Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Network Pharmacological Analysis and Experimental Validation of the Effects of Silybin on Proliferation, Migration, and Immunotherapy of Papillary Thyroid Cancer

Author(s): Wenjun Xie*, Huashui Li, Qiang Lin and Naizhuo Ke

Volume 24, Issue 6, 2024

Published on: 19 October, 2023

Page: [672 - 690] Pages: 19

DOI: 10.2174/0118715303248000230922185110

Price: $65

Abstract

Aim: The study aimed to use network pharmacology research and in vitro experiments to investigate the material basis and molecular mechanisms of silybin in the treatment of papillary thyroid carcinoma.

Background: Papillary thyroid cancer (PTC) has a decent prognosis; however, recurrence and metastasis are the leading causes of death in patients with PTC. A key research focus in thyroid cancer treatment is the inhibition of PTC proliferation, invasion, and migration. Silybin, the major active element in the traditional Chinese herb silymarin, has been used to treat a range of diseases, including cancer, but no study has been undertaken to determine whether it can help prevent PTC.

Objective: In this study, we attempted to determine through network pharmacology and in vitro experiments if silybin inhibits the development of papillary thyroid cancer by inhibiting cell cycle and invasive migration.

Methods: To predict the probable targets and underlying mechanisms of silybin against PTC, a network pharmacology research was performed. In vitro experiments were conducted to further evaluate silybin's anti-cancer properties and priority targets against PTC.

Results: The datasets revealed a total of 489 silybin targets acting on PTC, and functional enrichment analysis suggested that the target genes were enriched in functions and pathways related to PTC development, invasion, migration, and immunotherapy. By constructing these target PPI networks, the seven hub genes, fibronectin 1 (FN1), tissue inhibitor of metalloproteinases 1 (TIMP1), N-cadherin (CDH2), collagen type III alpha 1 chain (COL3A1), cyclin D1 (CCND1), AP-1 transcription factor subunit (JUN), and hepatocyte growth factor receptor (MET) were found. These hub genes were determined to be highly linked to a worse clinicopathological form, a higher risk of metastatic recurrence, and a worse prognosis of PTC. The common immunological checkpoint gene expression levels were positively correlated with the expression levels of the hub genes. Silybin decreased the proliferative and metastatic capacity of PTC cells, according to in vitro investigations. When PTC was treated with silybin, the FN1/AKT signaling pathway was blocked, CCND1 expression was reduced, and CDH2, Vimentin, Snail, Slug and PD-L1 expressions were dramatically reduced, while E-cadherin expression was significantly elevated.

Conclusion: These findings provide preliminary evidence that silybin inhibits PTC cell proliferation, metastasis, and invasion by altering the FN1/AKT signaling pathway and inhibiting the EMT process. Silybin can reverse immunosuppression in papillary thyroid cancer by affecting immunological checkpoint gene expression levels. These studies provide a theoretical and experimental scientific basis for the potential anticancer effects of silybin on PTC.

Graphical Abstract

[1]
Mishra, P.; Laha, D.; Grant, R.; Nilubol, N. Advances in biomarker-driven targeted therapies in thyroid cancer. Cancers, 2021, 13(24), 6194.
[http://dx.doi.org/10.3390/cancers13246194] [PMID: 34944814]
[2]
Cai, Y.; Chen, W.; Wang, X.; Xia, X.; Cui, X.; Wu, S.; Li, J. Contemporary trends on expenditure of hospital care on total cancer and its subtypes in China during 2008−2017. Chin. J. Cancer Res., 2021, 33(5), 627-636.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2021.05.09] [PMID: 34815636]
[3]
Ulisse, S.; Baldini, E.; Lauro, A.; Pironi, D.; Tripodi, D.; Lori, E.; Ferent, I.C.; Amabile, M.I.; Catania, A.; Di Matteo, F.M.; Forte, F.; Santoro, A.; Palumbo, P.; D’Andrea, V.; Sorrenti, S. Papillary thyroid cancer prognosis: An evolving field. Cancers, 2021, 13(21), 5567.
[http://dx.doi.org/10.3390/cancers13215567] [PMID: 34771729]
[4]
Liu, C.; Han, Q.; Liu, H.; Zhu, C.; Gui, W.; Yang, X.; Li, W. Precise engineering of Gemcitabine prodrug cocktails into single polymeric nanoparticles delivery for metastatic thyroid cancer cells. Drug Deliv., 2020, 27(1), 1063-1072.
[http://dx.doi.org/10.1080/10717544.2020.1790693] [PMID: 32672077]
[5]
Křen, V. Chirality matters: Biological activity of optically pure silybin and its congeners. Int. J. Mol. Sci., 2021, 22(15), 7885.
[http://dx.doi.org/10.3390/ijms22157885] [PMID: 34360650]
[6]
Man, S.; Luo, C.; Yan, M.; Zhao, G.; Ma, L.; Gao, W. Treatment for liver cancer: From sorafenib to natural products. Eur. J. Med. Chem., 2021, 224, 113690.
[http://dx.doi.org/10.1016/j.ejmech.2021.113690] [PMID: 34256124]
[7]
Sie.gel, A.B.; Narayan, R.; Rodriguez, R.; Goyal, A.; Jacobson, J.S.; Kelly, K.; Ladas, E.; Lunghofer, P.J.; Hansen, R.J.; Gustafson, D.L.; Flaig, T.W.; Tsai, W.Y.; Wu, D.P.; Lee, V.; Greenlee, H. A phase I dose-finding study of silybin phosphatidylcholine (milk thistle) in patients with advanced hepatocellular carcinoma. Integr. Cancer Ther., 2014, 13(1), 46-53.
[http://dx.doi.org/10.1177/1534735413490798] [PMID: 23757319]
[8]
Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)-chemistry, bioavailability, and metabolism. Molecules, 2017, 22(11), 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[9]
Molavi, O.; Narimani, F.; Asiaee, F.; Sharifi, S.; Tarhriz, V.; Shayanfar, A.; Hejazi, M.; Lai, R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm. Biol., 2017, 55(1), 729-739.
[http://dx.doi.org/10.1080/13880209.2016.1270972] [PMID: 28027688]
[10]
Rugamba, A.; Kang, D.Y.; Sp, N.; Jo, E.S.; Lee, J.M.; Bae, S.W.; Jang, K.J. Silibinin re.gulates tumor progression and tumorsphere formation by suppressing PD-L1 expression in non-small cell lung Cancer (NSCLC) cells. Cells, 2021, 10(7), 1632.
[http://dx.doi.org/10.3390/cells10071632] [PMID: 34209829]
[11]
Deep, G.; Singh, R.P.; Agarwal, C.; Kroll, D.J.; Agarwal, R. Silymarin and silibinin cause G1 and G2–M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 2006, 25(7), 1053-1069.
[http://dx.doi.org/10.1038/sj.onc.1209146] [PMID: 16205633]
[12]
Zhang, M.; Liu, Y.; Gao, Y.; Li, S. Silibinin-induced glioma cell apoptosis by PI3K-mediated but Akt-independent downre.gulation of FoxM1 expression. Eur. J. Pharmacol., 2015, 765, 346-354.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.057] [PMID: 26342429]
[13]
Liang, L.; Li, L.; Zeng, J.; Gao, Y.; Chen, Y.L.; Wang, Z.Q.; Wang, X.Y.; Chang, L.S.; He, D. Inhibitory effect of silibinin on E.GFR signal-induced renal cell carcinoma progression via suppression of the E.GFR/MMP-9 signaling pathway. Oncol. Rep., 2012, 28(3), 999-1005.
[PMID: 22736024]
[14]
Wang, S.; Gao, J.; Li, Q.; Ming, W.; Fu, Y.; Song, L.; Qin, J. Study on the re.gulatory mechanism and experimental verification of icariin for the treatment of ovarian cancer based on network pharmacology. J. Ethnopharmacol., 2020, 262, 113189.
[http://dx.doi.org/10.1016/j.jep.2020.113189] [PMID: 32736044]
[15]
Chen, L.; Lv, D.; Wang, D.; Chen, X.; Zhu, Z.; Cao, Y.; Chai, Y. A novel strate.gy of profiling the mechanism of herbal medicines by combining network pharmacology with plasma concentration determination and affinity constant measurement. Mol. Biosyst., 2016, 12(11), 3347-3356.
[http://dx.doi.org/10.1039/C6MB00500D] [PMID: 27754507]
[16]
Mounir, M.; Lucchetta, M.; Silva, T.C.; Olsen, C.; Bontempi, G.; Chen, X.; Noushmehr, H.; Colaprico, A.; Papaleo, E. New functionalities in the TCGAbiolinks package for the study and inte.gration of cancer data from GDC and GTEx. PLOS Comput. Biol., 2019, 15(3), e1006701.
[http://dx.doi.org/10.1371/journal.pcbi.1006701] [PMID: 30835723]
[17]
Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007, 23(14), 1846-1847.
[http://dx.doi.org/10.1093/bioinformatics/btm254] [PMID: 17496320]
[18]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[19]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[20]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[21]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechANism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[22]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[23]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[24]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[25]
Thul, P.J.; Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci., 2018, 27(1), 233-244.
[http://dx.doi.org/10.1002/pro.3307] [PMID: 28940711]
[26]
Xu, C.; Zang, Y.; Zhao, Y.; Cui, W.; Zhang, H.; Zhu, Y.; Xu, M. Comprehensive pan-cancer analysis confirmed that ATG5 promoted the maintenance of tumor metabolism and the occurrence of tumor immune escape. Front. Oncol., 2021, 11, 652211.
[http://dx.doi.org/10.3389/fonc.2021.652211] [PMID: 33842365]
[27]
Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS One, 2015, 10(12), e0146021.
[http://dx.doi.org/10.1371/journal.pone.0146021] [PMID: 26717316]
[28]
Sorrenti, S.; Carbotta, G.; Di Matteo, F.M.; Catania, A.; Pironi, D.; Tartaglia, F.; Tarroni, D.; Gagliardi, F.; Tripodi, D.; Watanabe, M.; Mariani, S.; D’Armiento, E.; Fallahi, P.; Sindoni, A.; De Vito, C.; Antonelli, A.; Ulisse, S.; Baldini, E. Evaluation of clinicopathological and molecular parameters on disease recurrence of papillary thyroid cancer patient: A retrospective observational study. Cancers, 2020, 12(12), 3637.
[http://dx.doi.org/10.3390/cancers12123637] [PMID: 33291668]
[29]
Valerio, L.; Pieruzzi, L.; Giani, C.; Agate, L.; Bottici, V.; Lorusso, L.; Cappagli, V.; Puleo, L.; Matrone, A.; Viola, D.; Romei, C.; Ciampi, R.; Molinaro, E.; Elisei, R. Targeted therapy in thyroid Cancer: State of the art. Clin. Oncol., 2017, 29(5), 316-324.
[http://dx.doi.org/10.1016/j.clon.2017.02.009] [PMID: 28318881]
[30]
Hu, Q.; Liu, M.; You, Y.; Zhou, G.; Chen, Y.; Yuan, H.; Xie, L.; Han, S.; Zhu, K. Dual inhibition of reactive oxygen species and spleen tyrosine kinase as a therapeutic strate.gy in liver fibrosis. Free Radic. Biol. Med., 2021, 175, 193-205.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.08.241] [PMID: 34492311]
[31]
Ali, S.A.; Saifi, M.A.; Godugu, C.; Talla, V. Silibinin alleviates silica-induced pulmonary fibrosis: Potential role in modulating inflammation and epithelial-mesenchymal transition. Phytother. Res., 2021, 35(9), 5290-5304.
[http://dx.doi.org/10.1002/ptr.7210] [PMID: 34250649]
[32]
Sardanelli, A.M.; Isgrò, C.; Palese, L.L. SARS-CoV-2 main protease active site ligands in the human metabolome. Molecules, 2021, 26(5), 1409.
[http://dx.doi.org/10.3390/molecules26051409] [PMID: 33807773]
[33]
Delmas, D.; Xiao, J.; Vejux, A.; Aires, V. Silymarin and Cancer: A dual strate.gy in both in chemoprevention and chemosensitivity. Molecules, 2020, 25(9), 2009.
[http://dx.doi.org/10.3390/molecules25092009] [PMID: 32344919]
[34]
Xu, S.; Zhang, H.; Wang, A.; Ma, Y.; Gan, Y.; Li, G. Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell. Mol. Biol. Lett., 2020, 25(1), 36.
[http://dx.doi.org/10.1186/s11658-020-00229-6] [PMID: 32528541]
[35]
Binienda, A.; Ziolkowska, S.; Pluciennik, E. The anticancer properties of silibinin: Its molecular mechanism and therapeutic effect in breast Cancer. Anticancer. Agents Med. Chem., 2020, 20(15), 1787-1796.
[http://dx.doi.org/10.2174/1871520620666191220142741] [PMID: 31858905]
[36]
Dupuis, M.L.; Conti, F.; Maselli, A.; Pagano, M.T.; Ruggieri, A.; Anticoli, S.; Fragale, A.; Gabriele, L.; Gagliardi, M.C.; Sanchez, M.; Ceccarelli, F.; Alessandri, C.; Valesini, G.; Ortona, E.; Pierdominici, M. The natural agonist of estrogen receptor β silibinin plays an immunosuppressive role representing a potential therapeutic tool in rheumatoid arthritis. Front. Immunol., 2018, 9, 1903.
[http://dx.doi.org/10.3389/fimmu.2018.01903] [PMID: 30174672]
[37]
Zheng, R.; Ma, J.; Wang, D.; Dong, W.; Wang, S.; Liu, T.; Xie, R.; Liu, L.; Wang, B.; Cao, H. Chemopreventive effects of silibinin on colitis-associated tumorigenesis by inhibiting IL-6/STAT3 signaling pathway. Mediators Inflamm., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/1562010] [PMID: 30498394]
[38]
Griffith, O.L.; Melck, A.; Jones, S.J.M.; Wiseman, S.M. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol., 2006, 24(31), 5043-5051.
[http://dx.doi.org/10.1200/JCO.2006.06.7330] [PMID: 17075124]
[39]
Liao, Y.X.; Zhang, Z.P.; Zhao, J.; Liu, J.P. Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway. Cell. Physiol. Biochem., 2018, 48(3), 1382-1396.
[http://dx.doi.org/10.1159/000492096] [PMID: 30048971]
[40]
Xia, S.; Wang, C.; Postma, E.L.; Yang, Y.; Ni, X.; Zhan, W. Fibronectin 1 promotes migration and invasion of papillary thyroid cancer and predicts papillary thyroid cancer lymph node metastasis. OncoTargets Ther., 2017, 10, 1743-1755.
[http://dx.doi.org/10.2147/OTT.S122009] [PMID: 28367057]
[41]
Guo, F.; Fu, Q.; Wang, Y.; Sui, G. Long non-coding RNA NR2F1-AS1 promoted proliferation and migration yet suppressed apoptosis of thyroid cancer cells through re.gulating miRNA-338-3p/CCND1 axis. J. Cell. Mol. Med., 2019, 23(9), 5907-5919.
[http://dx.doi.org/10.1111/jcmm.14386] [PMID: 31304680]
[42]
Zhang, J.; Gill, A.J.M.; Issacs, J.D.; Atmore, B.; Johns, A.; Delbridge, L.W.; Lai, R.; McMullen, T.P.W. The Wnt/β-catenin pathway drives increased cyclin D1 levels in lymph node metastasis in papillary thyroid cancer. Hum. Pathol., 2012, 43(7), 1044-1050.
[http://dx.doi.org/10.1016/j.humpath.2011.08.013] [PMID: 22204713]
[43]
Oh, J.M.; Ahn, B.C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics, 2021, 11(13), 6251-6277.
[http://dx.doi.org/10.7150/thno.57689] [PMID: 33995657]
[44]
Xing, M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid, 2010, 20(7), 697-706.
[http://dx.doi.org/10.1089/thy.2010.1646] [PMID: 20578891]
[45]
He, X.S.; Ye, W.L.; Zhang, Y.J.; Yang, X.Q.; Liu, F.; Wang, J.R.; Ding, X.L.; Yang, Y.; Zhang, R.N.; Zhao, Y.Y.; Bi, H.X.; Guo, L.C.; Gan, W.J.; Wu, H. Oncogenic potential of BEST4 in colorectal cancer via activation of PI3K/Akt signaling. Oncogene, 2022, 41(8), 1166-1177.
[http://dx.doi.org/10.1038/s41388-021-02160-2] [PMID: 35058597]
[46]
Zhang, H.; He, C.; Guo, X.; Fang, Y.; Lai, Q.; Wang, X.; Pan, X.; Li, H.; Qin, K.; Li, A.; Liu, S.; Li, Q. DDX39B contributes to the proliferation of colorectal cancer through direct binding to CDK6/CCND1. Cell Death Discov., 2022, 8(1), 30.
[http://dx.doi.org/10.1038/s41420-022-00827-7] [PMID: 35046400]
[47]
Jiang, X.; Zhang, Z.; Song, C.; Deng, H.; Yang, R.; Zhou, L.; Sun, Y.; Zhang, Q. Glaucocalyxin A reverses EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma. Chem. Biol. Interact., 2019, 307, 158-166.
[http://dx.doi.org/10.1016/j.cbi.2019.05.005] [PMID: 31059706]
[48]
Piera-Velazquez, S.; Jimenez, S.A. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol. Rev., 2019, 99(2), 1281-1324.
[http://dx.doi.org/10.1152/physrev.00021.2018] [PMID: 30864875]
[49]
Qi, J.; Yu, Y.; Akilli Öztürk, Ö.; Holland, J.D.; Besser, D.; Fritzmann, J.; Wulf-Goldenberg, A.; Eckert, K.; Fichtner, I.; Birchmeier, W. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut, 2016, 65(10), 1690-1701.
[http://dx.doi.org/10.1136/gutjnl-2014-307900] [PMID: 26156959]
[50]
Wang, J.; Zhang, N.; Han, Q.; Lu, W.; Wang, L.; Yang, D.; Zheng, M.; Zhang, Z.; Liu, H.; Lee, T.H.; Zhou, X.Z.; Lu, K.P. Pin1 inhibition reverses the acquired resistance of human hepatocellular carcinoma cells to Re.gorafenib via the Gli1/Snail/E-cadherin pathway. Cancer Lett., 2019, 444, 82-93.
[http://dx.doi.org/10.1016/j.canlet.2018.12.010] [PMID: 30583078]
[51]
Huang, S.; Huang, P.; Wu, H.; Wang, S.; Liu, G. LINC02381 aggravates breast cancer through the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway. Mol. Carcinog., 2022, 61(3), 346-358.
[http://dx.doi.org/10.1002/mc.23375] [PMID: 34882856]
[52]
Alemohammad, H.; Najafzadeh, B.; Asadzadeh, Z.; Baghbanzadeh, A.; Ghorbaninezhad, F.; Najafzadeh, A.; Safarpour, H.; Bernardini, R.; Brunetti, O.; Sonnessa, M.; Fasano, R.; Silvestris, N.; Baradaran, B. The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer. Biomed. Pharmacother., 2022, 146, 112516.
[http://dx.doi.org/10.1016/j.biopha.2021.112516] [PMID: 34906767]
[53]
Al-Jundi, M.; Thakur, S.; Gubbi, S.; Klubo-Gwiezdzinska, J. Novel targeted therapies for metastatic thyroid cancer-a comprehensive review. Cancers, 2020, 12(8), 2104.
[http://dx.doi.org/10.3390/cancers12082104] [PMID: 32751138]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy