-200.
[http://dx.doi.org/10.1093/oxfordhb/9780199973965.013.17]
[19]
Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal interactions. Front. Behav. Neurosci., 2021, 14, 601939.
[http://dx.doi.org/10.3389/fnbeh.2020.601939] [PMID: 33519393]
[20]
Mental disorders. Available from: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on: 2023-07-18).
[21]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 1-20.
[http://dx.doi.org/10.1038/nrdp.2016.65]
[22]
Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet, 2012, 379(9820), 1045-1055.
[http://dx.doi.org/10.1016/S0140-6736(11)60602-8] [PMID: 22189047]
[23]
Flint, J.; Kendler, K.S. The genetics of major depression. Neuron, 2014, 81(3), 484-503.
[http://dx.doi.org/10.1016/j.neuron.2014.01.027] [PMID: 24507187]
[24]
Houwing, D.J.; Buwalda, B.; van der Zee, E.A.; de Boer, S.F.; Olivier, J.D.A. The serotonin transporter and early life stress: Translational perspectives. Front. Cell. Neurosci., 2017, 11, 117.
[http://dx.doi.org/10.3389/fncel.2017.00117] [PMID: 28491024]
[25]
Li, Z.; Ruan, M.; Chen, J.; Fang, Y. Major depressive disorder: advances in neuroscience research and translational applications. Neurosci. Bull., 2021, 863-880.
[http://dx.doi.org/10.1007/s12264-021-00638-3]
[26]
Miozzo, R.; Eaton, W.W.; Joseph Bienvenu, O., III; Samuels, J.; Nestadt, G. The serotonin transporter gene polymorphism (SLC6A4) and risk for psychiatric morbidity and comorbidity in the Baltimore ECA follow-up study. Compr. Psychiatry, 2020, 102, 152199.
[http://dx.doi.org/10.1016/j.comppsych.2020.152199] [PMID: 32911381]
[27]
McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; Vieta, E.; Vinberg, M.; Young, A.H.; Mansur, R.B. Bipolar disorders. Lancet, 2020, 396(10265), 1841-1856.
[http://dx.doi.org/10.1016/S0140-6736(20)31544-0] [PMID: 33278937]
[28]
Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet, 2016, 387(10027), 1561-1572.
[http://dx.doi.org/10.1016/S0140-6736(15)00241-X] [PMID: 26388529]
[29]
Weiner, M.; Warren, L.; Fiedorowicz, J.G. Cardiovascular morbidity and mortality in bipolar disorder. Ann. Clin. Psychiatry, 2011, 23(1), 40-47.
[PMID: 21318195]
[30]
Schultz, S.H.; North, S.W.; Shields, C.G. Schizophrenia: a review. Am. Fam. Physician, 2007, 75(12), 1821-1829.
[PMID: 17619525]
[31]
Comer, A.L.; Carrier, M.; Tremblay, M.È.; Cruz-Martín, A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front. Cell. Neurosci., 2020, 14, 274.
[http://dx.doi.org/10.3389/fncel.2020.00274] [PMID: 33061891]
[32]
Robinson, N.; Bergen, S.E. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions. Front. Genet., 2021, 12, 686666.
[http://dx.doi.org/10.3389/fgene.2021.686666] [PMID: 34262598]
[33]
Prince, M.; Albanese, E.; Pender, R.; Ferri, C.; Mazzotti, D. R.; Piovezan, R. D.; Padilla, I.; Luchsinger, J. A. World alzheimer report 2014 dementia and risk reduction an analysis of protective and modifiable factors supported by Dr Maëlenn Guerchet Dr Matthew Prina 2014.
[34]
Launer, L.J.; Andersen, K.; Dewey, M.E.; Letenneur, L.; Ott, A.; Amaducci, L.A.; Brayne, C.; Copeland, J.R.M.; Dartigues, J.F.; Kragh-Sorensen, P.; Lobo, A.; Martinez-Lage, J.M.; Stijnen, T.; Hofman, A. Rates and risk factors for dementia and Alzheimer’s disease: Results from EURODEM pooled analyses. Neurology, 1999, 52(1), 78-84.
[http://dx.doi.org/10.1212/WNL.52.1.78] [PMID: 9921852]
[35]
Dementia UK report | Alzheimer’s Society. Available from: https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report (accessed on: 2023-07-20).
[36]
Types of dementia | Alzheimer’s Society. Available from: https://www.alzheimers.org.uk/about-dementia/types-dementia (accessed on: 2023-07-18).
[37]
What is Autism Spectrum Disorder? | CDC. Available from: https://www.cdc.gov/ncbddd/autism/facts.html (accessed on: 2023-07-18).
[38]
Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr., 2020, 9(S1)(Suppl. 1), S55-S65.
[http://dx.doi.org/10.21037/tp.2019.09.09] [PMID: 32206584]
[39]
Park, H.R.; Lee, J.M.; Moon, H.E.; Lee, D.S.; Kim, B.N.; Kim, J.; Kim, D.G.; Paek, S.H. A short review on the current understanding of autism spectrum disorders. Exp. Neurobiol., 2016, 25(1), 1-13.
[http://dx.doi.org/10.5607/en.2016.25.1.1] [PMID: 26924928]
[40]
Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther., 2018, 190, 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.007] [PMID: 29763648]
[41]
Norkeviciene, A.; Gocentiene, R.; Sestokaite, A.; Sabaliauskaite, R.; Dabkeviciene, D.; Jarmalaite, S.; Bulotiene, G. A systematic review of candidate genes for major depression. Medicina (Kaunas), 2022, 58(2), 285.
[http://dx.doi.org/10.3390/medicina58020285] [PMID: 35208605]
[42]
KEGG PATHWAY Database. Available from: https://www.genome.jp/kegg/pathway.html (accessed on: 2023-07-18).
[43]
Depression Medicines | FDA. Available from: https://www.fda.gov/consumers/free-publications-women/depression-medicines (accessed 2023-07-18).
[44]
Barnett, J.H.; Smoller, J.W. The genetics of bipolar disorder. Neuroscience, 2009, 164(1), 331-343.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.080] [PMID: 19358880]
[45]
Muneer, A. Wnt and GSK3 signaling pathways in bipolar disorder: clinical and therapeutic implications. Clin. Psychopharmacol. Neurosci., 2017, 15(2), 100-114.
[http://dx.doi.org/10.9758/cpn.2017.15.2.100] [PMID: 28449557]
[46]
Dening, T.; Sandilyan, M.B. Dementia: definitions and types. Nurs. Stand., 2015, 29(37), 37-42.
[http://dx.doi.org/10.7748/ns.29.37.37.e9405] [PMID: 25967445]
[47]
Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; Van Os, J.; Insel, T.R. Schizophrenia. Nat. Rev. Dis. Primers, 2015, 1(1), 1-23.
[http://dx.doi.org/10.1038/nrdp.2015.67]
[48]
Farrell, M.S.; Werge, T.; Sklar, P.; Owen, M.J.; Ophoff, R.A.; O’donovan, M.C.; Corvin, A.; Cichon, S.; Sullivan, P.F. Evaluating historical candidate genes for schizophrenia. Mol. Psychiatry, 2015, 20(5), 555-562.
[http://dx.doi.org/10.1038/mp.2015.16]
[49]
da Silva Montenegro, E.M.; Costa, C.S.; Campos, G.; Scliar, M.; Almeida, T.F.; Zachi, E.C.; Silva, I.M.W.; Chan, A.J.S.; Zarrei, M.; Lourenço, N.C.V.; Yamamoto, G.L.; Scherer, S.; Passos-Bueno, M.R. Meta‐analyses support previous and novel autism candidate genes: outcomes of an unexplored Brazilian cohort. Autism Res., 2020, 13(2), 199-206.
[http://dx.doi.org/10.1002/aur.2238] [PMID: 31696658]
[50]
List of 12 autism medications compared - drugs.com. Available from: https://www.drugs.com/condition/autism.html (accessed on:2023-07-18).
[51]
Hsueh, Y.P.; Lin, Y.C. Editorial: Autism signaling pathways. Front. Cell. Neurosci., 2021, 15, 760994.
[http://dx.doi.org/10.3389/fncel.2021.760994] [PMID: 34650407]
[52]
Kukurba, K. R.; Montgomery, S. B. RNA sequencing and analysis. Cold Spring Harb Protoc, 2015, 2015(11), pdb.top084970.
[http://dx.doi.org/10.1101/pdb.top084970]
[53]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[54]
Mental health prediction using machine learning: Taxonomy, applications, and challenges. Available from: https://www.hindawi.com/journals/acisc/2022/9970363/ (accessed on: 2023-07-18).
[55]
Su, C.; Xu, Z.; Pathak, J.; Wang, F. Deep learning in mental health outcome research: a scoping review. Transl. Psychiatry, 2020, 10(1), 116.
[http://dx.doi.org/10.1038/s41398-020-0780-3] [PMID: 32532967]
[56]
Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[57]
bioDBnet - biological database network. Available from: https://biodbnet-abcc.ncifcrf.gov/ (accessed on: 2023-07-18).
[58]
Home - UCI machine learning repository. Available from: https://archive.ics.uci.edu/ (accessed on: 2023-07-18).
[59]
Kaggle: Your machine learning and data science community. Available from: https://www.kaggle.com/ (accessed on: 2023-07-18).
[60]
Commonmind consortium knowledge portal - syn2759792 - Wiki. Available from: https://www.synapse.org//#!Synapse:syn2759792/wiki/69613 (accessed on: 2023-07-18).
[61]
Home - GEO - NCBI. Available from: https://www.ncbi.nlm.nih.gov/geo/ (accessed on: 2023-07-18).
[62]
Zhao, Z.; Li, Y.; Chen, H.; Lu, J.; Thompson, P.M.; Chen, J.; Wang, Z.; Xu, J.; Xu, C.; Li, X.P.D. _NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders. BMC Med. Genomics, 2014, 7(1), 71.
[http://dx.doi.org/10.1186/s12920-014-0071-z] [PMID: 25551368]
[63]
Yu, J.S.; Xue, A.Y.; Redei, E.E.; Bagheri, N. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder. Transl. Psychiatry, 2016, 6(10), e931.
[http://dx.doi.org/10.1038/tp.2016.198] [PMID: 27779627]
[64]
Albagmi, F.M.; Alansari, A.; Al Shawan, D.S.; AlNujaidi, H.Y.; Olatunji, S.O. Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach. Informatics in Medicine Unlocked, 2022, 28, 100854.
[http://dx.doi.org/10.1016/j.imu.2022.100854] [PMID: 35071730]
[65]
Boedeker, P.; Kearns, N.T. Linear discriminant analysis for prediction of group membership: a user-friendly primer. Adv. Methods Pract. Psychol. Sci., 2019, 2(3), 250-263.
[http://dx.doi.org/10.1177/2515245919849378]
[66]
Zhang, C.; Chen, X.; Wang, S.; Hu, J.; Wang, C.; Liu, X. Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018. Psychiatry Res., 2021, 306, 114261.
[http://dx.doi.org/10.1016/j.psychres.2021.114261] [PMID: 34781111]
[67]
Durstewitz, D.; Koppe, G.; Meyer-Lindenberg, A. Deep neural networks in psychiatry. Mol. Psychiatry, 2019, 24(11), 1583-1598.
[http://dx.doi.org/10.1038/s41380-019-0365-9] [PMID: 30770893]
[68]
Šimundić, A-M. Measures of diagnostic accuracy: basic definitions. EJIFCC, 2009, 19(4), 203-211.
[PMID: 27683318]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy