Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Pharmaceuticals in the Water: Emerging Concerns and Innovative Remediation Solutions

Author(s): Smriti Ojha, Shivendra Mani Tripathi, Pratik Kumar Vishwakarma and Sudhanshu Mishra*

Volume 11, Issue 1, 2024

Published on: 23 October, 2023

Page: [50 - 62] Pages: 13

DOI: 10.2174/0122133461272526231012064151

Price: $65

Abstract

Pharmaceutical contamination, resulting from the discharge of active pharmaceutical ingredients (APIs) and other related compounds into the water, has become a growing concern due to its potential adverse effects on ecosystems and human health. This review article aims to examine the many facets of pharmaceutical contamination and highlight the most recent developments in its remediation. The effects of pharmaceuticals, sources, and pathways of pharmaceutical contamination, as well as the difficulties in detecting and evaluating its toxicities, have been included in the present manuscript. Nowadays various remediation strategies are employed to mitigate pharmaceutical contamination in water. Conventional wastewater treatment techniques, including activated sludge processes and membrane filtration, are effective in removing a portion of the pharmaceutical compounds. However, advanced oxidation processes such as ozonation and photocatalysis have shown promising results in enhancing the degradation of recalcitrant APIs. Nanotechnology-based approaches, such as the use of nanoparticles for adsorption and degradation, and bioremediation methods utilizing microbial degradation, enzymatic processes, and phytoremediation, offer potential future directions for efficient and sustainable remediation. This review describes the most recent developments, current status, and potential research directions with the future prospects of pharmaceutical pollutants.

Graphical Abstract

[1]
González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health, 2021, 18(5), 2532.
[http://dx.doi.org/10.3390/ijerph18052532] [PMID: 33806343]
[2]
Kümmerer, K. Pharmaceuticals in the environment. Annu. Rev. Environ. Resour., 2010, 35(1), 57-75.
[http://dx.doi.org/10.1146/annurev-environ-052809-161223]
[3]
Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; Lerner, S.A.; Levy, S.; Lewis, K.; Lomovskaya, O.; Miller, J.H.; Mobashery, S.; Piddock, L.J.V.; Projan, S.; Thomas, C.M.; Tomasz, A.; Tulkens, P.M.; Walsh, T.R.; Watson, J.D.; Witkowski, J.; Witte, W.; Wright, G.; Yeh, P.; Zgurskaya, H.I. Tackling antibiotic resistance. Nat. Rev. Microbiol., 2011, 9(12), 894-896.
[http://dx.doi.org/10.1038/nrmicro2693] [PMID: 22048738]
[4]
Davies, S.C.; Fowler, T.; Watson, J.; Livermore, D.M.; Walker, D. Annual Report of the Chief Medical Officer: Infection and the rise of antimicrobial resistance. Lancet, 2013, 381(9878), 1606-1609.
[http://dx.doi.org/10.1016/S0140-6736(13)60604-2] [PMID: 23489756]
[5]
Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 2019, 7(6), 180.
[http://dx.doi.org/10.3390/microorganisms7060180] [PMID: 31234491]
[6]
Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Jonsson, M. Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioural alterations. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1656), 20130580.
[http://dx.doi.org/10.1098/rstb.2013.0580] [PMID: 25405968]
[7]
Medhi, B.; Sewal, R. Ecopharmacovigilance: An issue urgently to be addressed. Indian J. Pharmacol., 2012, 44(5), 547-549.
[http://dx.doi.org/10.4103/0253-7613.100363] [PMID: 23112410]
[8]
Boxall, A.B.A. The environmental side effects of medication. EMBO Rep., 2004, 5(12), 1110-1116.
[http://dx.doi.org/10.1038/sj.embor.7400307] [PMID: 15577922]
[9]
de Aquino, S.F.; Brandt, E.M.F.; Bottrel, S.E.C.; Gomes, F.B.R.; Silva, S.Q. Occurrence of pharmaceuticals and endocrine disrupting compounds in brazilian water and the risks they may represent to human health. Int. J. Environ. Res. Public Health, 2021, 18(22), 11765.
[http://dx.doi.org/10.3390/ijerph182211765] [PMID: 34831521]
[10]
Gross-Sorokin, M.Y.; Roast, S.D.; Brighty, G.C. Assessment of feminization of male fish in english rivers by the environment agency of england and wales., Environ. Health Perspect, 2006, 114(Suppl 1)(1), 147-151.
[http://dx.doi.org/10.1289/ehp.8068] [PMID: 16818261]
[11]
Kumar, A.; Chang, B.; Xagoraraki, I. Human health risk assessment of pharmaceuticals in water: Issues and challenges ahead. Int. J. Environ. Res. Public Health, 2010, 7(11), 3929-3953.
[http://dx.doi.org/10.3390/ijerph7113929] [PMID: 21139869]
[12]
Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci., 2020, 21(6), 1929.
[http://dx.doi.org/10.3390/ijms21061929] [PMID: 32178293]
[13]
Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect., 1999, 107(Suppl 6)(6), 907-938.
[http://dx.doi.org/10.1289/ehp.99107s6907] [PMID: 10592150]
[14]
Deo, R.; Halden, R. Pharmaceuticals in the built and natural water environment of the United States. Water, 2013, 5(3), 1346-1365.
[http://dx.doi.org/10.3390/w5031346]
[15]
Chen, J.; Ying, G.G.; Wei, X.D.; Liu, Y.S.; Liu, S.S.; Hu, L.X.; He, L.Y.; Chen, Z.F.; Chen, F.R.; Yang, Y.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. Sci. Total Environ., 2016, 571, 974-982.
[http://dx.doi.org/10.1016/j.scitotenv.2016.07.085] [PMID: 27443461]
[16]
Cui, C.; Han, Q.; Jiang, L.; Ma, L.; Jin, L.; Zhang, D.; Lin, K.; Zhang, T. Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze River delta. East China. Environ. Sci. Pollut. Res. Int., 2018, 25(20), 19393-19402.
[http://dx.doi.org/10.1007/s11356-018-2124-x] [PMID: 29728969]
[17]
Kesar, S.; Bhatti, M.S. Chlorination of secondary treated wastewater with sodium hypochlorite (NaOCl): An effective single alternate to other disinfectants. Heliyon, 2022, 8(11), e11162.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11162] [PMID: 36387561]
[18]
Ternes, T.A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res., 2003, 37(8), 1976-1982.
[http://dx.doi.org/10.1016/S0043-1354(02)00570-5] [PMID: 12697241]
[19]
Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M. Activated carbon for the removal of pharmaceutical residues from treated wastewater. Water Sci. Technol., 2014, 69(11), 2372-2380.
[http://dx.doi.org/10.2166/wst.2014.172] [PMID: 24901634]
[20]
Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem., 2021, 76, 105656.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105656] [PMID: 34274706]
[21]
Parmar, N. K S, J. Treatment of pharmaceutical waste water by coagulation process using Moringa oleifera as a natural coagulant. SSRN Electron J, 2019.
[http://dx.doi.org/10.2139/ssrn.3366899]
[22]
Kooijman, G.; de Kreuk, M.K.; Houtman, C.; van Lier, J.B. Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures. J. Water Process Eng., 2020, 34, 101161.
[http://dx.doi.org/10.1016/j.jwpe.2020.101161]
[23]
Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J., 2017, 323, 361-380.
[http://dx.doi.org/10.1016/j.cej.2017.04.106]
[24]
Mansouri, F.; Chouchene, K.; Roche, N.; Ksibi, M. Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl. Sci., 2021, 11(14), 6659.
[http://dx.doi.org/10.3390/app11146659]
[25]
Jeyanthi Rebecca, L.; Sharmila, S.; Sharmila, D. Ecological effects on aquatic ecosystem. Drug Invent Today, 2019, 11, 1206-1209.
[26]
Gunnarsson, L.; Snape, J.R.; Verbruggen, B.; Owen, S.F.; Kristiansson, E.; Margiotta-Casaluci, L.; Österlund, T.; Hutchinson, K.; Leverett, D.; Marks, B.; Tyler, C.R. Pharmacology beyond the patient: The environmental risks of human drugs. Environ. Int., 2019, 129, 320-332.
[http://dx.doi.org/10.1016/j.envint.2019.04.075] [PMID: 31150974]
[27]
Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J.L. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol., 2015, 13(5), 310-317.
[http://dx.doi.org/10.1038/nrmicro3439] [PMID: 25817583]
[28]
Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of pharmaceutical effluents on aquatic ecosystems. Sci. Am., 2022, 17, e01288.
[http://dx.doi.org/10.1016/j.sciaf.2022.e01288]
[29]
Kock, A.; Glanville, H.C.; Law, A.C.; Stanton, T.; Carter, L.J.; Taylor, J.C. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. Sci. Total Environ., 2023, 878, 162939.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162939] [PMID: 36934940]
[30]
Embrandiri, A.; Katheem Kiyasudeen, S.; Rupani, P.F.; Ibrahim, M.H. Environmental xenobiotics and its effects on natural ecosystem; Plant Responses to Xenobiotics, 2016, pp. 1-18.
[http://dx.doi.org/10.1007/978-981-10-2860-1_1]
[31]
Carter, L.J.; Chefetz, B.; Abdeen, Z.; Boxall, A.B.A. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process. Impacts, 2019, 21(4), 605-622.
[http://dx.doi.org/10.1039/C9EM00020H] [PMID: 30932118]
[32]
Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Saravana Kumar, R.M.; Kumarasamy, S.; Sathiyan, G.; Geetha, R.; Paulraj, B.; Liu, G.; Kandasamy, S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environ. Pollut., 2022, 300, 118922.
[http://dx.doi.org/10.1016/j.envpol.2022.118922] [PMID: 35114308]
[33]
Yu, X.; Sui, Q.; Lyu, S.; Zhao, W.; Liu, J.; Cai, Z.; Yu, G.; Barcelo, D. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment. Environ. Sci. Technol., 2020, 54(16), 9757-9768.
[http://dx.doi.org/10.1021/acs.est.0c00565] [PMID: 32560585]
[34]
Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol., 2015, 32(1), 147-156.
[http://dx.doi.org/10.1016/j.nbt.2014.01.001] [PMID: 24462777]
[35]
Zhang, C.; Barron, L.; Sturzenbaum, S. The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial ecosystem. Sci. Total Environ., 2021, 781, 146684.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146684] [PMID: 33794458]
[36]
Ben Mordechay, E.; Mordehay, V.; Tarchitzky, J.; Chefetz, B. Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel. J. Hazard. Mater., 2021, 416, 126184.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126184] [PMID: 34492955]
[37]
Kotwani, A.; Joshi, J.; Kaloni, D. Pharmaceutical effluent: A critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ. Sci. Pollut. Res. Int., 2021, 28(25), 32111-32124.
[http://dx.doi.org/10.1007/s11356-021-14178-w] [PMID: 33929671]
[38]
Ekundayo, T.C.; Okoh, A.I. Antimicrobial resistance in freshwater Plesiomonas shigelloides isolates: Implications for environmental pollution and risk assessment. Environ. Pollut., 2020, 257, 113493.
[http://dx.doi.org/10.1016/j.envpol.2019.113493] [PMID: 31753632]
[39]
Ravikumar, Y.; Yun, J.; Zhang, G.; Zabed, H.M.; Qi, X. A review on constructed wetlands-based removal of pharmaceutical contaminants derived from non-point source pollution. Environ. Technol. Innov., 2022, 26, 102504.
[http://dx.doi.org/10.1016/j.eti.2022.102504]
[40]
Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut., 2012, 163, 287-303.
[http://dx.doi.org/10.1016/j.envpol.2011.12.034] [PMID: 22306910]
[41]
Duong, H.A.; Phung, T.V.; Nguyen, T.N.; Phan Thi, L.A.; Pham, H.V. Occurrence, distribution, and ecological risk assessment of antibiotics in selected urban lakes of hanoi, Vietnam. J. Anal. Methods Chem., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/6631797] [PMID: 33777476]
[42]
Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem., 2011, 399(1), 251-275.
[http://dx.doi.org/10.1007/s00216-010-4300-9] [PMID: 21063687]
[43]
Nepal, S.; Giri, A.; Bhandari, R.; Chand, S.; Nepal, S.; Aryal, S.; Khanal, P.; Moktan, J.B.; Shastry, C.S. Poor and unsatisfactory disposal of expired and unused pharmaceuticals: A global issue. Curr. Drug Saf., 2020, 15(3), 167-172.
[http://dx.doi.org/10.2174/1574886315666200626164001] [PMID: 32589562]
[44]
Kalyva, M. Fate of pharmaceuticals in the environment: A review. Inorg. Chim. Acta, 2011, 368, 13-20.
[45]
Zare, E.N.; Fallah, Z.; Le, V.T.; Doan, V.D.; Mudhoo, A.; Joo, S.W.; Vasseghian, Y.; Tajbakhsh, M.; Moradi, O.; Sillanpää, M.; Varma, R.S. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: A review. Environ. Chem. Lett., 2022, 20(4), 2629-2664.
[http://dx.doi.org/10.1007/s10311-022-01439-4] [PMID: 35431714]
[46]
Kumar, S.; Yadav, S.; Kataria, N.; Chauhan, A.K.; Joshi, S.; Gupta, R.; Kumar, P.; Chong, J.W.R.; Khoo, K.S.; Show, P.L. Recent advancement in nanotechnology for the treatment of pharmaceutical wastewater: Sources, toxicity, and remediation technology. Curr. Pollut. Rep., 2023, 9(2), 110-142.
[http://dx.doi.org/10.1007/s40726-023-00251-0]
[47]
Zinicovscaia, I. Conventional methods of wastewater treatment. In: Cyanobacteria for Bioremediation of Wastewaters; SpringerLink, 2016; pp. 17-25.
[http://dx.doi.org/10.1007/978-3-319-26751-7_3]
[48]
Ranjit, P.; Jhansi, V.; Reddy, K.V. Conventional wastewater treatment processes. In: Advances in the Domain of Environmental Biotechnology; SpringerLink, 2021; pp. 455-479.
[http://dx.doi.org/10.1007/978-981-15-8999-7_17]
[49]
Cervantes-Avilés, P.; Keller, A.A. Incidence of metal-based nanoparticles in the conventional wastewater treatment process. Water Res., 2021, 189, 116603.
[http://dx.doi.org/10.1016/j.watres.2020.116603] [PMID: 33189972]
[50]
Díaz-Cruz, M.S.; López de Alda, M.J.; Barceló, D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Analyt. Chem., 2003, 22(6), 340-351.
[http://dx.doi.org/10.1016/S0165-9936(03)00603-4]
[51]
Zheng, C.; Zhao, L.; Zhou, X.; Fu, Z.; Li, A. Treatment technologies for organic wastewater. In: Water Treat; intechopen, 2013.
[http://dx.doi.org/10.5772/52665]
[52]
Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review. Sci. Total Environ., 2011, 409(20), 4141-4166.
[http://dx.doi.org/10.1016/j.scitotenv.2010.08.061] [PMID: 20956012]
[53]
Escolà Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas). Sci. Total Environ., 2015, 530-531, 383-392.
[http://dx.doi.org/10.1016/j.scitotenv.2015.05.099] [PMID: 26057543]
[54]
Bond, P.L.; Erhart, R.; Wagner, M.; Keller, J.; Blackall, L.L. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol., 1999, 65(9), 4077-4084.
[http://dx.doi.org/10.1128/AEM.65.9.4077-4084.1999] [PMID: 10473419]
[55]
Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 2019, 17(1), 145-155.
[http://dx.doi.org/10.1007/s10311-018-0785-9]
[56]
Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separ. Purif. Tech., 2015, 156, 891-914.
[http://dx.doi.org/10.1016/j.seppur.2015.09.059]
[57]
Khan, A.; Ali, J.; Jamil, S.U.U.; Zahra, N.; Tayaba, T.B.; Iqbal, M.J. Removal of micropollutants. In: Environ. Micropollutants A Vol. Adv. Pollut. Res; Elsevier, 2022; pp. 443-461.
[http://dx.doi.org/10.1016/B978-0-323-90555-8.00012-X]
[58]
Nakatsuka, S.; Nakate, I.; Miyano, T. Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 1996, 106(1-3), 55-61.
[http://dx.doi.org/10.1016/S0011-9164(96)00092-6]
[59]
Moreno, M.; Mazur, L.P.; Weschenfelder, S.E.; Regis, R.J.; de Souza, R.A.F.; Marinho, B.A.; da Silva, A.; de Souza, S.M.A.G.U.; de Souza, A.A.U. Water and wastewater treatment by micellar enhanced ultrafiltration: A critical review. J. Water Process Eng., 2022, 46, 102574.
[http://dx.doi.org/10.1016/j.jwpe.2022.102574]
[60]
Tomaszewska, M.; Orecki, A.; Karakulski, K. Treatment of bilge water using a combination of ultrafiltration and reverse osmosis. Desalination, 2005, 185(1-3), 203-212.
[http://dx.doi.org/10.1016/j.desal.2005.03.078]
[61]
Rautenbach, R.; Vossenkaul, K.; Linn, T.; Katz, T. Waste water treatment by membrane processes: New development in ultrafiltration, nanofiltration and reverse osmosis. Desalination, 1997, 108(1-3), 247-253.
[http://dx.doi.org/10.1016/S0011-9164(97)00032-5]
[62]
Poyatos, J.M.; Muñio, M.M.; Almecija, M.C.; Torres, J.C.; Hontoria, E.; Osorio, F. Advanced oxidation processes for wastewater treatment: State of the art. Water Air Soil Pollut., 2010, 205(1-4), 187-204.
[http://dx.doi.org/10.1007/s11270-009-0065-1]
[63]
Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol., 2008, 83(6), 769-776.
[http://dx.doi.org/10.1002/jctb.1873]
[64]
Deng, Y.; Zhao, R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep., 2015, 1(3), 167-176.
[http://dx.doi.org/10.1007/s40726-015-0015-z]
[65]
Pandey, B.; Fulekar, M.H. Nanotechnology: Remediation technologies to clean up the environmental pollutants. Res J Chem Sci, 2012, 2, 90-96.
[66]
Liu, Y.; Liang, Z.; Lin, C.; Ye, X.; Lv, Y.; Xu, P.; Liu, M. Insights into efficient adsorption of the typical pharmaceutical pollutant with an amphiphilic cellulose aerogel. Chemosphere, 2022, 291(Pt 3), 132978.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132978] [PMID: 34808203]
[67]
Rai, P.K.; Lee, J.; Brown, R.J.C.; Kim, K.H. Micro and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. J. Clean. Prod., 2021, 291, 125240.
[http://dx.doi.org/10.1016/j.jclepro.2020.125240]
[68]
Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem, 2018, 11(18), 3023-3047.
[http://dx.doi.org/10.1002/cssc.201800874] [PMID: 29984904]
[69]
Kumar Das, P.; Mohanty, C.; Krishna Purohit, G.; Mishra, S.; Palo, S. Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100679.
[http://dx.doi.org/10.1016/j.enmm.2022.100679]
[70]
Ojha, S. Green synthesis of metallic nanoparticles: Advancements and future perspectives. Biol. Sci., 2022, 2(3), 262-268.
[http://dx.doi.org/10.55006/biolsciences.2022.2305]
[71]
Rathore, S.; Varshney, A.; Mohan, S.; Dahiya, P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol. Genet. Eng. Rev., 2022, 38(1), 1-32.
[http://dx.doi.org/10.1080/02648725.2022.2027628] [PMID: 35081881]
[72]
Tahri, N.; Bahafid, W.; Sayel, H.; El Ghachtouli, N. Biodegradation: Involved microorganisms and genetically engineered microorganisms. Life Sci., 2013.
[http://dx.doi.org/10.5772/56194]
[73]
Johri, P.; Singh, A.; Trivedi, M.; Singh, S. Integration of pathway analysis as a powerful tool for microbial remediation of pollutants. In: Genomics Approach to Bioremediation; Wiley Online Library, 2023; pp. 397-415.
[http://dx.doi.org/10.1002/9781119852131.ch21]
[74]
Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq., 2021, 328, 115468.
[http://dx.doi.org/10.1016/j.molliq.2021.115468]
[75]
Golan-Rozen, N.; Chefetz, B.; Ben-Ari, J.; Geva, J.; Hadar, Y. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environ. Sci. Technol., 2011, 45(16), 6800-6805.
[http://dx.doi.org/10.1021/es200298t] [PMID: 21744850]
[76]
Ahsan, Z.; Kalsoom, U.; Bhatti, H.N.; Aftab, K.; Khalid, N.; Bilal, M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J. Basic Microbiol., 2021, 61(11), 960-981.
[http://dx.doi.org/10.1002/jobm.202100218] [PMID: 34608659]
[77]
Baker, P.; Tiroumalechetty, A.; Mohan, R. Fungal Enzymes for Bioremediation of Xenobiotic Compounds; SpringerLink, 2019, pp. 463-489.
[http://dx.doi.org/10.1007/978-3-030-25506-0_19]
[78]
Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R.; Brix, H. A review of plant–pharmaceutical interactions: From uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ. Sci. Pollut. Res. Int., 2014, 21(20), 11729-11763.
[http://dx.doi.org/10.1007/s11356-014-2550-3] [PMID: 24481515]
[79]
Bártíková, H.; Skálová, L.; Stuchlíková, L. Vokřál, I.; Vaněk, T.; Podlipná, R. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev., 2015, 47(3), 374-387.
[http://dx.doi.org/10.3109/03602532.2015.1076437] [PMID: 26289098]
[80]
Farzi, A.; Borghei, S.M.; Vossoughi, M. The use of halophytic plants for salt phytoremediation in constructed wetlands. Int. J. Phytoremediation, 2017, 19(7), 643-650.
[http://dx.doi.org/10.1080/15226514.2016.1278423] [PMID: 28084800]
[81]
dos Santos, A.J.; Kronka, M.S.; Fortunato, G.V.; Lanza, M.R.V. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Curr. Opin. Electrochem., 2021, 26, 100674.
[http://dx.doi.org/10.1016/j.coelec.2020.100674]
[82]
Montenegro-Ayo, R.; Pérez, T.; Lanza, M.R.V.; Brillas, E.; Garcia-Segura, S.; dos Santos, A.J. New electrochemical reactor design for emergent pollutants removal by electrochemical oxidation. Electrochim. Acta, 2023, 458, 142551.
[http://dx.doi.org/10.1016/j.electacta.2023.142551]
[83]
Balboni, E.; Filippini, T.; Crous-Bou, M.; Guxens, M.; Erickson, L.D.; Vinceti, M. The association between air pollutants and hippocampal volume from magnetic resonance imaging: A systematic review and meta-analysis. Environ. Res., 2022, 204(Pt A), 111976.
[http://dx.doi.org/10.1016/j.envres.2021.111976] [PMID: 34478724]
[84]
Sirés, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int., 2012, 40, 212-229.
[http://dx.doi.org/10.1016/j.envint.2011.07.012] [PMID: 21862133]
[85]
Marlina, E. Electro-fenton for industrial wastewater treatment: A Review E3S Web of Conferences, 2019, 125, 03003.
[http://dx.doi.org/10.1051/e3sconf/201912503003]
[86]
Butler, E.; Hung, Y.T.; Yeh, R.Y.L.; Suleiman, A.A.M. Electrocoagulation in wastewater treatment. Water, 2011, 3(2), 495-525.
[http://dx.doi.org/10.3390/w3020495]
[87]
Li, Z.; Chen, X.; Yuan, J.; Qiao, Y.; Dai, R.; Wang, X. Electrochemical membrane materials and modules. In: Electrochem. Membr. Technol. Water Wastewater Treat; Elsevier, 2022; pp. 81-110.
[http://dx.doi.org/10.1016/B978-0-12-824470-8.00006-1]
[88]
Divyapriya, G.; Singh, S.; Martínez-Huitle, C.A.; Scaria, J.; Karim, A.V.; Nidheesh, P.V. Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 2021, 276, 130188.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130188] [PMID: 33743419]
[89]
Lissaneddine, A.; Pons, M.N.; Aziz, F.; Ouazzani, N.; Mandi, L.; Mousset, E. A critical review on the electrosorption of organic compounds in aqueous effluent: Influencing factors and engineering considerations Environ. Res., 2022, 204(Pt B), 112128.
[http://dx.doi.org/10.1016/j.envres.2021.112128] [PMID: 34600882]
[90]
Ungureanu, N.; Vladuţ, V.; Cristea, M.; Cujbescu, D. Wastewater electrooxidation using stainless steel electrodes E3S Web of Conferences, 2020, 180, 03015.
[http://dx.doi.org/10.1051/e3sconf/202018003015]
[91]
Fei, L.; Bilal, M.; Qamar, S.A.; Imran, H.M.; Riasat, A.; Jahangeer, M.; Ghafoor, M.; Ali, N.; Iqbal, H.M.N. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. Environ. Res., 2022, 211, 113060.
[http://dx.doi.org/10.1016/j.envres.2022.113060] [PMID: 35283076]
[92]
Mantzavinos, D.; Poulios, I.; Pintar, A. Advances and trends in advanced oxidation processes. Environ. Sci. Pollut. Res. Int., 2017, 24(2), 1061-1062.
[http://dx.doi.org/10.1007/s11356-016-8021-2] [PMID: 28185149]
[93]
Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz., 2016, 7(2), 201-235.
[http://dx.doi.org/10.1007/s12649-015-9459-z]
[94]
Hale, S.; Hanley, K.; Lehmann, J.; Zimmerman, A.; Cornelissen, G. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ. Sci. Technol., 2011, 45(24), 10445-10453.
[http://dx.doi.org/10.1021/es202970x] [PMID: 22077986]
[95]
Awual, M.R. Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J. Environ. Chem. Eng., 2019, 7(3), 103124.
[http://dx.doi.org/10.1016/j.jece.2019.103124]
[96]
Awual, M.R. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem. Eng. J., 2016, 303, 539-546.
[http://dx.doi.org/10.1016/j.cej.2016.06.040]
[97]
Miettinen, M.; Khan, S.A. Pharmaceutical pollution: A weakly regulated global environmental risk. Rev. Eur. Comp. Int. Environ. Law, 2022, 31(1), 75-88.
[http://dx.doi.org/10.1111/reel.12422]
[98]
Madikizela, L.M.; Ncube, S.; Tutu, H.; Richards, H.; Newman, B.; Ndungu, K.; Chimuka, L. Pharmaceuticals and their metabolites in the marine environment: Sources, analytical methods and occurrence. Trend. Environm. Analyt. Chem., 2020, 28, e00104.
[http://dx.doi.org/10.1016/j.teac.2020.e00104]
[99]
Chapman, A.; Ertekin, E.; Kubota, M.; Nagao, A.; Bertsch, K.; Macadre, A.; Tsuchiyama, T.; Masamura, T.; Takaki, S.; Komoda, R.; Dadfarnia, M.; Somerday, B.; Staykov, A.T.; Sugimura, J.; Sawae, Y.; Morita, T.; Tanaka, H.; Yagi, K.; Niste, V.; Saravanan, P.; Onitsuka, S.; Yoon, K-S.; Ogo, S.; Matsushima, T.; Tumen-Ulzii, G.; Klotz, D.; Nguyen, D.H.; Harrington, G.; Adachi, C.; Matsumoto, H.; Kwati, L.; Takahashi, Y.; Kosem, N.; Ishihara, T.; Yamauchi, M.; Saha, B.B.; Islam, M.A.; Miyawaki, J.; Sivasankaran, H.; Kohno, M.; Fujikawa, S.; Selyanchyn, R.; Tsuji, T.; Higashi, Y.; Kirchheim, R.; Sofronis, P. Achieving a carbon neutral future through advanced functional materials and technologies. Bull. Chem. Soc. Jpn., 2022, 95(1), 73-103.
[http://dx.doi.org/10.1246/bcsj.20210323]
[100]
Silvestri, C.; Silvestri, L.; Forcina, A.; Di Bona, G.; Falcone, D. Green chemistry contribution towards more equitable global sustainability and greater circular economy: A systematic literature review. J. Clean. Prod., 2021, 294, 126137.
[http://dx.doi.org/10.1016/j.jclepro.2021.126137]
[101]
Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag., 2020, 22(3), 682-697.
[http://dx.doi.org/10.1007/s10163-019-00960-z]
[102]
Ang, K.L.; Saw, E.T.; He, W.; Dong, X.; Ramakrishna, S. Sustainability framework for pharmaceutical manufacturing (PM): A review of research landscape and implementation barriers for circular economy transition. J. Clean. Prod., 2021, 280, 124264.
[http://dx.doi.org/10.1016/j.jclepro.2020.124264]
[103]
Sydnes, M.O. Drugs designed for degradation in the environment post use. Curr. Green Chem., 2023, 10(1), 92-97.
[http://dx.doi.org/10.2174/2213346110666230301102856]
[104]
Ellis, J.B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ. Pollut., 2006, 144(1), 184-189.
[http://dx.doi.org/10.1016/j.envpol.2005.12.018] [PMID: 16500738]
[105]
Jaffe, A.B.; Newell, R.G.; Stavins, R.N. Environmental policy and technological change. Environ. Resour. Econ., 2002, 22(1/2), 41-70.
[http://dx.doi.org/10.1023/A:1015519401088]
[106]
Anadon, L.D.; Chan, G.; Harley, A.G.; Matus, K.; Moon, S.; Murthy, S.L.; Clark, W.C. Making technological innovation work for sustainable development. Proc. Natl. Acad. Sci., 2016, 113(35), 9682-9690.
[http://dx.doi.org/10.1073/pnas.1525004113] [PMID: 27519800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy