Abstract
Cancer can take years to develop, both at its beginning and during its development. All typical epithelial cancers have a long latency period, sometimes 20 years or more, and if they are clinically detected, distinct genes may include infinite mutations. Long non-coding RNAs (LncRNAs) are a subset of RNAs that regulate many biological processes, including RNA processing, epigenetic control, and signal transduction. Current studies show that lncRNAs, which are dysregulated in cancer, play a significant function in the growth and spread of the illness. LncRNAs have been connected to the overexpression of specific proteins that function in tumors' spread and growth. Moreover, through translational inhibition, microRNAs (miRNAs) regulates gene expression sequence specifically. Apart from that, non-coding RNAs known as miRNAs, with a length of around 22 nucleotides, controls gene expressions in a sequence-specific way either by preventing translation or degrading messenger RNA (mRNA). Quercetin appears to have a significant role in altering miRNA and lncRNA expression, which is linked to variations in the production of oncogenes, tumor suppressors, and proteins produced from cancer. Quercetin may change the earliest epigenetic modifications related to cancer prevention in addition to its usual antioxidant or anti-inflammatory effects. It would be beneficial to have more in-depth information on how Quercetin modulates miRNAs and lncRNAs to use it as a cancer therapeutic strategy. Here, we go through what is known about Quercetin's potential to modulate miRNAs and lncRNAs in various malignancies.
Current Medicinal Chemistry
Title:Modulation of Long Non-coding RNAs and MicroRNAs by Quercetin as a Potential Therapeutical Approach in Cancer: A Comprehensive Review
Volume: 31
Author(s): Reza Asemi, Ali Mafi, Mehran Sharifi, Mina Homayoonfal, Amirhossein Davoodvandi and Zatollah Asemi*
Affiliation:
- Kashan University of Medical Sciences Nutrition K?sh?n Iran
Abstract: Cancer can take years to develop, both at its beginning and during its development. All typical epithelial cancers have a long latency period, sometimes 20 years or more, and if they are clinically detected, distinct genes may include infinite mutations. Long non-coding RNAs (LncRNAs) are a subset of RNAs that regulate many biological processes, including RNA processing, epigenetic control, and signal transduction. Current studies show that lncRNAs, which are dysregulated in cancer, play a significant function in the growth and spread of the illness. LncRNAs have been connected to the overexpression of specific proteins that function in tumors' spread and growth. Moreover, through translational inhibition, microRNAs (miRNAs) regulates gene expression sequence specifically. Apart from that, non-coding RNAs known as miRNAs, with a length of around 22 nucleotides, controls gene expressions in a sequence-specific way either by preventing translation or degrading messenger RNA (mRNA). Quercetin appears to have a significant role in altering miRNA and lncRNA expression, which is linked to variations in the production of oncogenes, tumor suppressors, and proteins produced from cancer. Quercetin may change the earliest epigenetic modifications related to cancer prevention in addition to its usual antioxidant or anti-inflammatory effects. It would be beneficial to have more in-depth information on how Quercetin modulates miRNAs and lncRNAs to use it as a cancer therapeutic strategy. Here, we go through what is known about Quercetin's potential to modulate miRNAs and lncRNAs in various malignancies.
Export Options
About this article
Cite this article as:
Asemi Reza, Mafi Ali, Sharifi Mehran, Homayoonfal Mina, Davoodvandi Amirhossein and Asemi Zatollah*, Modulation of Long Non-coding RNAs and MicroRNAs by Quercetin as a Potential Therapeutical Approach in Cancer: A Comprehensive Review, Current Medicinal Chemistry 2024; 31 () . https://dx.doi.org/10.2174/0109298673256601231009054714
DOI https://dx.doi.org/10.2174/0109298673256601231009054714 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements