Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Technologies for Treatment of Landfill Leachate: A Brief Review

Author(s): Barshabaisalini Parida, Aditya K. Dash* and Akshaya K. Verma*

Volume 16, Issue 4, 2023

Published on: 19 October, 2023

Page: [260 - 284] Pages: 25

DOI: 10.2174/0124055204276847231013040437

Price: $65

conference banner
Abstract

Landfill leachate contains organic compounds like amines, ketones, carboxylic acid, alcohols, aldehydes, phenols, phosphates and inorganic pollutants such as ammonia, phosphorous, sulphate, emerging contaminants like per-and polyfluoroalkyl substances (PFAS) and also the toxic heavy metals like Mn, Cd, Pb, Fe, Ni, Zn and As. In young landfill leachate, the concentration of volatile acid and simply degraded organic matter is high while pH is low. However, in mature landfills, there is more leachate production with high pH. The age of landfill and determination of parameters like BOD, COD, COD/BOD ratio are important to know the appropriate treatment methods. Physicochemical, biological and combined methods are the most reported landfill leachate treatment methods. Advanced oxidation process, adsorption, coagulation-flocculation, bioremediation, phytoremediation, bioreactor, membrane process and air striping are some of the common categories of effective treatment of landfill leachate. For better apprehension, it has been reviewed that treatment efficiencies of different kinds of leachate depend on their composition and method adopted. Studies related to the removal of organic matter and heavy metals are predominant which reported excellent removal efficiency ranging from 80-100%. In addition, physical parameters like color and turbidity can also be removed effectively using appropriate treatment methods. The present article deals with a concise review of existing literature on sustainable landfill leachate treatment technologies which include physical, chemical, biological and combined techniques.

Graphical Abstract

[1]
Barjinder B, Saini MS, Jha MK. Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. Int J Res Eng Technol 2013; 2(8): 223-32.
[http://dx.doi.org/10.15623/ijret.2013.0208037]
[2]
Baderna D, Caloni F, Benfenati E. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. Environ Int 2019; 122: 21-30.
[http://dx.doi.org/10.1016/j.envint.2018.11.024] [PMID: 30448364]
[3]
Adhikari B. A review of factors affecting the composition of municipal solid waste landfill leachate. IJIRSET 2014; 3: 273-81.
[4]
Igboama WN, Hammed OS, Fatoba JO, Aroyehun MT, Ehiabhili JC. Review article on impact of groundwater contamination due to dumpsites using geophysical and physiochemical methods. Appl Water Sci 2022; 12(6): 130.
[http://dx.doi.org/10.1007/s13201-022-01653-z]
[5]
Bhalla G, Swamee PK, Kumar A, Bansal A. Assessment of ground water quality near municipal solid waste landfill by an aggregate index method. Int J Environ Sci 2012; 2(2): 1492-503.
[6]
Singh UK, Kumar M, Chauhan R, Jha PK, Ramanathan A, Subramanian V. Assessment of the impact of landfill on groundwater quality: A case study of the Pirana site in western India. Environ Monit Assess 2008; 141(1-3): 309-21.
[http://dx.doi.org/10.1007/s10661-007-9897-6] [PMID: 17899419]
[7]
Bhalla B, Saini MS. JHA MK. Assessment of municipal solid waste landfill leachate treatment efficiency by leachate pollution index. Int J Innov Res Sci Eng Technol 2014; 3(1): 8447-54.
[8]
Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O. Induction of enhanced methane oxidation in compost: Temperature and moisture response. Waste Manag 2006; 26(4): 381-8.
[http://dx.doi.org/10.1016/j.wasman.2005.11.005] [PMID: 16446082]
[9]
Osazee OJ, Obayagbona ON. Microbiological and physicochemical analyses of top soils obtained from four municipal waste dumpsites in Benin City, Nigeria. IJMM 2013; 1(1): 23-30.
[10]
Aziz H, Rahim N, Ramli S, Alazaiza M, Omar F, Hung Y-T. Potential use of dimocarpus longan seeds as a flocculant in landfill leachate treatment. Water 2018; 10(11): 1672.
[http://dx.doi.org/10.3390/w10111672]
[11]
Peng Y. Perspectives on technology for landfill leachate treatment. Arab J Chem 2017; 10(2): S2567-74.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.031]
[12]
Chamarro E, Marco A, Esplugas S. Use of fenton reagent to improve organic chemical biodegradability. Water Res 2001; 35(4): 1047-51.
[http://dx.doi.org/10.1016/S0043-1354(00)00342-0] [PMID: 11235870]
[13]
Sarria V, Parra S, Adler N, Péringer P, Benitez N, Pulgarin C. Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catal Today 2002; 76(2-4): 301-15.
[http://dx.doi.org/10.1016/S0920-5861(02)00228-6]
[14]
Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA. Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalination Water Treat 2016; 57(6): 2819-33.
[http://dx.doi.org/10.1080/19443994.2014.983180]
[15]
AZIZ S.Q. Landfill Leachate Treatment Using Powdered Activated Carbon Augmented Sequencing Batch Reactor (SBR) Process. Ph.D. Thesis, School of Civil Engineering, Universiti Sains Malaysia, Malaysia, 2012.
[16]
Vaccari M, Tudor T, Vinti G. Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: An overview. Waste Manag 2019; 95: 416-31.
[http://dx.doi.org/10.1016/j.wasman.2019.06.032] [PMID: 31351627]
[17]
Naveen BP, Mahapatra D, Sitharam TG, Sivapullaiah PV, Ramachanra TV. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 2016; 220: 1-12.
[18]
Gotvajn AZ, Pavko A. Perspectives on biological treatment of sanitary landfill leachate. In: Samer M, Ed. Wastewater Treatment Engineering. IntechOpen, UK 2015.
[http://dx.doi.org/10.5772/60924]
[19]
Hanson AJ, Luek JL, Tummings SS, McLaughlin MC, Blotevogel J, Mouser PJ. High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Sci Total Environ 2019; 668: 1094-103.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.041] [PMID: 31018450]
[20]
Wu R, Li YY, Liu J. Refractory dissolved organic matter as carbon source for advanced nitrogen removal from mature landfill leachate: A review and prospective application. J Clean Prod 2022; 380(1): 134962.
[http://dx.doi.org/10.1016/j.jclepro.2022.134962]
[21]
Scandelai APJ, Sloboda Rigobello E, Oliveira BLC, Tavares CRG. Identification of organic compounds in landfill leachate treated by advanced oxidation processes. Environ Technol 2019; 40(6): 730-41.
[http://dx.doi.org/10.1080/09593330.2017.1405079] [PMID: 29160760]
[22]
Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, monitoring, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. Chemosphere 2023; 332: 138824.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138824] [PMID: 37164196]
[23]
Hosseini Beinabaj SM, Heydariyan H, Mohammad Aleii H, Hosseinzadeh A. Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon 2023; 9(1): e13017.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13017] [PMID: 36747943]
[24]
Hussein M, Yoneda K, Mohd-Zaki Z, Amir A, Othman N. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere 2021; 267: 128874.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128874] [PMID: 33199110]
[25]
Qiu A, Cai Q, Zhao Y, Guo Y, Zhao L. Evaluation of the treatment process of landfill leachate using the toxicity assessment method. Int J Environ Res Public Health 2016; 13(12): 1262.
[http://dx.doi.org/10.3390/ijerph13121262] [PMID: 28009808]
[26]
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 2020; 703: 135468.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135468] [PMID: 31753496]
[27]
Wang K, Li L, Tan F, Wu D. Treatment of landfill leachate using activated sludge technology: A review. Archaea 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/1039453] [PMID: 30254508]
[28]
Ghanbari F, Wu J, Khatebasreh M, Ding D, Lin KYA. Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process. Separ Purif Tech 2020; 242: 116828.
[http://dx.doi.org/10.1016/j.seppur.2020.116828]
[29]
Castilhos AB. Junior, Fernandes F, Lange LC, et al. Treatment of landfill leachate in lagoon systems. In: Gomes LP, Ed. Characterization and treatability of landfill leachates for Brazilian conditions. Rio de Janeiro: ABES 2009. (In Portuguese)
[30]
Kawahigashi F, Mendes MB, Júnior VGA, et al. Posttreatment of landfill leachate with activated carbon. Eng Sanit Ambient 2014; 19: 235-44.
[http://dx.doi.org/10.1590/S1413-41522014019000000652]
[31]
Pasalari H, Farzadkia M, Gholami M. Management of landfill leachate in Iran: Valorization, characteristics, and environmental approaches. Environ Chem Lett 2018; 17(12): 1-14.
[32]
Zhao X, Qu J, Liu H, et al. Photoelectrochemical treatment of landfill leachate in a continuous flow reactor. Bioresour Technol 2010; 101(3): 865-9.
[http://dx.doi.org/10.1016/j.biortech.2009.08.098] [PMID: 19796936]
[33]
Hanira NML, Hasfalina CM, Rashid M, Luqman CA, Abdullah AM. Effect of dilution and operating parameters on ammonia removal from scheduled waste landfill leachate in a lab-scale ammonia stripping reactor. IOP Conference Series: Materials Science and Engineering 012076.
[34]
Marttinen SK, Kettunen RH, Sormunen KM, Soimasuo RM, Rintala JA. Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 2002; 46(6): 851-8.
[http://dx.doi.org/10.1016/S0045-6535(01)00150-3] [PMID: 11922065]
[35]
Yuan MH, Chen YH, Tsai JY, Chang CY. Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed. Process Saf Environ Prot 2016; 102: 777-85.
[http://dx.doi.org/10.1016/j.psep.2016.06.021]
[36]
Särkkä H, Bhatnagar A, Sillanpää M. Recent developments of electro-oxidation in water treatment — A review. J Electroanal Chem 2015; 754: 46-56.
[http://dx.doi.org/10.1016/j.jelechem.2015.06.016]
[37]
Ukundimana Z, Omwene PI, Gengec E, Can OT, Kobya M. Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types. Electrochim Acta 2018; 286: 252-63.
[http://dx.doi.org/10.1016/j.electacta.2018.08.019]
[38]
Ghimire U, Jang M, Jung S, et al. Electrochemical removal of ammonium nitrogen and COD of domestic wastewater using platinum coated titanium as an anode electrode. Energies 2019; 12(5): 883.
[http://dx.doi.org/10.3390/en12050883]
[39]
Gautam P, Kumar S, Lokhandwala S. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. J Clean Prod 2019; 237: 117639.
[http://dx.doi.org/10.1016/j.jclepro.2019.117639]
[40]
Wang JM, Lu CS, Chen YY, Chang DT, Fan HJ. Landfill leachate treatment with Mn and Ce oxides impregnated GAC–ozone treatment process. Colloids Surf A Physicochem Eng Asp 2015; 482: 536-43.
[http://dx.doi.org/10.1016/j.colsurfa.2015.06.042]
[41]
Iskander SM, Zhao R, Pathak A, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Res 2018; 145: 297-311.
[http://dx.doi.org/10.1016/j.watres.2018.08.035] [PMID: 30165315]
[42]
Al-Hamadani YAJ, Yusoff MS, Umar M, Bashir MJK, Adlan MN. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J Hazard Mater 2011; 190(1-3): 582-7.
[http://dx.doi.org/10.1016/j.jhazmat.2011.03.087] [PMID: 21507572]
[43]
Vedrenne M, Vasquez-Medrano R, Prato-Garcia D, Frontana-Uribe BA, Ibanez JG. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment. J Hazard Mater 2012; 205-206: 208-15.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.060] [PMID: 22244343]
[44]
Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. J Hazard Mater 2008; 150(3): 468-93.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.077] [PMID: 17997033]
[45]
Mojiri A, Zhou JL, Ratnaweera H, et al. Treatment of landfill leachate with different techniques: An overview. Water Reuse 2021; 11(1): 66-96.
[46]
Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 2012; 93(1): 154-68.
[http://dx.doi.org/10.1016/j.jenvman.2011.09.012] [PMID: 22054582]
[47]
Nascimento IOC, Guedes ARP, Perelo LW, Queiroz LM. Post-treatment of sanitary landfill leachate by coagulation–flocculation using chitosan as primary coagulant. Water Sci Technol 2016; 74(1): 246-55.
[http://dx.doi.org/10.2166/wst.2016.203] [PMID: 27387003]
[48]
Nithya M, Abirami M. The leachate treatment by using natural coagulants (pine bark and chitosan). Int Res J Eng Technol 2018; 5: 2711-4.
[49]
Mojiri A, Ziyang L, Hui W, et al. Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Saf Environ Prot 2017; 111: 253-62.
[http://dx.doi.org/10.1016/j.psep.2017.07.013]
[50]
Huda N, Raman AAA, Bello MM, Ramesh S. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization. J Environ Manage 2017; 204(Pt 1): 75-81.
[http://dx.doi.org/10.1016/j.jenvman.2017.08.028] [PMID: 28865309]
[51]
Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA. Raw landfill leachate treatment using an electrocoagulation process with a novel rotating electrode reactor. Water Sci Technol 2019; 80(3): 458-65.
[http://dx.doi.org/10.2166/wst.2019.289] [PMID: 31596257]
[52]
Abdullah AZ, Amanullah H, Abdurahman MH, Basir NI. Treatment of stabilized sanitary landfill leachate using electrocoagulation process equipped with Fe, Al, and Zn electrodes and assisted by cationic polyacrylamide coagulant aid. Arab J Sci Eng 2023; 48(7): 8495-506.
[http://dx.doi.org/10.1007/s13369-022-07070-3]
[53]
van Dijk L, Roncken GCG. Membrane bioreactors for wastewater treatment: The state of the art and new developments. Water Sci Technol 1997; 35(10): 35-41.
[http://dx.doi.org/10.2166/wst.1997.0353]
[54]
Warsinger DM, Chakraborty S, Tow EW, et al. A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 2018; 81: 209-37.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.01.004] [PMID: 29937599]
[55]
Dabaghian Z, Peyravi M, Jahanshahi M, Rad AS. Potential of advanced nano-structured membranes for landfill leachate treatment: A review. ChemBioEng Rev 2019; 5: 1-20.
[56]
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. J Environ Manage 2019; 243: 45-66.
[http://dx.doi.org/10.1016/j.jenvman.2019.04.105] [PMID: 31078929]
[57]
Ersahin ME, Ozgun H, Dereli RK, Ozturk I, Roest K, van Lier JB. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresour Technol 2012; 122: 196-206.
[http://dx.doi.org/10.1016/j.biortech.2012.03.086] [PMID: 22534368]
[58]
Liu H, Yang C, Pu W, Zhang J. Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor. Chem Eng J 2009; 148(2-3): 290-5.
[http://dx.doi.org/10.1016/j.cej.2008.08.043]
[59]
Alibardi L, Cossu R, Saleem M, Spagni A. Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresour Technol 2014; 161: 236-44.
[http://dx.doi.org/10.1016/j.biortech.2014.03.045] [PMID: 24709537]
[60]
Hu Y, Wang XC, Tian W, Ngo HH, Chen R. Towards stable operation of a dynamic membrane bioreactor (DMBR): Operational process, behavior and retention effect of dynamic membrane. J Membr Sci 2016; 498: 20-9.
[http://dx.doi.org/10.1016/j.memsci.2015.10.009]
[61]
Saleem M, Lavagnolo MC, Campanaro S, Squartini A. Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor’s performance and metagenomic insights into microbial community evolution. Environ Pollut 2018; 243(Pt A): 326-5.
[http://dx.doi.org/ 10.1016/j.envpol.2018.08.090] [PMID: 30195162]
[62]
Silva AC, Dezotti M, Sant’Anna GL Jr. Treatment and detoxification of a sanitary landfill leachate. Chemosphere 2004; 55(2): 207-14.
[http://dx.doi.org/10.1016/j.chemosphere.2003.10.013] [PMID: 14761693]
[63]
Abbas AA, Jingsong G, Ping LZ, Pan YY, Al-Rekabi WS. Review on landfill leachate treatments. J Appl Sci Res 2009; 5: 534-45.
[64]
Pertile C, Zanini M, Baldasso C, Andrade MZ, Tessaro IC. Evaluation of membrane microfiltration fouling in landfill leachate treatment. Materia 2018; 23(1): 1-10.
[http://dx.doi.org/10.1590/s1517-707620170001.0297]
[65]
Nqombolo A, Mpupa A, Moutloali RM, Nomngongo PN. Wastewater treatment using membrane technology. In: Yonar T, Ed. Wastewater and Water Quality. IntechOpen, UK 2018.
[http://dx.doi.org/10.5772/intechopen.76624]
[66]
Thirumal M, Srinivasan V, Manibharathi R, Vinoth K, Thenmozhi R. Treatment of landfill leachate by nanofiltration. Int J Eng Res Technol f 2019; 6(3): 3088-91.
[67]
Dolar D. Košutić K, Strmecky T. Hybrid processes for treatment of landfill leachate: Coagulation/UF/NF-RO and adsorption/UF/NF-RO. Separ Purif Tech 2016; 168: 39-46.
[http://dx.doi.org/10.1016/j.seppur.2016.05.016]
[68]
Campinas M, Rosa MJ. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res 2010; 44(5): 1636-44.
[http://dx.doi.org/10.1016/j.watres.2009.11.012] [PMID: 19944444]
[69]
Nazia S, Sahu N, Jegatheesan V, Bhargava SK, Sridhar S. Integration of ultrafiltration membrane process with chemical coagulation for proficient treatment of old industrial landfill leachate. Chem Eng J 2021; 412: 128598.
[http://dx.doi.org/10.1016/j.cej.2021.128598]
[70]
Xiang Q, Nomura Y, Fukahori S, Mizuno T, Tanaka H, Fujiwara T. Innovative treatment of organic contaminants in reverse osmosis concentrate from water reuse: A mini review. Curr Pollut Rep 2019; 5(4): 294-307.
[http://dx.doi.org/10.1007/s40726-019-00119-2]
[71]
Fatima S, Jehangir A, Bhat GA. Treatment of landfill leachate using reverse osmosis and its potential for reuse. Int J Innov Sci Eng Technol 2017; 6(8): 15825-32.
[72]
Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 2010; 365(1-2): 34-9.
[http://dx.doi.org/10.1016/j.memsci.2010.08.036]
[73]
Pearce GK. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: A comparison of energy costs. Desalination 2008; 222(1-3): 66-73.
[http://dx.doi.org/10.1016/j.desal.2007.05.029]
[74]
Iskander SM, Zou S, Brazil B, Novak JT, He Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Manag 2017; 63: 284-91.
[http://dx.doi.org/10.1016/j.wasman.2017.03.026] [PMID: 28342589]
[75]
Ferraz FM, Yuan Q. Performance of oat hulls activated carbon for COD and color removal from landfill leachate. J Water Process Eng 2020; 33: 101040.
[http://dx.doi.org/10.1016/j.jwpe.2019.101040]
[76]
Soubh AM, Baghdadi M, Abdoli MA, Aminzadeh B. Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (rULGO) as a persulfate activator for treatment of landfill leachate. J Environ Chem Eng 2018; 6(5): 6568-79.
[http://dx.doi.org/10.1016/j.jece.2018.10.011]
[77]
Dash AK, Mishra PC. Changes in biomass, pigment and protein content of Westiellopsis prolifica, a blue-green alga, grown in nutrient manipulated paper mill wastewater. Cytobios 1996; 88: 11-6.
[78]
Dash AK, Mishra PC. Blue –green alga in sewage – amended paper mills waste water. Int J Environ Stud 1997; 53: 9-10.
[http://dx.doi.org/10.1080/00207239708711113]
[79]
Dash AK, Mishra PC. Role of Cyanobacteria in water pollution abatement. Indian J Environ Ecoplann 1998; 1(1&2): 1-11.
[80]
Dash AK, Mishra PC. Role of the blue – green alga, Westiellopsis prolifica in reducing pollution load from paper mill wastewater. Indian J Environ Prot 1999; 19(1): 1-15.
[81]
Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 2005; 81(1): 139-47.
[http://dx.doi.org/10.1016/j.microc.2005.01.009]
[82]
Wang L, Peng J, Wang B, Yang L. Design and operation of an eco-system for municipal wastewater treatment and utilization. Water Sci Technol 2006; 54(11-12): 429-36.
[http://dx.doi.org/10.2166/wst.2006.923] [PMID: 17302348]
[83]
Pradhan A, Sahu SK, Dash AK. Changes in pigment content (chlorophyll and carotenoid), enzyme activities (catalase and peroxidase), biomass and yield of rice plant (Oriza sativa.L) following irrigation of rice mill wastewater under pot culture conditions. Int J Sci Eng Res 2013; 4(6): 2706-17.
[84]
Dash AK, Pradhan A. Growth and biochemical changes of the blue-green alga, anabaena doliolum in domestic wastewater. Int J Sci Eng Res 2013; 4(6): 2753-8.
[85]
Madera-Parra CA. Treatment of landfill leachate by polyculture constructed wetlands planted with native plants. Eng Competit 2016; 18(2): 183-92.
[86]
Song U, Waldman B, Park JS, Lee K, Park SJ, Lee EJ. Improving the remediation capacity of a landfill leachate channel by selecting suitable macrophytes. J Hydro-environment Res 2018; 20: 31-7.
[http://dx.doi.org/10.1016/j.jher.2018.04.005]
[87]
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011; 2011: 1-31.
[http://dx.doi.org/10.1155/2011/939161]
[88]
Alaboudi KA, Ahmed B, Brodie G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann Agric Sci 2018; 63(1): 123-7.
[http://dx.doi.org/10.1016/j.aoas.2018.05.007]
[89]
Yalçuk A, Ugurlu A. Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: Plant growth modeling. Int J Phytoremediation 2020; 22(2): 157-66.
[http://dx.doi.org/10.1080/15226514.2019.1652562] [PMID: 31402676]
[90]
Moktar KA, Tajuddin RM. Phytoremediation of heavy metal from leachate using imperata cylindrical. MATEC Web Conference. 258: 01021.
[91]
Dash AK. Impact of domestic wastewater on seed germination and physiological parameters of wheat and rice. IJRR 2012; 12(2): 280-6.
[92]
Morris S, Garcia-Cabellos G, Enright D, Ryan D, Enright AM. Bioremediation of landfill leachate using isolated bacterial strains. Int J Environ Bioremediat Biodegrad 2018; 6(1): 26-35.
[http://dx.doi.org/10.12691/ijebb-6-1-4]
[93]
Paskuliakova A, McGowan T, Tonry S, Touzet N. Microalgal bioremediation of nitrogenous compounds in landfill leachate – The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Res 2018; 32: 162-71.
[http://dx.doi.org/10.1016/j.algal.2018.03.010]
[94]
Vianna M, de Melo G, Viana Neto M. Wastewater treatment in trickling filters using Luffa cyllindrica as biofilm supporting medium. J Urban Environ Eng 2012; 6(2): 57-66.
[http://dx.doi.org/10.4090/juee.2012.v6n2.057066]
[95]
Matthews R, Winson M, Scullion J. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics. Sci Total Environ 2009; 407(8): 2557-64.
[http://dx.doi.org/10.1016/j.scitotenv.2009.01.034] [PMID: 19217644]
[96]
Loukidou MX, Zouboulis AI. Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment. Environ Pollut 2001; 111(2): 273-81.
[http://dx.doi.org/10.1016/S0269-7491(00)00069-5] [PMID: 11202731]
[97]
Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 1998; 32(5): 1564-70.
[http://dx.doi.org/10.1016/S0043-1354(97)00351-5]
[98]
Imtian SIF, Purwanto P, Yulianto B. The biological treatment method for landfill leachate. The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020) E3S Web Conf 202.
[99]
Bae BU, Jung ES, Kim YR, Shin HS. Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Res 1999; 33(11): 2669-73.
[http://dx.doi.org/10.1016/S0043-1354(98)00488-6]
[100]
Azreen I, Zahrim AY. Overview of biologically digested leachate treatment using adsorption. In: Horan N, Yaser AZ, Wid N, Eds. Anaerobic Digestion Processes: Applications and Effluent Treatment. Springer Nature, Singapore 2018.
[http://dx.doi.org/10.1007/978-981-10-8129-3_8]
[101]
Waqas S, Bilad MR. A review on rotating biological contactors. Indonesian J Sci Techn 2019; 4(2): 241-56.
[http://dx.doi.org/10.17509/ijost.v4i2.18181]
[102]
Latif MA, Ghufran R, Wahid ZA, Ahmad A. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res 2011; 45(16): 4683-99.
[http://dx.doi.org/10.1016/j.watres.2011.05.049] [PMID: 21764417]
[103]
Pan Z, Song C, Li L, et al. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chem Eng J 2019; 376: 120909.
[http://dx.doi.org/10.1016/j.cej.2019.01.188]
[104]
Moravia WG, Amaral MCS, Lange LC. Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system. Waste Manag 2013; 33(1): 89-101.
[http://dx.doi.org/10.1016/j.wasman.2012.08.009] [PMID: 23058598]
[105]
Santos AV, Andrade LH, Amaral MCS, Lange LC. Integration of membrane separation and Fenton processes for sanitary landfill leachate treatment. Environ Technol 2019; 40(22): 2897-905.
[http://dx.doi.org/10.1080/09593330.2018.1458337] [PMID: 29580169]
[106]
Chen W, Zhang A, Jiang G, Li Q. Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation. Waste Manag 2019; 85: 283-94.
[http://dx.doi.org/10.1016/j.wasman.2018.12.038] [PMID: 30803582]
[107]
Klauck CR, Giacobbo A, Altenhofen CG, et al. Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environ Technol Innov 2017; 8: 246-55.
[http://dx.doi.org/10.1016/j.eti.2017.07.006]
[108]
Asaithambi P, Govindarajan R, Busier Yesuf M, Selvakumar P, Alemayehu E. Enhanced treatment of landfill leachate wastewater using sono(US)-ozone(O3)–electrocoagulation(EC) process: role of process parameters on color, COD and electrical energy consumption. Process Saf Environ Prot 2020; 142: 212-8.
[http://dx.doi.org/10.1016/j.psep.2020.06.024]
[109]
Eljaiek-Urzola M, Guardiola-Meza L, Ghafoori S, Mehrvar M. Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2018; 53(3): 238-43.
[http://dx.doi.org/10.1080/10934529.2017.1394709] [PMID: 29172962]
[110]
Aziz HA, AlGburi HR, Alazaiza MYD, Noor AFM. Sequential treatment for stabilized landfill leachate by ozonation–adsorption and adsorption–ozonation methods. Int J Environ Sci Technol 2021; 18(4): 861-70.
[http://dx.doi.org/10.1007/s13762-020-02891-x]
[111]
Poblete R, Cortes E, Bakit J, Luna-Galiano Y. Landfill leachate treatment using combined fish scales based activated carbon and solar advanced oxidation processes. Process Saf Environ Prot 2019; 123: 253-62.
[http://dx.doi.org/10.1016/j.psep.2019.01.017]
[112]
Munz G, Gori R, Mori G, Lubello C. Powdered activated carbon and membrane bioreactors (MBRPAC) for tannery wastewater treatment: long term effect on biological and filtration process performances. Desalination 2007; 207(1-3): 349-60.
[http://dx.doi.org/10.1016/j.desal.2006.08.010]
[113]
Yi EX, Wee ST, Lim CK, Ibrahim Z, Chang NW. Combined adsorption and biological treatment for landfill leachate management. J Adv Res Fluid Mech Therm Sci 2018; 50(1): 26-31.
[114]
Mohajeri P, Selamat M, Abdul Aziz H, Smith C. Removal of COD and ammonia nitrogen by a sawdust/bentonite-augmented SBR process. Cleanroom Technol 2018; 1(1): 125-40.
[http://dx.doi.org/10.3390/cleantechnol1010009]
[115]
Lastre-Acosta AM, Palharim PH, Barbosa IM, Mierzwa JC, Silva CTAC. Removal of sulfadiazine from simulated industrial wastewater by a membrane bioreactor and ozonation. J Environ Manage 2020; 271: 111040.
[http://dx.doi.org/10.1016/j.jenvman.2020.111040] [PMID: 32778319]
[116]
Niazi S. Coagulation effects of biological sludge reject water treatment 2018.
[117]
Güvenç SY, Güven EC. Pretreatment of food industry wastewater by coagulation: Process modeling and optimization. CBUJOS 2019; 15(3): 307-16.
[118]
Yadav JS, Dikshit AK. Effect of pretreatment by coagulation on stabilized landfill leachate during anaerobic treatment. Cogent Environ Sci 2016; 2(1): 1209993.
[http://dx.doi.org/10.1080/23311843.2016.1209993]
[119]
Poblete R, Pérez N. Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate. J Environ Manage 2020; 253: 109697.
[http://dx.doi.org/10.1016/j.jenvman.2019.109697] [PMID: 31634745]
[120]
Tejera J, Miranda R, Hermosilla D, Urra I, Negro C, Blanco Á. Treatment of a mature landfill leachate: Comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. Water 2019; 11(9): 1849.
[http://dx.doi.org/10.3390/w11091849]
[121]
de Oliveira MS, da Silva LF, Barbosa AD, Romualdo LL, Sadoyama G, Andrade LS. Landfill leachate treatment by combining coagulation and advanced electrochemical oxidation techniques. ChemElectroChem 2019; 6(5): 1427-33.
[http://dx.doi.org/10.1002/celc.201801677]
[122]
Abu Amr SS, Zakaria SNF, Aziz HA. Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. J Mater Cycles Waste Manag 2017; 19(4): 1384-90.
[http://dx.doi.org/10.1007/s10163-016-0524-x]
[123]
Braga WLM, de Melo DHA, de Morais D, et al. Optimization of the treatment of sanitary landfill by the ozonization catalysed by modified nanovermiculite in a rotating packed bed. J Clean Prod 2020; 249: 119395.
[http://dx.doi.org/10.1016/j.jclepro.2019.119395]
[124]
Pavithra S, Shanthakumar S. Removal of COD, BOD and color from municipal solid waste leachate using silica and iron nano particles – a comparative study. Glob NEST J 2017; 19(1): 122-30.
[http://dx.doi.org/10.30955/gnj.002065]
[125]
Zainol NA, Pin LB, Rashid NA, Ghani AA, Zailani SN, Rani ALA. Treatment of landfill leachate by coagulation-flocculation process using red earth as coagulant. AIP Conf Proc. 2018; 2030: p. 020043.
[http://dx.doi.org/10.1063/1.5066684]
[126]
Zegzouti Y, Boutafda A, Ezzariai A, et al. Bioremediation of landfill leachate by Aspergillus flavus in submerged culture: Evaluation of the process efficiency by physicochemical methods and 3D fluorescence spectroscopy. J Environ Manage 2020; 255: 109821.
[http://dx.doi.org/10.1016/j.jenvman.2019.109821] [PMID: 31778868]
[127]
Elleuch L, Messaoud M, Djebali K, et al. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J Hazard Mater 2020; 382: 121119.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121119] [PMID: 31494532]
[128]
Ishak AR, Hamid FS, Mohamad S, Tay KS. Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process. Waste Manag 2018; 76: 575-81.
[http://dx.doi.org/10.1016/j.wasman.2018.02.047] [PMID: 29503052]
[129]
Daud Z, Ibrahim FND, Latiff AAA, et al. Ammoniacal nitrogen and COD removal using zeolite-feldspar mineral composite adsorbent. Int J Integr Eng 2016; 8: 9-12.
[130]
Hajjizadeh M, Ghammamy S, Ganjidoust H, Farsad F. Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment. Pol J Environ Stud 2020; 29(6): 4089-99.
[http://dx.doi.org/10.15244/pjoes/114507]
[131]
Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS. Factorial design and optimization of landfill leachate treatment using tannin-based natural coagulant. Polymers 2019; 11(8): 1349.
[http://dx.doi.org/10.3390/polym11081349] [PMID: 31416151]
[132]
Taoufik M, Elmoubarki R, Moufti A, et al. Treatment of landfill leachate by coagulation-flocculation with FeCl3: process optimization using Box–Behnken design. J Mater Environ Sci 2018; 9: 2458-67.
[133]
Er XY, Seow TW, Lim CK, Ibrahim Z, Mat Sarip SH. Biological treatment of closed landfill leachate treatment by using Brevibacillus panacihumi strain ZB1. IOP Conf Ser Earth Environ Sci 2018; 140: 012012.
[http://dx.doi.org/10.1088/1755-1315/140/1/012012]
[134]
Yong ZJ, Bashir MJK, Ng CA, Sethupathi S, Lim JW. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. J Environ Manage 2018; 205: 244-52.
[http://dx.doi.org/10.1016/j.jenvman.2017.09.068] [PMID: 28987987]
[135]
Chávez RP, Pizarro ECC, Galiano YL. Landfill leachate treatment using activated carbon obtained from coffee waste. Eng Sanit Ambient 2019; 24(4): 833-42.
[http://dx.doi.org/10.1590/s1413-41522019178655]
[136]
Smaoui Y, Bouzid J, Sayadi S. Combination of air stripping and biological processes for landfill leachate treatment. Environ Eng Res 2020; 25(1): 80-7.
[http://dx.doi.org/10.4491/eer.2018.268]
[137]
Lim CK, Seow TW, Neoh CH, et al. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. 3 Biotech 2016; 6: 165.
[138]
Koc-Jurczyk J. Jurczyk Ł. Biological treatment of landfill leachate at elevated temperature in the presence of polyurethane foam of various porosity. Clean 2017; 45(3): 1500264.
[http://dx.doi.org/10.1002/clen.201500264]
[139]
Jurczyk Ł Koc-Jurczyk J,Masłoń A. Simultaneous stripping of ammonia from leachate: Experimental Insights and Key Microbial Players. Water 2020; 12(9): 2494.
[http://dx.doi.org/10.3390/w12092494]
[140]
Sri Shalini S, Joseph K. Combined SHARON and ANAMMOX processes for ammoniacal nitrogen stabilisation in landfill bioreactors. Bioresour Technol 2018; 250: 723-32.
[http://dx.doi.org/10.1016/j.biortech.2017.10.077] [PMID: 29223093]
[141]
Wu L, Li Z, Zhao C, Liang D, Peng Y. A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate. Sci Total Environ 2018; 633: 745-51.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.213] [PMID: 29602113]
[142]
Malovanyy A, Hedman F, Bergh L, et al. Comparative study of per- and polyfluoroalkyl substances (PFAS) removal from landfill leachate. J Hazard Mater 2023; 460: 132505.
[http://dx.doi.org/10.1016/j.jhazmat.2023.132505] [PMID: 37703729]
[143]
Li R, Wang B, Owete O, et al. Landfill leachate treatment by electrocoagulation and fiber filtration. Water Environ Res 2017; 89(11): 2015-20.
[http://dx.doi.org/10.2175/106143017X15051465918976] [PMID: 29080568]
[144]
Azzouz L, Boudjema N, Aouichat F, Kherat M, Mameri N. Membrane bioreactor performance in treating Algiers’ landfill leachate from using indigenous bacteria and inoculating with activated sludge. Waste Manag 2018; 75: 384-90.
[http://dx.doi.org/10.1016/j.wasman.2018.02.003] [PMID: 29453012]
[145]
Zolfaghari M, Jardak K, Drogui P, Brar SK, Buelna G, Dubé R. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. J Environ Manage 2016; 184(Pt 2): 318-26.
[http://dx.doi.org/10.1016/j.jenvman.2016.10.010] [PMID: 27733297]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy