Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma

Author(s): Paweł Kozyra* and Monika Pitucha

Volume 31, Issue 15, 2024

Published on: 19 October, 2023

Page: [2003 - 2020] Pages: 18

DOI: 10.2174/0109298673258495231011065225

Price: $65

Abstract

Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.

[1]
Ernst, M.; Giubellino, A. The current state of treatment and future directions in cutaneous malignant melanoma. Biomedicines, 2022, 10(4), 822.
[http://dx.doi.org/10.3390/biomedicines10040822] [PMID: 35453572]
[2]
Dimitriou, F.; Krattinger, R.; Ramelyte, E.; Barysch, M.J.; Micaletto, S.; Dummer, R.; Goldinger, S.M. The world of melanoma: Epidemiologic, genetic, and anatomic differences of melanoma across the globe. Curr. Oncol. Rep., 2018, 20(11), 87.
[http://dx.doi.org/10.1007/s11912-018-0732-8] [PMID: 30250984]
[3]
Millet, A.; Martin, A.R.; Ronco, C.; Rocchi, S.; Benhida, R. Metastatic melanoma: Insights into the evolution of the treatments and future challenges. Med. Res. Rev., 2017, 37(1), 98-148.
[http://dx.doi.org/10.1002/med.21404] [PMID: 27569556]
[4]
Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; Fargnoli, M.C.; Grob, J.J.; Höller, C.; Kaufmann, R.; Lallas, A.; Lebbé, C.; Malvehy, J.; Middleton, M.; Moreno-Ramirez, D.; Pellacani, G.; Saiag, P.; Stratigos, A.J.; Vieira, R.; Zalaudek, I.; Eggermont, A.M.M. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics – Update 2019. Eur. J. Cancer, 2020, 126, 141-158.
[http://dx.doi.org/10.1016/j.ejca.2019.11.014] [PMID: 31928887]
[5]
Kozyra, P.; Krasowska, D.; Pitucha, M. New potential agents for malignant melanoma treatment-most recent studies 2020–2022. Int. J. Mol. Sci., 2022, 23(11), 6084.
[http://dx.doi.org/10.3390/ijms23116084] [PMID: 35682764]
[6]
Kozyra, P.; Korga-Plewko, A.; Karczmarzyk, Z.; Hawrył, A.; Wysocki, W.; Człapski, M.; Iwan, M.; Ostrowska-Leśko, M.; Fornal, E.; Pitucha, M. Potential anticancer agents against melanoma cells based on an as-synthesized thiosemicarbazide derivative. Biomolecules, 2022, 12(2), 151.
[http://dx.doi.org/10.3390/biom12020151] [PMID: 35204651]
[7]
Kozyra, P.; Pitucha, M. Terminal phenoxy group as a privileged moiety of the drug scaffold-A short review of most recent studies 2013–2022. Int. J. Mol. Sci., 2022, 23(16), 8874.
[http://dx.doi.org/10.3390/ijms23168874] [PMID: 36012142]
[8]
Pitucha, M.; Korga-Plewko, A.; Kozyra, P.; Iwan, M.; Kaczor, A.A. 2,4-dichlorophenoxyacetic thiosemicarbazides as a new class of compounds against stomach cancer potentially intercalating with DNA. Biomolecules, 2020, 10(2), 296.
[http://dx.doi.org/10.3390/biom10020296] [PMID: 32069994]
[9]
Matthews, N.H.; Li, W-Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of melanoma. In: Cutaneous Melanoma: Etiology and Therapy; Ward, W.H.; Farma, J.M., Eds.; Codon Publications: Brisbane (AU), 2017.
[http://dx.doi.org/10.15586/codon.cutaneousmelanoma.2017.ch1]
[10]
Rebecca, V.W.; Sondak, V.K.; Smalley, K.S.M. A brief history of melanoma. Melanoma Res., 2012, 22(2), 114-122.
[http://dx.doi.org/10.1097/CMR.0b013e328351fa4d] [PMID: 22395415]
[11]
Caksa, S.; Baqai, U.; Aplin, A.E. The future of targeted kinase inhibitors in melanoma. Pharmacol. Ther., 2022, 239, 108200.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108200] [PMID: 35513054]
[12]
Kłos, P.; Chlubek, D. Plant-derived terpenoids: A promising tool in the fight against melanoma. Cancers, 2022, 14(3), 502.
[http://dx.doi.org/10.3390/cancers14030502] [PMID: 35158770]
[13]
Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. Melanoma management: From epidemiology to treatment and latest advances. Cancers, 2022, 14(19), 4652.
[http://dx.doi.org/10.3390/cancers14194652] [PMID: 36230575]
[14]
Carr, S.; Smith, C.; Wernberg, J. Epidemiology and risk factors of melanoma. Surg. Clin. North Am., 2020, 100(1), 1-12.
[http://dx.doi.org/10.1016/j.suc.2019.09.005] [PMID: 31753105]
[15]
Miller, A.J.; Mihm, M.C., Jr Melanoma. N. Engl. J. Med., 2006, 355(1), 51-65.
[http://dx.doi.org/10.1056/NEJMra052166] [PMID: 16822996]
[16]
Azoury, S.C.; Lange, J.R. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg. Clin. North Am., 2014, 94(5), 945-962.
[http://dx.doi.org/10.1016/j.suc.2014.07.013] [PMID: 25245960]
[17]
Conforti, C.; Zalaudek, I. Epidemiology and risk factors of melanoma: A review. Dermatol. Pract. Concept., 2021, 11(Suppl. 1), 2021161S.
[http://dx.doi.org/10.5826/dpc.11S1a161S] [PMID: 34447610]
[18]
Melanoma Skin Cancer Statistics. Available from: https://www.cancer.org/cancer/melanoma-skin-cancer/ about/key-statistics.html(accessed on 9 January 2023)
[19]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[20]
Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483.
[http://dx.doi.org/10.3390/ijms20061483] [PMID: 30934534]
[21]
Fang, J.Y.; Richardson, B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol., 2005, 6(5), 322-327.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[22]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[23]
Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer, 2014, 120(22), 3446-3456.
[http://dx.doi.org/10.1002/cncr.28864] [PMID: 24948110]
[24]
Mandalà, M.; Voit, C. Targeting BRAF in melanoma: Biological and clinical challenges. Crit. Rev. Oncol. Hematol., 2013, 87(3), 239-255.
[http://dx.doi.org/10.1016/j.critrevonc.2013.01.003] [PMID: 23415641]
[25]
Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. The mitogen-activated protein kinase pathway in melanoma part I - Activation and primary resistance mechanisms to BRAF inhibition. Eur. J. Cancer, 2017, 73, 85-92.
[http://dx.doi.org/10.1016/j.ejca.2016.12.010] [PMID: 28169047]
[26]
Garnett, M.J.; Rana, S.; Paterson, H.; Barford, D.; Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell, 2005, 20(6), 963-969.
[http://dx.doi.org/10.1016/j.molcel.2005.10.022] [PMID: 16364920]
[27]
Terai, K.; Matsuda, M. The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J., 2006, 25(15), 3556-3564.
[http://dx.doi.org/10.1038/sj.emboj.7601241] [PMID: 16858395]
[28]
Raman, M.; Chen, W.; Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene, 2007, 26(22), 3100-3112.
[http://dx.doi.org/10.1038/sj.onc.1210392] [PMID: 17496909]
[29]
Shain, A.H.; Yeh, I.; Kovalyshyn, I.; Sriharan, A.; Talevich, E.; Gagnon, A.; Dummer, R.; North, J.; Pincus, L.; Ruben, B.; Rickaby, W.; D’Arrigo, C.; Robson, A.; Bastian, B.C. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med., 2015, 373(20), 1926-1936.
[http://dx.doi.org/10.1056/NEJMoa1502583] [PMID: 26559571]
[30]
Roskoski, R. Jr RAF protein-serine/threonine kinases: Structure and regulation. Biochem. Biophys. Res. Commun., 2010, 399(3), 313-317.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.092] [PMID: 20674547]
[31]
Palumbo, G.; Di Lorenzo, G.; Ottaviano, M.; Damiano, V. The future of melanoma therapy: Developing new drugs and improving the use of old ones. Future Oncol., 2016, 12(22), 2531-2534.
[http://dx.doi.org/10.2217/fon-2015-0045] [PMID: 27715206]
[32]
Khan, P.S.; Rajesh, P.; Rajendra, P.; Chaskar, M.G.; Rohidas, A.; Jaiprakash, S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg. Chem., 2022, 120, 105597.
[http://dx.doi.org/10.1016/j.bioorg.2022.105597] [PMID: 35033817]
[33]
Kudchadkar, R.; Paraiso, K.H.T.; Smalley, K.S.M. Targeting mutant BRAF in melanoma: Current status and future development of combination therapy strategies. Cancer J., 2012, 18(2), 124-131.
[http://dx.doi.org/10.1097/PPO.0b013e31824b436e] [PMID: 22453012]
[34]
Sabag, N.; Yakobson, A.; Retchkiman, M.; Silberstein, E. Novel biomarkers and therapeutic targets for melanoma. Int. J. Mol. Sci., 2022, 23(19), 11656.
[http://dx.doi.org/10.3390/ijms231911656] [PMID: 36232957]
[35]
Ny, L.; Hernberg, M.; Nyakas, M.; Koivunen, J.; Oddershede, L.; Yoon, M.; Wang, X.; Guyot, P.; Geisler, J. BRAF mutational status as a prognostic marker for survival in malignant melanoma: A systematic review and meta-analysis. Acta Oncol., 2020, 59(7), 833-844.
[http://dx.doi.org/10.1080/0284186X.2020.1747636] [PMID: 32285732]
[36]
Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell, 2015, 161, 1681-1696.
[http://dx.doi.org/10.1016/j.cell.2015.05.044] [PMID: 26091043]
[37]
Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res., 2003, 63(7), 1454-1457.
[PMID: 12670889]
[38]
Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J.; Beer, D.G.; Cope, L.; Creighton, C.J.; Danilova, L. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014, 511(7511), 543-550.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[39]
Subbiah, V.; Baik, C.; Kirkwood, J.M. Clinical development of BRAF plus MEK inhibitor combinations. Trends Cancer, 2020, 6(9), 797-810.
[http://dx.doi.org/10.1016/j.trecan.2020.05.009] [PMID: 32540454]
[40]
Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. RAF/RAS oncogenes and mismatch-repair status. Nature, 2002, 418(6901), 934-934.
[http://dx.doi.org/10.1038/418934a] [PMID: 12198537]
[41]
Tiacci, E.; Trifonov, V.; Schiavoni, G.; Holmes, A.; Kern, W.; Martelli, M.P.; Pucciarini, A.; Bigerna, B.; Pacini, R.; Wells, V.A.; Sportoletti, P.; Pettirossi, V.; Mannucci, R.; Elliott, O.; Liso, A.; Ambrosetti, A.; Pulsoni, A.; Forconi, F.; Trentin, L.; Semenzato, G.; Inghirami, G.; Capponi, M.; Di Raimondo, F.; Patti, C.; Arcaini, L.; Musto, P.; Pileri, S.; Haferlach, C.; Schnittger, S.; Pizzolo, G.; Foà, R.; Farinelli, L.; Haferlach, T.; Pasqualucci, L.; Rabadan, R.; Falini, B. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med., 2011, 364(24), 2305-2315.
[http://dx.doi.org/10.1056/NEJMoa1014209] [PMID: 21663470]
[42]
Badalian-Very, G.; Vergilio, J.A.; Degar, B.A.; MacConaill, L.E.; Brandner, B.; Calicchio, M.L.; Kuo, F.C.; Ligon, A.H.; Stevenson, K.E.; Kehoe, S.M.; Garraway, L.A.; Hahn, W.C.; Meyerson, M.; Fleming, M.D.; Rollins, B.J. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood, 2010, 116(11), 1919-1923.
[http://dx.doi.org/10.1182/blood-2010-04-279083] [PMID: 20519626]
[43]
Bauer, J.; Büttner, P.; Murali, R.; Okamoto, I.; Kolaitis, N.A.; Landi, M.T.; Scolyer, R.A.; Bastian, B.C. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res., 2011, 24(2), 345-351.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00837.x] [PMID: 21324100]
[44]
Yao, Z.; Yaeger, R.; Rodrik-Outmezguine, V.S.; Tao, A.; Torres, N.M.; Chang, M.T.; Drosten, M.; Zhao, H.; Cecchi, F.; Hembrough, T.; Michels, J.; Baumert, H.; Miles, L.; Campbell, N.M.; de Stanchina, E.; Solit, D.B.; Barbacid, M.; Taylor, B.S.; Rosen, N. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature, 2017, 548(7666), 234-238.
[http://dx.doi.org/10.1038/nature23291] [PMID: 28783719]
[45]
Lin, Q.; Zhang, H.; Ding, H.; Qian, J.; Lizaso, A.; Lin, J.; Han-Zhang, H.; Xiang, J.; Li, Y.; Zhu, H. The association between BRAF mutation class and clinical features in BRAF-mutant Chinese non-small cell lung cancer patients. J. Transl. Med., 2019, 17(1), 298.
[http://dx.doi.org/10.1186/s12967-019-2036-7] [PMID: 31470866]
[46]
Śmiech, M.; Leszczyński, P.; Kono, H.; Wardell, C.; Taniguchi, H. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks. Genes, 2020, 11(11), 1342.
[http://dx.doi.org/10.3390/genes11111342] [PMID: 33198372]
[47]
Cantwell-Dorris, E.R.; O’Leary, J.J.; Sheils, O.M. BRAFV600E: Implications for carcinogenesis and molecular therapy. Mol. Cancer Ther., 2011, 10(3), 385-394.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0799] [PMID: 21388974]
[48]
Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[49]
Haling, J.R.; Sudhamsu, J.; Yen, I.; Sideris, S.; Sandoval, W.; Phung, W.; Bravo, B.J.; Giannetti, A.M.; Peck, A.; Masselot, A.; Morales, T.; Smith, D.; Brandhuber, B.J.; Hymowitz, S.G.; Malek, S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell, 2014, 26(3), 402-413.
[http://dx.doi.org/10.1016/j.ccr.2014.07.007] [PMID: 25155755]
[50]
Park, E.; Rawson, S.; Li, K.; Kim, B.W.; Ficarro, S.B.; Pino, G.G.D.; Sharif, H.; Marto, J.A.; Jeon, H.; Eck, M.J. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature, 2019, 575(7783), 545-550.
[http://dx.doi.org/10.1038/s41586-019-1660-y] [PMID: 31581174]
[51]
Wenglowsky, S.; Ren, L.; Ahrendt, K.A.; Laird, E.R.; Aliagas, I.; Alicke, B.; Buckmelter, A.J.; Choo, E.F.; Dinkel, V.; Feng, B.; Gloor, S.L.; Gould, S.E.; Gross, S.; Gunzner-Toste, J.; Hansen, J.D.; Hatzivassiliou, G.; Liu, B.; Malesky, K.; Mathieu, S.; Newhouse, B.; Raddatz, N.J.; Ran, Y.; Rana, S.; Randolph, N.; Risom, T.; Rudolph, J.; Savage, S.; Selby, L.T.; Shrag, M.; Song, K.; Sturgis, H.L.; Voegtli, W.C.; Wen, Z.; Willis, B.S.; Woessner, R.D.; Wu, W.I.; Young, W.B.; Grina, J. Pyrazolopyridine inhibitors of B-Raf V600E. Part 1: The development of selective, orally bioavailable, and efficacious inhibitors. ACS Med. Chem. Lett., 2011, 2(5), 342-347.
[http://dx.doi.org/10.1021/ml200025q] [PMID: 24900315]
[52]
Thevakumaran, N.; Lavoie, H.; Critton, D.A.; Tebben, A.; Marinier, A.; Sicheri, F.; Therrien, M. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat. Struct. Mol. Biol., 2015, 22, 37-43.
[53]
Karoulia, Z.; Wu, Y.; Ahmed, T.A.; Xin, Q.; Bollard, J.; Krepler, C.; Wu, X.; Zhang, C.; Bollag, G.; Herlyn, M.; Fagin, J.A.; Lujambio, A.; Gavathiotis, E.; Poulikakos, P.I. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell, 2016, 30(3), 485-498.
[http://dx.doi.org/10.1016/j.ccell.2016.06.024] [PMID: 27523909]
[54]
Cotto-Rios, X.M.; Agianian, B.; Gitego, N.; Zacharioudakis, E.; Giricz, O.; Wu, Y.; Zou, Y.; Verma, A.; Poulikakos, P.I.; Gavathiotis, E. Inhibitors of BRAF dimers using an allosteric site. Nat. Commun., 2020, 11(1), 4370.
[http://dx.doi.org/10.1038/s41467-020-18123-2] [PMID: 32873792]
[55]
Lavoie, H.; Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol., 2015, 16(5), 281-298.
[http://dx.doi.org/10.1038/nrm3979] [PMID: 25907612]
[56]
Wu, X.; Yan, J.; Dai, J.; Ma, M.; Tang, H.; Yu, J.; Xu, T.; Yu, H.; Si, L.; Chi, Z.; Sheng, X.; Cui, C.; Kong, Y.; Guo, J. Mutations in BRAF codons 594 and 596 predict good prognosis in melanoma. Oncol. Lett., 2017, 14(3), 3601-3605.
[http://dx.doi.org/10.3892/ol.2017.6608] [PMID: 28927118]
[57]
Ottaviano, M.; Giunta, E.; Tortora, M.; Curvietto, M.; Attademo, L.; Bosso, D.; Cardalesi, C.; Rosanova, M.; De Placido, P.; Pietroluongo, E.; Riccio, V.; Mucci, B.; Parola, S.; Vitale, M.; Palmieri, G.; Daniele, B.; Simeone, E. BRAF gene and melanoma: Back to the future. Int. J. Mol. Sci., 2021, 22(7), 3474.
[http://dx.doi.org/10.3390/ijms22073474] [PMID: 33801689]
[58]
Lu, H.; Villafane, N.; Dogruluk, T.; Grzeskowiak, C.L.; Kong, K.; Tsang, Y.H.; Zagorodna, O.; Pantazi, A.; Yang, L.; Neill, N.J.; Kim, Y.W.; Creighton, C.J.; Verhaak, R.G.; Mills, G.B.; Park, P.J.; Kucherlapati, R.; Scott, K.L. Engineering and functional characterization of fusion genes identifies novel oncogenic drivers of cancer. Cancer Res., 2017, 77(13), 3502-3512.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2745] [PMID: 28512244]
[59]
Botton, T.; Talevich, E.; Mishra, V.K.; Zhang, T.; Shain, A.H.; Berquet, C.; Gagnon, A.; Judson, R.L.; Ballotti, R.; Ribas, A.; Herlyn, M.; Rocchi, S.; Brown, K.M.; Hayward, N.K.; Yeh, I.; Bastian, B.C. Genetic heterogeneity of BRAF fusion kinases in melanoma affects drug responses. Cell Rep., 2019, 29(3), 573-588.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.09.009] [PMID: 31618628]
[60]
Zebisch, A.; Troppmair, J. Back to the roots: The remarkable RAF oncogene story. Cell. Mol. Life Sci., 2006, 63(11), 1314-1330.
[http://dx.doi.org/10.1007/s00018-006-6005-y] [PMID: 16649144]
[61]
Hanks, S.K.; Hunter, T. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596.
[http://dx.doi.org/10.1096/fasebj.9.8.7768349] [PMID: 7768349]
[62]
Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.; Suzuki, Y.; Luu, C.; Settachatgul, C.; Shellooe, R.; Cantwell, J.; Kim, S.H.; Schlessinger, J.; Zhang, K.Y.J.; West, B.L.; Powell, B.; Habets, G.; Zhang, C.; Ibrahim, P.N.; Hirth, P.; Artis, D.R.; Herlyn, M.; Bollag, G. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci., 2008, 105(8), 3041-3046.
[http://dx.doi.org/10.1073/pnas.0711741105] [PMID: 18287029]
[63]
Weber, C.K.; Slupsky, J.R.; Kalmes, H.A.; Rapp, U.R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res., 2001, 61(9), 3595-3598.
[PMID: 11325826]
[64]
Avruch, J.; Khokhlatchev, A.; Kyriakis, J.M.; Luo, Z.; Tzivion, G.; Vavvas, D.; Zhang, X.F. Ras activation of the Raf kinase: Tyrosine kinase recruitment of the map kinase cascade. Recent Prog. Horm. Res., 2001, 56(1), 127-156.
[http://dx.doi.org/10.1210/rp.56.1.127] [PMID: 11237210]
[65]
Guo, Y-J.; Pan, W-W.; Liu, S-B.; Shen, Z-F.; Xu, Y.; Hu, L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007.
[PMID: 32104259]
[66]
Kim, A.; Cohen, M.S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov., 2016, 11(9), 907-916.
[http://dx.doi.org/10.1080/17460441.2016.1201057] [PMID: 27327499]
[67]
Proietti, I.; Skroza, N.; Michelini, S.; Mambrin, A.; Balduzzi, V.; Bernardini, N.; Marchesiello, A.; Tolino, E.; Volpe, S.; Maddalena, P.; Di Fraia, M.; Mangino, G.; Romeo, G.; Potenza, C. BRAF inhibitors: Molecular targeting and immunomodulatory actions. Cancers, 2020, 12(7), 1823.
[http://dx.doi.org/10.3390/cancers12071823] [PMID: 32645969]
[68]
Yang, H.; Higgins, B.; Kolinsky, K.; Packman, K.; Go, Z.; Iyer, R.; Kolis, S.; Zhao, S.; Lee, R.; Grippo, J.F.; Schostack, K.; Simcox, M.E.; Heimbrook, D.; Bollag, G.; Su, F. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res., 2010, 70(13), 5518-5527.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0646] [PMID: 20551065]
[69]
King, A.J.; Arnone, M.R.; Bleam, M.R.; Moss, K.G.; Yang, J.; Fedorowicz, K.E.; Smitheman, K.N.; Erhardt, J.A.; Hughes-Earle, A.; Kane-Carson, L.S.; Sinnamon, R.H.; Qi, H.; Rheault, T.R.; Uehling, D.E.; Laquerre, S.G. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One, 2013, 8(7), e67583.
[http://dx.doi.org/10.1371/journal.pone.0067583] [PMID: 23844038]
[70]
Gentilcore, G.; Madonna, G.; Mozzillo, N.; Ribas, A.; Cossu, A.; Palmieri, G.; Ascierto, P.A. Effect of dabrafenib on melanoma cell lines harbouring the BRAF V600D/R mutations. BMC Cancer, 2013, 13(1), 17.
[http://dx.doi.org/10.1186/1471-2407-13-17] [PMID: 23317446]
[71]
Rheault, T.R.; Stellwagen, J.C.; Adjabeng, G.M.; Hornberger, K.R.; Petrov, K.G.; Waterson, A.G.; Dickerson, S.H.; Mook, R.A., Jr; Laquerre, S.G.; King, A.J.; Rossanese, O.W.; Arnone, M.R.; Smitheman, K.N.; Kane-Carson, L.S.; Han, C.; Moorthy, G.S.; Moss, K.G.; Uehling, D.E. Discovery of dabrafenib: A selective inhibitor of raf kinases with antitumor activity against B-raf-driven tumors. ACS Med. Chem. Lett., 2013, 4(3), 358-362.
[http://dx.doi.org/10.1021/ml4000063] [PMID: 24900673]
[72]
Koelblinger, P.; Thuerigen, O.; Dummer, R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr. Opin. Oncol., 2018, 30(2), 125-133.
[http://dx.doi.org/10.1097/CCO.0000000000000426] [PMID: 29356698]
[73]
Joseph, E.W.; Pratilas, C.A.; Poulikakos, P.I.; Tadi, M.; Wang, W.; Taylor, B.S.; Halilovic, E.; Persaud, Y.; Xing, F.; viale, A.; Tsai, J.; Chapman, P.B.; Bollag, G.; Solit, D.B.; Rosen, N. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci., 2010, 107(33), 14903-14908.
[http://dx.doi.org/10.1073/pnas.1008990107] [PMID: 20668238]
[74]
Savoia, P.; Zavattaro, E.; Cremona, O. Clinical implications of acquired BRAF inhibitors resistance in melanoma. Int. J. Mol. Sci., 2020, 21(24), 9730.
[http://dx.doi.org/10.3390/ijms21249730] [PMID: 33419275]
[75]
Spagnolo, F.; Ghiorzo, P.; Queirolo, P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget, 2014, 5(21), 10206-10221.
[http://dx.doi.org/10.18632/oncotarget.2602] [PMID: 25344914]
[76]
Shi, H.; Hugo, W.; Kong, X.; Hong, A.; Koya, R.C.; Moriceau, G.; Chodon, T.; Guo, R.; Johnson, D.B.; Dahlman, K.B.; Kelley, M.C.; Kefford, R.F.; Chmielowski, B.; Glaspy, J.A.; Sosman, J.A.; van Baren, N.; Long, G.V.; Ribas, A.; Lo, R.S. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov., 2014, 4(1), 80-93.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0642] [PMID: 24265155]
[77]
Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.K.; Attar, N.; Sazegar, H.; Chodon, T.; Nelson, S.F.; McArthur, G.; Sosman, J.A.; Ribas, A.; Lo, R.S. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468(7326), 973-977.
[http://dx.doi.org/10.1038/nature09626] [PMID: 21107323]
[78]
Rizos, H.; Menzies, A.M.; Pupo, G.M.; Carlino, M.S.; Fung, C.; Hyman, J.; Haydu, L.E.; Mijatov, B.; Becker, T.M.; Boyd, S.C.; Howle, J.; Saw, R.; Thompson, J.F.; Kefford, R.F.; Scolyer, R.A.; Long, G.V. BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and clinical impact. Clin. Cancer Res., 2014, 20(7), 1965-1977.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3122] [PMID: 24463458]
[79]
Johnson, D.B.; Menzies, A.M.; Zimmer, L.; Eroglu, Z.; Ye, F.; Zhao, S.; Rizos, H.; Sucker, A.; Scolyer, R.A.; Gutzmer, R.; Gogas, H.; Kefford, R.F.; Thompson, J.F.; Becker, J.C.; Berking, C.; Egberts, F.; Loquai, C.; Goldinger, S.M.; Pupo, G.M.; Hugo, W.; Kong, X.; Garraway, L.A.; Sosman, J.A.; Ribas, A.; Lo, R.S.; Long, G.V.; Schadendorf, D. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer, 2015, 51(18), 2792-2799.
[http://dx.doi.org/10.1016/j.ejca.2015.08.022] [PMID: 26608120]
[80]
Montagut, C.; Sharma, S.V.; Shioda, T.; McDermott, U.; Ulman, M.; Ulkus, L.E.; Dias-Santagata, D.; Stubbs, H.; Lee, D.Y.; Singh, A.; Drew, L.; Haber, D.A.; Settleman, J. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res., 2008, 68(12), 4853-4861.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6787] [PMID: 18559533]
[81]
Heidorn, S.J.; Milagre, C.; Whittaker, S.; Nourry, A.; Niculescu-Duvas, I.; Dhomen, N.; Hussain, J.; Reis-Filho, J.S.; Springer, C.J.; Pritchard, C.; Marais, R. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 2010, 140(2), 209-221.
[http://dx.doi.org/10.1016/j.cell.2009.12.040] [PMID: 20141835]
[82]
Wang, J.; Yao, Z.; Jonsson, P.; Allen, A.N.; Qin, A.C.R.; Uddin, S.; Dunkel, I.J.; Petriccione, M.; Manova, K.; Haque, S.; Rosenblum, M.K.; Pisapia, D.J.; Rosen, N.; Taylor, B.S.; Pratilas, C.A. A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAF V600E-mutant brain tumor. Cancer Discov., 2018, 8(9), 1130-1141.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1263] [PMID: 29880583]
[83]
Hoogstraat, M.; Gadellaa-van Hooijdonk, C.G.; Ubink, I.; Besselink, N.J.M.; Pieterse, M.; Veldhuis, W.; van Stralen, M.; Meijer, E.F.J.; Willems, S.M.; Hadders, M.A.; Kuilman, T.; Krijgsman, O.; Peeper, D.S.; Koudijs, M.J.; Cuppen, E.; Voest, E.E.; Lolkema, M.P. Detailed imaging and genetic analysis reveal a secondary BRAFL 505H resistance mutation and extensive intrapatient heterogeneity in metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment Cell Melanoma Res., 2015, 28(3), 318-323.
[http://dx.doi.org/10.1111/pcmr.12347] [PMID: 25515853]
[84]
Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. MAPK pathway in melanoma part II—secondary and adaptive resistance mechanisms to BRAF inhibition. Eur. J. Cancer, 2017, 73, 93-101.
[http://dx.doi.org/10.1016/j.ejca.2016.12.012] [PMID: 28162869]
[85]
Gowrishankar, K.; Snoyman, S.; Pupo, G.M.; Becker, T.M.; Kefford, R.F.; Rizos, H. Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. J. Invest. Dermatol., 2012, 132(7), 1850-1859.
[http://dx.doi.org/10.1038/jid.2012.63] [PMID: 22437314]
[86]
Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; Hogg, D.; Lorigan, P.; Lebbe, C.; Jouary, T.; Schadendorf, D.; Ribas, A.; O’Day, S.J.; Sosman, J.A.; Kirkwood, J.M.; Eggermont, A.M.M.; Dreno, B.; Nolop, K.; Li, J.; Nelson, B.; Hou, J.; Lee, R.J.; Flaherty, K.T.; McArthur, G.A. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med., 2011, 364(26), 2507-2516.
[http://dx.doi.org/10.1056/NEJMoa1103782] [PMID: 21639808]
[87]
Hauschild, A.; Grob, J.J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H., Jr; Kaempgen, E.; Martín-Algarra, S.; Karaszewska, B.; Mauch, C.; Chiarion-Sileni, V.; Martin, A.M.; Swann, S.; Haney, P.; Mirakhur, B.; Guckert, M.E.; Goodman, V.; Chapman, P.B. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet, 2012, 380(9839), 358-365.
[http://dx.doi.org/10.1016/S0140-6736(12)60868-X] [PMID: 22735384]
[88]
Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; de la Cruz-Merino, L.; Dutriaux, C.; Garbe, C.; Sovak, M.A.; Chang, I.; Choong, N.; Hack, S.P.; McArthur, G.A.; Ribas, A. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med., 2014, 371(20), 1867-1876.
[http://dx.doi.org/10.1056/NEJMoa1408868] [PMID: 25265494]
[89]
Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; Chiarion-Sileni, V.; Lebbe, C.; Mandalà, M.; Millward, M.; Arance, A.; Bondarenko, I.; Haanen, J.B.A.G.; Hansson, J.; Utikal, J.; Ferraresi, V.; Kovalenko, N.; Mohr, P.; Probachai, V.; Schadendorf, D.; Nathan, P.; Robert, C.; Ribas, A.; DeMarini, D.J.; Irani, J.G.; Swann, S.; Legos, J.J.; Jin, F.; Mookerjee, B.; Flaherty, K. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 2015, 386(9992), 444-451.
[http://dx.doi.org/10.1016/S0140-6736(15)60898-4] [PMID: 26037941]
[90]
Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; Chiarion-Sileni, V.; Drucis, K.; Krajsova, I.; Hauschild, A.; Lorigan, P.; Wolter, P.; Long, G.V.; Flaherty, K.; Nathan, P.; Ribas, A.; Martin, A.M.; Sun, P.; Crist, W.; Legos, J.; Rubin, S.D.; Little, S.M.; Schadendorf, D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med., 2015, 372(1), 30-39.
[http://dx.doi.org/10.1056/NEJMoa1412690] [PMID: 25399551]
[91]
Cybulska-Stopa, B.; Świtaj, T.; Koseła-Paterczyk, H. Combined or sequential treatment of advanced melanoma? Nowotwory. J. Oncol., 2019, 69, 125-132.
[92]
Hamid, O.; Cowey, C.L.; Offner, M.; Faries, M.; Carvajal, R.D. Efficacy, safety, and tolerability of approved combination BRAF and MEK inhibitor regimens for BRAF-mutant melanoma. Cancers, 2019, 11(11), 1642.
[http://dx.doi.org/10.3390/cancers11111642] [PMID: 31653096]
[93]
Arozarena, I.; Wellbrock, C. Overcoming resistance to BRAF inhibitors. Ann. Transl. Med., 2017, 5(19), 387.
[http://dx.doi.org/10.21037/atm.2017.06.09] [PMID: 29114545]
[94]
Sanlorenzo, M.; Choudhry, A.; Vujic, I.; Posch, C.; Chong, K.; Johnston, K.; Meier, M.; Osella-Abate, S.; Quaglino, P.; Daud, A.; Algazi, A.; Rappersberger, K.; Ortiz-Urda, S. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J. Am. Acad. Dermatol., 2014, 71(6), 1102-1109.e1.
[http://dx.doi.org/10.1016/j.jaad.2014.09.002] [PMID: 25440439]
[95]
Grob, J.J.; Amonkar, M.M.; Karaszewska, B.; Schachter, J.; Dummer, R.; Mackiewicz, A.; Stroyakovskiy, D.; Drucis, K.; Grange, F.; Chiarion-Sileni, V.; Rutkowski, P.; Lichinitser, M.; Levchenko, E.; Wolter, P.; Hauschild, A.; Long, G.V.; Nathan, P.; Ribas, A.; Flaherty, K.; Sun, P.; Legos, J.J.; McDowell, D.O.; Mookerjee, B.; Schadendorf, D.; Robert, C. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): Results of a phase 3, open-label, randomised trial. Lancet Oncol., 2015, 16(13), 1389-1398.
[http://dx.doi.org/10.1016/S1470-2045(15)00087-X] [PMID: 26433819]
[96]
Schadendorf, D.; Amonkar, M.M.; Stroyakovskiy, D.; Levchenko, E.; Gogas, H.; de Braud, F.; Grob, J.J.; Bondarenko, I.; Garbe, C.; Lebbe, C.; Larkin, J.; Chiarion-Sileni, V.; Millward, M.; Arance, A.; Mandalà, M.; Flaherty, K.T.; Nathan, P.; Ribas, A.; Robert, C.; Casey, M.; DeMarini, D.J.; Irani, J.G.; Aktan, G.; Long, G.V. Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur. J. Cancer, 2015, 51(7), 833-840.
[http://dx.doi.org/10.1016/j.ejca.2015.03.004] [PMID: 25794603]
[97]
Long, G.V.; Weber, J.S.; Infante, J.R.; Kim, K.B.; Daud, A.; Gonzalez, R.; Sosman, J.A.; Hamid, O.; Schuchter, L.; Cebon, J.; Kefford, R.F.; Lawrence, D.; Kudchadkar, R.; Burris, H.A., III; Falchook, G.S.; Algazi, A.; Lewis, K.; Puzanov, I.; Ibrahim, N.; Sun, P.; Cunningham, E.; Kline, A.S.; Del Buono, H.; McDowell, D.O.; Patel, K.; Flaherty, K.T. Overall survival and durable responses in patients With BRAF V600–mutant metastatic melanoma receiving dabrafenib combined with trametinib. J. Clin. Oncol., 2016, 34(8), 871-878.
[http://dx.doi.org/10.1200/JCO.2015.62.9345] [PMID: 26811525]
[98]
Puzanov, I.; Amaravadi, R.K.; McArthur, G.A.; Flaherty, K.T.; Chapman, P.B.; Sosman, J.A.; Ribas, A.; Shackleton, M.; Hwu, P.; Chmielowski, B.; Nolop, K.B.; Lin, P.S.; Kim, K.B. Long-term outcome in BRAFV600E melanoma patients treated with vemurafenib: Patterns of disease progression and clinical management of limited progression. Eur. J. Cancer, 2015, 51(11), 1435-1443.
[http://dx.doi.org/10.1016/j.ejca.2015.04.010] [PMID: 25980594]
[99]
Smith, M.P.; Brunton, H.; Rowling, E.J.; Ferguson, J.; Arozarena, I.; Miskolczi, Z.; Lee, J.L.; Girotti, M.R.; Marais, R.; Levesque, M.P.; Dummer, R.; Frederick, D.T.; Flaherty, K.T.; Cooper, Z.A.; Wargo, J.A.; Wellbrock, C. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell, 2016, 29(3), 270-284.
[http://dx.doi.org/10.1016/j.ccell.2016.02.003] [PMID: 26977879]
[100]
Villanueva, J.; Infante, J.R.; Krepler, C.; Reyes-Uribe, P.; Samanta, M.; Chen, H.Y.; Li, B.; Swoboda, R.K.; Wilson, M.; Vultur, A.; Fukunaba-Kalabis, M.; Wubbenhorst, B.; Chen, T.Y.; Liu, Q.; Sproesser, K.; DeMarini, D.J.; Gilmer, T.M.; Martin, A.M.; Marmorstein, R.; Schultz, D.C.; Speicher, D.W.; Karakousis, G.C.; Xu, W.; Amaravadi, R.K.; Xu, X.; Schuchter, L.M.; Herlyn, M.; Nathanson, K.L. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep., 2013, 4(6), 1090-1099.
[http://dx.doi.org/10.1016/j.celrep.2013.08.023] [PMID: 24055054]
[101]
Wagle, N.; Van Allen, E.M.; Treacy, D.J.; Frederick, D.T.; Cooper, Z.A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E.M.; Sullivan, R.J.; Farlow, D.N.; Friedrich, D.C.; Anderka, K.; Perrin, D.; Johannessen, C.M.; McKenna, A.; Cibulskis, K.; Kryukov, G.; Hodis, E.; Lawrence, D.P.; Fisher, S.; Getz, G.; Gabriel, S.B.; Carter, S.L.; Flaherty, K.T.; Wargo, J.A.; Garraway, L.A. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov., 2014, 4(1), 61-68.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0631] [PMID: 24265154]
[102]
Lito, P.; Pratilas, C.A.; Joseph, E.W.; Tadi, M.; Halilovic, E.; Zubrowski, M.; Huang, A.; Wong, W.L.; Callahan, M.K.; Merghoub, T.; Wolchok, J.D.; de Stanchina, E.; Chandarlapaty, S.; Poulikakos, P.I.; Fagin, J.A.; Rosen, N. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell, 2012, 22(5), 668-682.
[http://dx.doi.org/10.1016/j.ccr.2012.10.009] [PMID: 23153539]
[103]
Smith, M.P.; Wellbrock, C. Molecular pathways: Maintaining MAPK inhibitor sensitivity by targeting nonmutational tolerance. Clin. Cancer Res., 2016, 22(24), 5966-5970.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0954] [PMID: 27797970]
[104]
Malapelle, U.; Rossi, G.; Pisapia, P.; Barberis, M.; Buttitta, F.; Castiglione, F.; Cecere, F.L.; Grimaldi, A.M.; Iaccarino, A.; Marchetti, A.; Massi, D.; Medicina, D.; Mele, F.; Minari, R.; Orlando, E.; Pagni, F.; Palmieri, G.; Righi, L.; Russo, A.; Tommasi, S.; Vermi, W.; Troncone, G. BRAF as a positive predictive biomarker: Focus on lung cancer and melanoma patients. Crit. Rev. Oncol. Hematol., 2020, 156, 103118.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103118] [PMID: 33038627]
[105]
Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G.T.; Montironi, R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: A move toward precision medicine. Mod. Pathol., 2018, 31(1), 24-38.
[http://dx.doi.org/10.1038/modpathol.2017.104] [PMID: 29148538]
[106]
Chau, C.H.; Rixe, O.; McLeod, H.; Figg, W.D. Validation of analytic methods for biomarkers used in drug development. Clin. Cancer Res., 2008, 14(19), 5967-5976.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4535] [PMID: 18829475]
[107]
de Gramont, A.; Watson, S.; Ellis, L.M.; Rodón, J.; Tabernero, J.; de Gramont, A.; Hamilton, S.R. Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 2015, 12(4), 197-212.
[http://dx.doi.org/10.1038/nrclinonc.2014.202] [PMID: 25421275]
[108]
Armbruster, D.A.; Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev., 2008, 29(Suppl. 1), S49-S52.
[PMID: 18852857]
[109]
Sacco, A.; Forgione, L.; Carotenuto, M.; De Luca, A.; Ascierto, P.A.; Botti, G.; Normanno, N. Circulating tumor DNA testing opens new perspectives in melanoma management. Cancers, 2020, 12(10), 2914.
[http://dx.doi.org/10.3390/cancers12102914] [PMID: 33050536]
[110]
Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer, 2017, 17(4), 223-238.
[http://dx.doi.org/10.1038/nrc.2017.7] [PMID: 28233803]
[111]
Gracie, L.; Pan, Y.; Atenafu, E.G.; Ward, D.G.; Teng, M.; Pallan, L.; Stevens, N.M.; Khoja, L. Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis. Eur. J. Cancer, 2021, 158, 191-207.
[http://dx.doi.org/10.1016/j.ejca.2021.09.019] [PMID: 34757258]
[112]
Woof, V.G.; Lee, R.J.; Lorigan, P.; French, D.P. Circulating tumour DNA monitoring and early treatment for relapse: Views from patients with early-stage melanoma. Br. J. Cancer, 2022, 126(10), 1450-1456.
[http://dx.doi.org/10.1038/s41416-022-01766-x] [PMID: 35301436]
[113]
Corcoran, R.B.; Chabner, B.A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med., 2018, 379(18), 1754-1765.
[http://dx.doi.org/10.1056/NEJMra1706174] [PMID: 30380390]
[114]
Sun, K.; Jiang, P.; Chan, K.C.A.; Wong, J.; Cheng, Y.K.Y.; Liang, R.H.S.; Chan, W.; Ma, E.S.K.; Chan, S.L.; Cheng, S.H.; Chan, R.W.Y.; Tong, Y.K.; Ng, S.S.M.; Wong, R.S.M.; Hui, D.S.C.; Leung, T.N.; Leung, T.Y.; Lai, P.B.S.; Chiu, R.W.K.; Lo, Y.M.D. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl. Acad. Sci., 2015, 112(40), E5503-E5512.
[http://dx.doi.org/10.1073/pnas.1508736112] [PMID: 26392541]
[115]
Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev., 2016, 35(3), 347-376.
[http://dx.doi.org/10.1007/s10555-016-9629-x] [PMID: 27392603]
[116]
Normanno, N.; Cervantes, A.; Ciardiello, F.; De Luca, A.; Pinto, C. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat. Rev., 2018, 70, 1-8.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.007] [PMID: 30053724]
[117]
Couto, G.K.; Segatto, N.V.; Oliveira, T.L.; Seixas, F.K.; Schachtschneider, K.M.; Collares, T. The melding of drug screening platforms for melanoma. Front. Oncol., 2019, 9, 512.
[http://dx.doi.org/10.3389/fonc.2019.00512] [PMID: 31293965]
[118]
Marconi, A.; Quadri, M.; Saltari, A.; Pincelli, C. Progress in melanoma modelling in vitro. Exp. Dermatol., 2018, 27(5), 578-586.
[http://dx.doi.org/10.1111/exd.13670] [PMID: 29697862]
[119]
Huang, S.; Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell, 2005, 8(3), 175-176.
[http://dx.doi.org/10.1016/j.ccr.2005.08.009] [PMID: 16169461]
[120]
Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; Hodis, E.; Rosenberg, M.; McKenna, A.; Cibulskis, K.; Farlow, D.; Zimmer, L.; Hillen, U.; Gutzmer, R.; Goldinger, S.M.; Ugurel, S.; Gogas, H.J.; Egberts, F.; Berking, C.; Trefzer, U.; Loquai, C.; Weide, B.; Hassel, J.C.; Gabriel, S.B.; Carter, S.L.; Getz, G.; Garraway, L.A.; Schadendorf, D. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov., 2014, 4(1), 94-109.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0617] [PMID: 24265153]
[121]
Wang, T.; Xiao, M.; Ge, Y.; Krepler, C.; Belser, E.; Lopez-Coral, A.; Xu, X.; Zhang, G.; Azuma, R.; Liu, Q.; Liu, R.; Li, L.; Amaravadi, R.K.; Xu, W.; Karakousis, G.; Gangadhar, T.C.; Schuchter, L.M.; Lieu, M.; Khare, S.; Halloran, M.B.; Herlyn, M.; Kaufman, R.E. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res., 2015, 21(7), 1652-1664.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1554] [PMID: 25617424]
[122]
Atefi, M.; Titz, B.; Avramis, E.; Ng, C.; Wong, D.J.L.; Lassen, A.; Cerniglia, M.; Escuin-Ordinas, H.; Foulad, D.; Comin-Anduix, B.; Graeber, T.G.; Ribas, A. Combination of pan-RAF and MEK inhibitors in NRAS mutant melanoma. Mol. Cancer, 2015, 14(1), 27.
[http://dx.doi.org/10.1186/s12943-015-0293-5] [PMID: 25645078]
[123]
Girotti, M.R.; Lopes, F.; Preece, N.; Niculescu-Duvaz, D.; Zambon, A.; Davies, L.; Whittaker, S.; Saturno, G.; Viros, A.; Pedersen, M.; Suijkerbuijk, B.M.J.M.; Menard, D.; McLeary, R.; Johnson, L.; Fish, L.; Ejiama, S.; Sanchez-Laorden, B.; Hohloch, J.; Carragher, N.; Macleod, K.; Ashton, G.; Marusiak, A.A.; Fusi, A.; Brognard, J.; Frame, M.; Lorigan, P.; Marais, R.; Springer, C. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell, 2015, 27(1), 85-96.
[http://dx.doi.org/10.1016/j.ccell.2014.11.006] [PMID: 25500121]
[124]
Nakamura, A.; Arita, T.; Tsuchiya, S.; Donelan, J.; Chouitar, J.; Carideo, E.; Galvin, K.; Okaniwa, M.; Ishikawa, T.; Yoshida, S. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res., 2013, 73(23), 7043-7055.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1825] [PMID: 24121489]
[125]
Peng, S.B.; Henry, J.R.; Kaufman, M.D.; Lu, W.P.; Smith, B.D.; Vogeti, S.; Rutkoski, T.J.; Wise, S.; Chun, L.; Zhang, Y.; Van Horn, R.D.; Yin, T.; Zhang, X.; Yadav, V.; Chen, S.H.; Gong, X.; Ma, X.; Webster, Y.; Buchanan, S.; Mochalkin, I.; Huber, L.; Kays, L.; Donoho, G.P.; Walgren, J.; McCann, D.; Patel, P.; Conti, I.; Plowman, G.D.; Starling, J.J.; Flynn, D.L. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell, 2015, 28(3), 384-398.
[http://dx.doi.org/10.1016/j.ccell.2015.08.002] [PMID: 26343583]
[126]
Yao, Z.; Torres, N.M.; Tao, A.; Gao, Y.; Luo, L.; Li, Q.; de Stanchina, E.; Abdel-Wahab, O.; Solit, D.B.; Poulikakos, P.I.; Rosen, N. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell, 2015, 28(3), 370-383.
[http://dx.doi.org/10.1016/j.ccell.2015.08.001] [PMID: 26343582]
[127]
Zhang, C.; Spevak, W.; Zhang, Y.; Burton, E.A.; Ma, Y.; Habets, G.; Zhang, J.; Lin, J.; Ewing, T.; Matusow, B.; Tsang, G.; Marimuthu, A.; Cho, H.; Wu, G.; Wang, W.; Fong, D.; Nguyen, H.; Shi, S.; Womack, P.; Nespi, M.; Shellooe, R.; Carias, H.; Powell, B.; Light, E.; Sanftner, L.; Walters, J.; Tsai, J.; West, B.L.; Visor, G.; Rezaei, H.; Lin, P.S.; Nolop, K.; Ibrahim, P.N.; Hirth, P.; Bollag, G. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 2015, 526(7574), 583-586.
[http://dx.doi.org/10.1038/nature14982] [PMID: 26466569]
[128]
Acquaviva, J.; Smith, D.L.; Jimenez, J.P.; Zhang, C.; Sequeira, M.; He, S.; Sang, J.; Bates, R.C.; Proia, D.A. Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib. Mol. Cancer Ther., 2014, 13(2), 353-363.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0481] [PMID: 24398428]
[129]
Paraiso, K.H.T.; Haarberg, H.E.; Wood, E.; Rebecca, V.W.; Chen, Y.A.; Xiang, Y.; Ribas, A.; Lo, R.S.; Weber, J.S.; Sondak, V.K.; John, J.K.; Sarnaik, A.A.; Koomen, J.M.; Smalley, K.S.M. The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin. Cancer Res., 2012, 18(9), 2502-2514.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2612] [PMID: 22351686]
[130]
da Rocha Dias, S.; Friedlos, F.; Light, Y.; Springer, C.; Workman, P.; Marais, R. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res., 2005, 65(23), 10686-10691.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2632] [PMID: 16322212]
[131]
Grbovic, O.M.; Basso, A.D.; Sawai, A.; Ye, Q.; Friedlander, P.; Solit, D.; Rosen, N. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci., 2006, 103(1), 57-62.
[http://dx.doi.org/10.1073/pnas.0609973103] [PMID: 16371460]
[132]
Zhong, J.; Yan, W.; Wang, C.; Liu, W.; Lin, X.; Zou, Z.; Sun, W.; Chen, Y. BRAF inhibitor resistance in melanoma: Mechanisms and alternative therapeutic strategies. Curr. Treat. Options Oncol., 2022, 23(11), 1503-1521.
[http://dx.doi.org/10.1007/s11864-022-01006-7] [PMID: 36181568]
[133]
Wei, H.; Guan, Y.D.; Zhang, L.X.; Liu, S.; Lu, A.P.; Cheng, Y.; Cao, D.S. A combinatorial target screening strategy for deorphaning macromolecular targets of natural product. Eur. J. Med. Chem., 2020, 204, 112644.
[http://dx.doi.org/10.1016/j.ejmech.2020.112644] [PMID: 32738412]
[134]
Deuker, M.M.; Marsh Durban, V.; Phillips, W.A.; McMahon, M. PI3′-kinase inhibition forestalls the onset of MEK1/2 inhibitor resistance in BRAF-mutated melanoma. Cancer Discov., 2015, 5(2), 143-153.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0856] [PMID: 25472943]
[135]
Atefi, M.; von Euw, E.; Attar, N.; Ng, C.; Chu, C.; Guo, D.; Nazarian, R.; Chmielowski, B.; Glaspy, J.A.; Comin-Anduix, B.; Mischel, P.S.; Lo, R.S.; Ribas, A. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One, 2011, 6(12), e28973.
[http://dx.doi.org/10.1371/journal.pone.0028973] [PMID: 22194965]
[136]
Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; Le, N.; Carter, K.; Demanse, D.; Csonka, D.; Peters, M.; Zubel, A.; Nauwelaerts, H.; Sessa, C. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 730-738.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1814] [PMID: 25500057]
[137]
Greger, J.G.; Eastman, S.D.; Zhang, V.; Bleam, M.R.; Hughes, A.M.; Smitheman, K.N.; Dickerson, S.H.; Laquerre, S.G.; Liu, L.; Gilmer, T.M. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol. Cancer Ther., 2012, 11(4), 909-920.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0989] [PMID: 22389471]
[138]
Sweetlove, M.; Wrightson, E.; Kolekar, S.; Rewcastle, G.W.; Baguley, B.C.; Shepherd, P.R.; Jamieson, S.M.F. Inhibitors of pan-PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth. Front. Oncol., 2015, 5, 135.
[http://dx.doi.org/10.3389/fonc.2015.00135] [PMID: 26137449]
[139]
Tolcher, A.W.; Patnaik, A.; Papadopoulos, K.P.; Rasco, D.W.; Becerra, C.R.; Allred, A.J.; Orford, K.; Aktan, G.; Ferron-Brady, G.; Ibrahim, N.; Gauvin, J.; Motwani, M.; Cornfeld, M. Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemother. Pharmacol., 2015, 75(1), 183-189.
[http://dx.doi.org/10.1007/s00280-014-2615-5] [PMID: 25417902]
[140]
Smith, M.P.; Ferguson, J.; Arozarena, I.; Hayward, R.; Marais, R.; Chapman, A.; Hurlstone, A.; Wellbrock, C. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J. Natl. Cancer Inst., 2013, 105(1), 33-46.
[http://dx.doi.org/10.1093/jnci/djs471] [PMID: 23250956]
[141]
Smith, M.P.; Brunton, H.; Rowling, E.J.; Ferguson, J.; Arozarena, I.; Miskolczi, Z.; Lee, J.L.; Girotti, M.R.; Marais, R.; Levesque, M.P.; Dummer, R.; Frederick, D.T.; Flaherty, K.T.; Cooper, Z.A.; Wargo, J.A.; Wellbrock, C. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell, 2016, 29, 270-284.
[142]
Koya, R.C.; Mok, S.; Otte, N.; Blacketor, K.J.; Comin-Anduix, B.; Tumeh, P.C.; Minasyan, A.; Graham, N.A.; Graeber, T.G.; Chodon, T.; Ribas, A. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res., 2012, 72(16), 3928-3937.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2837] [PMID: 22693252]
[143]
Liu, L.; Mayes, P.A.; Eastman, S.; Shi, H.; Yadavilli, S.; Zhang, T.; Yang, J.; Seestaller-Wehr, L.; Zhang, S.Y.; Hopson, C.; Tsvetkov, L.; Jing, J.; Zhang, S.; Smothers, J.; Hoos, A. The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res., 2015, 21(7), 1639-1651.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2339] [PMID: 25589619]
[144]
Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2731] [PMID: 23095323]
[145]
Lim, S.Y.; Menzies, A.M.; Rizos, H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer, 2017, 123(S11), 2118-2129.
[http://dx.doi.org/10.1002/cncr.30435] [PMID: 28543695]
[146]
Atefi, M.; Avramis, E.; Lassen, A.; Wong, D.J.L.; Robert, L.; Foulad, D.; Cerniglia, M.; Titz, B.; Chodon, T.; Graeber, T.G.; Comin-Anduix, B.; Ribas, A. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin. Cancer Res., 2014, 20(13), 3446-3457.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2797] [PMID: 24812408]
[147]
Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.N.J.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; Tsao, H.; Wargo, J.A. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res., 2010, 70(13), 5213-5219.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0118] [PMID: 20551059]
[148]
Szczepaniak Sloane, R.A.; Gopalakrishnan, V.; Reddy, S.M.; Zhang, X.; Reuben, A.; Wargo, J.A. Interaction of molecular alterations with immune response in melanoma. Cancer, 2017, 123(S11), 2130-2142.
[http://dx.doi.org/10.1002/cncr.30681] [PMID: 28543700]
[149]
Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; Peng, W.; Sullivan, R.J.; Lawrence, D.P.; Hodi, F.S.; Overwijk, W.W.; Lizée, G.; Murphy, G.F.; Hwu, P.; Flaherty, K.T.; Fisher, D.E.; Wargo, J.A. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res., 2013, 19(5), 1225-1231.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1630] [PMID: 23307859]
[150]
Wilmott, J.S.; Long, G.V.; Howle, J.R.; Haydu, L.E.; Sharma, R.N.; Thompson, J.F.; Kefford, R.F.; Hersey, P.; Scolyer, R.A. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res., 2012, 18(5), 1386-1394.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2479] [PMID: 22156613]
[151]
Bai, X.; Flaherty, K.T. Targeted and immunotherapies in BRAF mutant melanoma: Where we stand and what to expect. Br. J. Dermatol., 2021, 185(2), 253-262.
[http://dx.doi.org/10.1111/bjd.19394] [PMID: 32652567]
[152]
Huynh, S.; Mortier, L.; Dutriaux, C.; Maubec, E.; Boileau, M.; Dereure, O.; Leccia, M.T.; Arnault, J.P.; Brunet-Possenti, F.; Aubin, F.; Dreno, B.; Beylot-Barry, M.; Lebbe, C.; Lefevre, W.; Delyon, J. Combined therapy with Anti-PD1 and BRAF and/or MEK inhibitor for advanced melanoma: A multicenter cohort study. Cancers, 2020, 12(6), 1666.
[http://dx.doi.org/10.3390/cancers12061666] [PMID: 32585901]
[153]
Welti, M.; Dimitriou, F.; Gutzmer, R.; Dummer, R. Triple combination of immune checkpoint inhibitors and BRAF/MEK inhibitors in BRAFV600 melanoma: Current status and future perspectives. Cancers, 2022, 14(22), 5489.
[http://dx.doi.org/10.3390/cancers14225489] [PMID: 36428582]
[154]
Moriceau, G.; Hugo, W.; Hong, A.; Shi, H.; Kong, X.; Yu, C.C.; Koya, R.C.; Samatar, A.A.; Khanlou, N.; Braun, J.; Ruchalski, K.; Seifert, H.; Larkin, J.; Dahlman, K.B.; Johnson, D.B.; Algazi, A.; Sosman, J.A.; Ribas, A.; Lo, R.S. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell, 2015, 27(2), 240-256.
[http://dx.doi.org/10.1016/j.ccell.2014.11.018] [PMID: 25600339]
[155]
Algazi, A.P.; Othus, M.; Daud, A.I.; Lo, R.S.; Mehnert, J.M.; Truong, T.G.; Conry, R.; Kendra, K.; Doolittle, G.C.; Clark, J.I.; Messino, M.J.; Moore, D.F., Jr; Lao, C.; Faller, B.A.; Govindarajan, R.; Harker-Murray, A.; Dreisbach, L.; Moon, J.; Grossmann, K.F.; Ribas, A. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: A randomized phase 2 trial. Nat. Med., 2020, 26(10), 1564-1568.
[http://dx.doi.org/10.1038/s41591-020-1060-8] [PMID: 33020646]
[156]
Cook, F.A.; Cook, S.J. Inhibition of RAF dimers: It takes two to tango. Biochem. Soc. Trans., 2021, 49(1), 237-251.
[http://dx.doi.org/10.1042/BST20200485] [PMID: 33367512]
[157]
Noeparast, A.; Giron, P.; De Brakeleer, S.; Eggermont, C.; De Ridder, U.; Teugels, E.; De Grève, J. Type II RAF inhibitor causes superior ERK pathway suppression compared to type I RAF inhibitor in cells expressing different BRAF mutant types recurrently found in lung cancer. Oncotarget, 2018, 9(22), 16110-16123.
[http://dx.doi.org/10.18632/oncotarget.24576] [PMID: 29662630]
[158]
Basile, K.J.; Le, K.; Hartsough, E.J.; Aplin, A.E. Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors. Pigment Cell Melanoma Res., 2014, 27(3), 479-484.
[http://dx.doi.org/10.1111/pcmr.12218] [PMID: 24422853]
[159]
Jin, T.; Lavoie, H.; Sahmi, M.; David, M.; Hilt, C.; Hammell, A.; Therrien, M. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nat. Commun., 2017, 8(1), 1211.
[http://dx.doi.org/10.1038/s41467-017-01274-0] [PMID: 29084939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy