Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Transcriptomic Analysis of THP-1 Cells Exposed by Monosodium Urate Reveals Key Genes Involved in Gout

Author(s): Guozhen Wang, Zijia Liu, Yuchen Zheng, Chao Sheng, Xiaonan Hou, Mengfei Yao, Qi Zong, Duo Tang, Zhixiang Zhou*, Tie Zhang* and Yishu Yang

Volume 27, Issue 18, 2024

Published on: 18 October, 2023

Page: [2741 - 2752] Pages: 12

DOI: 10.2174/0113862073262471231011043339

Price: $65

Abstract

Background: Gout is a common inflammatory arthritis, which is mainly caused by the deposition of monosodium urate (MSU) in tissues. Transcriptomics was used to explore the pathogenesis and treatment of gout in our work.

Objective: The objective of the study was to analyze and validate potential therapeutic targets and biomarkers in THP-1 cells that were exposed to MSU.

Methods: THP-1 cells were exposed to MSU. The inflammatory effect was characterized, and RNA-Seq analysis was then carried out. The differential genes obtained by RNA-Seq were analyzed with gene expression omnibus (GEO) series 160170 (GSE160170) gout-related clinical samples in the GEO database and gout-related genes in the GeneCards database. From the three analysis approaches, the genes with significant differences were verified by the differential genes’ transcription levels. The interaction relationship of long non-coding RNA (lncRNA) was proposed by ceRNA network analysis.

Results: MSU significantly promoted the release of IL-1β and IL-18 in THP-1 cells, which aggravated their inflammatory effect. Through RNA-Seq, 698 differential genes were obtained, including 606 differential mRNA and 92 differential `LncRNA. Cross-analysis of the RNA-Seq differential genes, the GSE160170 differential genes, and the gout-related genes in GeneCards revealed a total of 17 genes coexisting in the tripartite data. Furthermore, seven differential genes—C-X-C motif chemokine ligand 8 (CXCL8), C-X-C motif chemokine ligand 2 (CXCL2), tumor necrosis factor (TNF), C-C motif chemokine ligand 3 (CCL3), suppressor of cytokine signaling 3 (SOCS3), oncostatin M (OSM), and MIR22 host gene (MIR22HG)—were verified as key genes that analyzed the weight of genes in pathways, the enrichment of inflammationrelated pathways, and protein-protein interaction (PPI) nodes combined with the expression of genes in RNA-Seq and GSE160170. It is suggested that MIR22HG may regulate OSM and SOCS3 through microRNA 4271 (miR-4271), OSM, and SOCS3m; CCL3 through microRNA 149-3p (miR-149-3p); and CXCL2 through microRNA 4652-3p (miR-4652-3p).

Conclusion: The potential of CXCL8, CXCL2, TNF, CCL3, SOCS3, and OSM as gout biomarkers and MIR22HG as a therapeutic target for gout are proposed, which provide new insights into the mechanisms of gout biomarkers and therapeutic methods.

[1]
Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective - A review. J. Adv. Res., 2017, 8(5), 495-511.
[http://dx.doi.org/10.1016/j.jare.2017.04.008] [PMID: 28748116]
[2]
Weaver, J.S.; Vina, E.R.; Munk, P.L.; Klauser, A.S.; Elifritz, J.M.; Taljanovic, M.S. Gouty arthropathy: Review of clinical manifestations and treatment, with emphasis on imaging. J. Clin. Med., 2021, 11(1), 166.
[http://dx.doi.org/10.3390/jcm11010166] [PMID: 35011907]
[3]
Wu, Z.D.; Yang, X.K.; He, Y.S.; Ni, J.; Wang, J.; Yin, K.J.; Huang, J.X.; Chen, Y.; Feng, Y.T.; Wang, P.; Pan, H.F. Environmental factors and risk of gout. Environ. Res., 2022, 212(Pt C), 113377.
[http://dx.doi.org/10.1016/j.envres.2022.113377] [PMID: 35500858]
[4]
Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Alcohol intake and risk of incident gout in men: A prospective study. Lancet, 2004, 363(9417), 1277-1281.
[http://dx.doi.org/10.1016/S0140-6736(04)16000-5] [PMID: 15094272]
[5]
Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum., 2020, 50(3), S11-S16.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.008] [PMID: 32620196]
[6]
Lee, Y.W.M.; Kok, S.X.S.; Wong, L.W.; Wong, S.B.S. Clinics in diagnostic imaging (200). Singapore Med. J., 2019, 60(10), 502-507.
[http://dx.doi.org/10.11622/smedj.2019129] [PMID: 31663097]
[7]
Peng, Z.; Ding, Y.M.; Pei, L.; Yao, H.H.; Zhang, X.W.; Tang, S.M. [Clinical characteristics of crystal deposits in joints and tendons in patients with gout]. Beijing Da Xue Xue Bao, 2021, 53(6), 1067-1071.
[PMID: 34916683]
[8]
So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647.
[http://dx.doi.org/10.1038/nrrheum.2017.155] [PMID: 28959043]
[9]
Nakayama, M. Macrophage recognition of crystals and nanoparticles. Front. Immunol., 2018, 9, 103.
[http://dx.doi.org/10.3389/fimmu.2018.00103] [PMID: 29434606]
[10]
Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; Xue, Y.; He, D. Inflammatory response to regulated cell death in gout and its functional implications. Front. Immunol., 2022, 13, 888306.
[http://dx.doi.org/10.3389/fimmu.2022.888306] [PMID: 35464445]
[11]
Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388(10055), 2039-2052.
[http://dx.doi.org/10.1016/S0140-6736(16)00346-9] [PMID: 27112094]
[12]
Franco-Trepat, E.; Alonso-Pérez, A.; Guillán-Fresco, M.; Jorge-Mora, A.; Crespo-Golmar, A.; López-Fagúndez, M.; Pazos-Pérez, A.; Gualillo, O.; Belén Bravo, S.; Gómez Bahamonde, R. Amitriptyline blocks innate immune responses mediated by toll‐like receptor 4 and IL‐1 receptor: Preclinical and clinical evidence in osteoarthritis and gout. Br. J. Pharmacol., 2022, 179(2), 270-286.
[http://dx.doi.org/10.1111/bph.15707] [PMID: 34643941]
[13]
Sun, X.; Li, P.; Qu, X.; Liu, W. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway. Pharm. Biol., 2021, 59(1), 1324-1331.
[http://dx.doi.org/10.1080/13880209.2021.1979595] [PMID: 34582722]
[14]
Xu, W.; Li, F.; Zhang, X.; Wu, C.; Wang, Y.; Yao, Y.; Xia, D. The protective effects of neoastilbin on monosodium urate stimulated THP-1-Derived macrophages and gouty arthritis in mice through NF-κB and NLRP3 inflammasome pathways. Molecules, 2022, 27(11), 3477.
[http://dx.doi.org/10.3390/molecules27113477] [PMID: 35684415]
[15]
Campion, E.W.; Glynn, R.J.; Delabry, L.O. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study. Am. J. Med., 1987, 82(3), 421-426.
[http://dx.doi.org/10.1016/0002-9343(87)90441-4] [PMID: 3826098]
[16]
Zhang, W.Z. Why does hyperuricemia not necessarily induce gout? Biomolecules, 2021, 11(2), 280.
[http://dx.doi.org/10.3390/biom11020280] [PMID: 33672821]
[17]
Galozzi, P.; Bindoli, S.; Doria, A.; Oliviero, F.; Sfriso, P. Autoinflammatory features in gouty arthritis. J. Clin. Med., 2021, 10(9), 1880.
[http://dx.doi.org/10.3390/jcm10091880] [PMID: 33926105]
[18]
Tausche, A.K.; Aringer, M. Gicht. Z. Rheumatol., 2016, 75(9), 885-898.
[http://dx.doi.org/10.1007/s00393-016-0206-z] [PMID: 27730304]
[19]
Pillinger, M.H.; Mandell, B.F. Therapeutic approaches in the treatment of gout. Semin. Arthritis Rheum., 2020, 50(3), S24-S30.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.010] [PMID: 32620199]
[20]
Whelton, A.; Hamilton, C.W. Nonsteroidal anti-inflammatory drugs: Effects on kidney function. J. Clin. Pharmacol., 1991, 31(7), 588-598.
[http://dx.doi.org/10.1002/j.1552-4604.1991.tb03743.x] [PMID: 1894754]
[21]
Slobodnick, A.; Shah, B.; Krasnokutsky, S.; Pillinger, M.H. Update on colchicine, 2017. Rheumatology, 2018, 57(Suppl. 1), i4-i11.
[http://dx.doi.org/10.1093/rheumatology/kex453] [PMID: 29272515]
[22]
Crittenden, D.B.; Pillinger, M.H. New therapies for gout. Annu. Rev. Med., 2013, 64(1), 325-337.
[http://dx.doi.org/10.1146/annurev-med-080911-105830] [PMID: 23327525]
[23]
Li, Y.; Huang, C.; Yang, Z.; Wang, L.; Luo, D.; Qi, L.; Li, Z.; Huang, Y. Identification of potential biomarkers of gout through competitive endogenous RNA network analysis. Eur. J. Pharm. Sci., 2022, 173, 106180.
[http://dx.doi.org/10.1016/j.ejps.2022.106180] [PMID: 35378210]
[24]
Shu, J.; Chen, M.; Ya, C.; Yang, R.; Li, F. Regulatory Role of miRNAs and lncRNAs in Gout. Comput. Math. Methods Med., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/6513565] [PMID: 35813414]
[25]
Liu, X.; Fan, Z.; Li, Y.; Li, Z.; Zhou, Z.; Yu, X.; Wan, J.; Min, Z.; Yang, L.; Li, D. microRNA‐196a‐5p inhibits testicular germ cell tumor progression via NR6A1/E‐cadherin axis. Cancer Med., 2020, 9(23), 9107-9122.
[http://dx.doi.org/10.1002/cam4.3498] [PMID: 33034957]
[26]
Wang, C.; Li, H.; Wang, X.; Li, W.; Su, Q.; Xiao, X.; Hao, T.; Chen, W.; Zhang, Y.; Zhang, H.; Wu, W.; Hu, Z.; Zhao, G.; Huo, M.; He, Y.; Zhang, C. Ailanthus altissima-derived ailanthone enhances gastric cancer cell apoptosis by inducing the repression of base excision repair by downregulating p23 expression. Int. J. Biol. Sci., 2021, 17(11), 2811-2825.
[http://dx.doi.org/10.7150/ijbs.60674] [PMID: 34345209]
[27]
Qing, Y.F.; Zheng, J.X.; Tang, Y.P.; Dai, F.; Dong, Z.R.; Zhang, Q.B. LncRNAs Landscape in the patients of primary gout by microarray analysis. PLoS One, 2021, 16(2), e0232918.
[http://dx.doi.org/10.1371/journal.pone.0232918] [PMID: 33600466]
[28]
Tang, D.; Wang, G.; Liu, Z.; Wang, B.; Yao, M.; Wang, Q.; Hou, X.; Zheng, Y.; Sheng, C.; Zhou, Z. Transcriptomic analysis of the effects of the HPV18 E6E7 gene on the cell death mode in esophageal squamous cell carcinoma. Oncol. Lett., 2023, 25(4), 167.
[http://dx.doi.org/10.3892/ol.2023.13753] [PMID: 36960186]
[29]
Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202.
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[30]
Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483), 344-352.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[31]
Richette, P.; Bardin, T. Gout. Lancet, 2010, 375(9711), 318-328.
[http://dx.doi.org/10.1016/S0140-6736(09)60883-7] [PMID: 19692116]
[32]
Masseoud, D.; Rott, K.; Liu-Bryan, R.; Agudelo, C. Overview of hyperuricaemia and gout. Curr. Pharm. Des., 2005, 11(32), 4117-4124.
[http://dx.doi.org/10.2174/138161205774913318] [PMID: 16375732]
[33]
Steiger, S.; Harper, J.L. Mechanisms of spontaneous resolution of acute gouty inflammation. Curr. Rheumatol. Rep., 2014, 16(1), 392.
[http://dx.doi.org/10.1007/s11926-013-0392-5] [PMID: 24343224]
[34]
Zhao, L.; Ye, W.; Zhu, Y.; Chen, F.; Wang, Q.; Lv, X.; Hua, Y.; Du, Z.; Zhu, X.; Yu, Y.; Zou, H.; Liu, L.; Xue, Y. Distinct macrophage polarization in acute and chronic gout. Lab. Invest., 2022, 102(10), 1054-1063.
[http://dx.doi.org/10.1038/s41374-022-00798-4] [PMID: 35614340]
[35]
Goldberg, E.L.; Asher, J.L.; Molony, R.D.; Shaw, A.C.; Zeiss, C.J.; Wang, C.; Morozova-Roche, L.A.; Herzog, R.I.; Iwasaki, A.; Dixit, V.D. β-hydroxybutyrate deactivates neutrophil nlrp3 inflammasome to relieve gout flares. Cell Rep., 2017, 18(9), 2077-2087.
[http://dx.doi.org/10.1016/j.celrep.2017.02.004] [PMID: 28249154]
[36]
Liu, L.; Zhu, L.; Liu, M.; Zhao, L.; Yu, Y.; Xue, Y.; Shan, L. Recent insights into the role of macrophages in acute gout. Front. Immunol., 2022, 13, 955806.
[http://dx.doi.org/10.3389/fimmu.2022.955806] [PMID: 35874765]
[37]
Liu, Y.; Wang, J.; Li, J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front. Immunol., 2023, 14, 1137822.
[http://dx.doi.org/10.3389/fimmu.2023.1137822] [PMID: 37051231]
[38]
Landis, R.C.; Yagnik, D.R.; Florey, O.; Philippidis, P.; Emons, V.; Mason, J.C.; Haskard, D.O. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum., 2002, 46(11), 3026-3033.
[http://dx.doi.org/10.1002/art.10614] [PMID: 12428246]
[39]
Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, 5(1), e8668.
[http://dx.doi.org/10.1371/journal.pone.0008668] [PMID: 20084270]
[40]
Maeß, M.B.; Wittig, B.; Cignarella, A.; Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods, 2014, 402(1-2), 76-81.
[http://dx.doi.org/10.1016/j.jim.2013.11.006] [PMID: 24269601]
[41]
Mohd Yasin, Z.N.; Mohd Idrus, F.N.; Hoe, C.H.; Yvonne-Tee, G.B. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation, 2022, 128, 67-82.
[http://dx.doi.org/10.1016/j.diff.2022.10.001] [PMID: 36370526]
[42]
Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus biological significance: Are PMA-Differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol., 2018, 9, 71.
[http://dx.doi.org/10.3389/fphar.2018.00071] [PMID: 29520230]
[43]
Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther., 2019, 21(1), 193.
[http://dx.doi.org/10.1186/s13075-019-1974-z] [PMID: 31455356]
[44]
Cheng, J.J.; Ma, X.D.; Ai, G.X.; Yu, Q.X.; Chen, X.Y.; Yan, F.; Li, Y.C.; Xie, J.H.; Su, Z.R.; Xie, Q.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. Devel. Ther., 2022, 16, 2119-2132.
[http://dx.doi.org/10.2147/DDDT.S356307] [PMID: 35812134]
[45]
Hao, K.; Jiang, W.; Zhou, M.; Li, H.; Chen, Y.; Jiang, F.; Hu, Q. Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis. Int. J. Biol. Sci., 2020, 16(16), 3163-3173.
[http://dx.doi.org/10.7150/ijbs.46153] [PMID: 33162822]
[46]
Liu, Y.F.; Xing, G.L.; Chen, Z.; Tu, S.H. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation. Cell Cycle, 2021, 20(3), 332-344.
[http://dx.doi.org/10.1080/15384101.2021.1874696] [PMID: 33467979]
[47]
Meng, Q.; Meng, W.; Bian, H.; Zheng, F.; Gu, H.; Zuo, R.; Miao, X.; Zhou, Z.; Wang, L.; Wen, Z.; Ma, J.; Su, X. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis. Biomed. Pharmacother., 2021, 138, 111413.
[http://dx.doi.org/10.1016/j.biopha.2021.111413] [PMID: 33677310]
[48]
Qin, Q.; Liu, H.; Shou, J.; Jiang, Y.; Yu, H.; Wang, X. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell. Mol. Immunol., 2021, 18(4), 992-1004.
[http://dx.doi.org/10.1038/s41423-020-00525-3] [PMID: 32901127]
[49]
Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol., 2014, 10(5), 593-619.
[http://dx.doi.org/10.1586/1744666X.2014.894886] [PMID: 24678812]
[50]
Kienhorst, L.B.E.; van Lochem, E.; Kievit, W.; Dalbeth, N.; Merriman, M.E.; Phipps-Green, A.; Loof, A.; van Heerde, W.; Vermeulen, S.; Stamp, L.K.; van Koolwijk, E.; de Graaf, J.; Holzinger, D.; Roth, J.; Janssens, H.J.E.M.; Merriman, T.R.; Broen, J.C.A.; Janssen, M.; Radstake, T.R.D.J. Gout is a chronic inflammatory disease in which high levels of interleukin‐8 (CXCL8), myeloid‐related protein 8/myeloid‐related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol., 2015, 67(12), 3303-3313.
[http://dx.doi.org/10.1002/art.39318] [PMID: 26248007]
[51]
Kienhorst, L.; Janssens, H.; Radstake, T.; van Riel, P.; Jacobs, J.; van Koolwijk, E.; van Lochem, E.; Janssen, M. A pilot study of CXCL8 levels in crystal proven gout patients during allopurinol treatment and their association with cardiovascular disease. Joint Bone Spine, 2017, 84(6), 709-713.
[http://dx.doi.org/10.1016/j.jbspin.2016.10.013] [PMID: 27894951]
[52]
Nabieva, D.A.; Aripov, A.N. [The detection of proteomic markers and immunologic profile and their relationship with metabolic parameters in patients with gout.]. Klin. Lab. Diagn., 2017, 62(8), 485-489.
[PMID: 30802396]
[53]
Qin, C.C.; Liu, Y.N.; Hu, Y.; Yang, Y.; Chen, Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J. Gastroenterol., 2017, 23(17), 3043-3052.
[http://dx.doi.org/10.3748/wjg.v23.i17.3043] [PMID: 28533661]
[54]
Moilanen, L.J.; Hämäläinen, M.; Lehtimäki, L.; Nieminen, R.M.; Moilanen, E. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout. PLoS One, 2015, 10(2), e0117770.
[http://dx.doi.org/10.1371/journal.pone.0117770] [PMID: 25658427]
[55]
Ye, Y.; Zhang, Y.; Wang, B.; Walana, W.; Wei, J.; Gordon, J.R.; Li, F. CXCR1/CXCR2 antagonist G31P inhibits nephritis in a mouse model of uric acid nephropathy. Biomed. Pharmacother., 2018, 107, 1142-1150.
[http://dx.doi.org/10.1016/j.biopha.2018.07.077] [PMID: 30257327]
[56]
Pesce, B.; Ribeiro, C.H.; Larrondo, M.; Ramos, V.; Soto, L.; Catalán, D.; Aguillón, J.C. TNF-α affects signature cytokines of th1 and th17 T cell subsets through differential actions on TNFR1 and TNFR2. Int. J. Mol. Sci., 2022, 23(16), 9306.
[http://dx.doi.org/10.3390/ijms23169306] [PMID: 36012570]
[57]
Kim, S.W.; Lee, J.H.; Kim, H.; Lee, S.H.; Jeong, D.; Kim, H.S.; Lee, C.J.; Kim, D.Y.; Yook, T.H.; Yang, G. Improvement effect of soyeom pharmacopuncture on gout via NLRP3 inflammasome regulation. J. Pharmacopuncture, 2022, 25(4), 396-403.
[http://dx.doi.org/10.3831/KPI.2022.25.4.396] [PMID: 36628347]
[58]
Yokose, K.; Sato, S.; Asano, T.; Yashiro, M.; Kobayashi, H.; Watanabe, H.; Suzuki, E.; Sato, C.; Kozuru, H.; Yatsuhashi, H.; Migita, K. TNF- α potentiates uric acid-induced interleukin-1 β (IL-1 β) secretion in human neutrophils. Mod. Rheumatol., 2018, 28(3), 513-517.
[http://dx.doi.org/10.1080/14397595.2017.1369924] [PMID: 28880687]
[59]
Sheng, D.; Ma, W.; Zhang, R.; Zhou, L.; Deng, Q.; Tu, J.; Chen, W.; Zhang, F.; Gao, N.; Dong, M.; Wang, D.; Li, F.; Liu, Y.; He, X.; Duan, S.; Zhang, L.; Liu, T.; Liu, S. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization. J. Immunother. Cancer, 2022, 10(5), e003793.
[http://dx.doi.org/10.1136/jitc-2021-003793] [PMID: 35613826]
[60]
Dapunt, U.; Maurer, S.; Giese, T.; Gaida, M.M.; Hänsch, G.M. The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: Linking inflammation to bone degradation. Mediators Inflamm., 2014, 2014, 728619.
[http://dx.doi.org/10.1155/2014/728619] [PMID: 24795505]
[61]
Carow, B.; Rottenberg, M.E. SOCS3, a major regulator of infection and inflammation. Front. Immunol., 2014, 5, 58.
[http://dx.doi.org/10.3389/fimmu.2014.00058] [PMID: 24600449]
[62]
Orji, O.C.; López-Domínguez, M.B.; Sandoval-Plata, G.; Guetta-Baranes, T.; Valdes, A.M.; Doherty, M.; Morgan, K.; Abhishek, A. Upregulated expression of FFAR2 and SOC3 genes is associated with gout. Rheumatology, 2023, 62(2), 977-983.
[http://dx.doi.org/10.1093/rheumatology/keac360] [PMID: 35731142]
[63]
Masjedi, A.; Hajizadeh, F.; Beigi Dargani, F.; Beyzai, B.; Aksoun, M.; Hojjat-Farsangi, M.; Zekiy, A.; Jadidi-Niaragh, F.; Oncostatin, M. Oncostatin M: A mysterious cytokine in cancers. Int. Immunopharmacol., 2021, 90, 107158.
[http://dx.doi.org/10.1016/j.intimp.2020.107158] [PMID: 33187910]
[64]
Du, Q.; Qian, Y.; Xue, W. Molecular simulation of oncostatin M and receptor (OSM–OSMR) interaction as a potential therapeutic target for inflammatory bowel disease. Front. Mol. Biosci., 2020, 7, 29.
[http://dx.doi.org/10.3389/fmolb.2020.00029] [PMID: 32195265]
[65]
Garcia, J.P.; Utomo, L.; Rudnik-Jansen, I.; Du, J.; Zuithoff, N.P.A.; Krouwels, A.; van Osch, G.J.V.M.; Creemers, L.B. Association between oncostatin M expression and inflammatory phenotype in experimental arthritis models and osteoarthritis patients. Cells, 2021, 10(3), 508.
[http://dx.doi.org/10.3390/cells10030508] [PMID: 33673583]
[66]
Hermans, D.; Houben, E.; Baeten, P.; Slaets, H.; Janssens, K.; Hoeks, C.; Hosseinkhani, B.; Duran, G.; Bormans, S.; Gowing, E.; Hoornaert, C.; Beckers, L.; Fung, W.K.; Schroten, H.; Ishikawa, H.; Fraussen, J.; Thoelen, R.; de Vries, H.E.; Kooij, G.; Zandee, S.; Prat, A.; Hellings, N.; Broux, B. Oncostatin M triggers brain inflammation by compromising blood–brain barrier integrity. Acta Neuropathol., 2022, 144(2), 259-281.
[http://dx.doi.org/10.1007/s00401-022-02445-0] [PMID: 35666306]
[67]
Zhang, L.; Li, C.; Su, X. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J. Exp. Clin. Cancer Res., 2020, 39(1), 271.
[http://dx.doi.org/10.1186/s13046-020-01784-8] [PMID: 33267888]
[68]
Long, H.; Li, Q.; Xiao, Z.; Yang, B. LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway. Bioengineered, 2021, 12(1), 3148-3158.
[http://dx.doi.org/10.1080/21655979.2021.1945362] [PMID: 34187303]
[69]
Wen, J.; Liu, J.; Jiang, H.; Wan, L.; Xin, L.; Sun, Y.; Zhang, P.; Sun, Y.; Zhang, Y.; Du, X.; Wang, X.; Wang, J. lncRNA expression profiles related to apoptosis and autophagy in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FEBS Open Bio, 2020, 10(8), 1642-1654.
[http://dx.doi.org/10.1002/2211-5463.12913] [PMID: 32569434]
[70]
Gao, L.; Xiong, D.; He, R.; Yang, X.; Lai, Z.; Liu, L.; Huang, Z.; Wu, H.; Yang, L.; Ma, J.; Li, S.; Lin, P.; Yang, H.; Luo, D.; Dang, Y.; Chen, G. MIR22HG as a tumor suppressive lncRNA In HCC: a comprehensive analysis integrating RT-qPCR, mRNA-Seq, and microarrays. OncoTargets Ther., 2019, 12, 9827-9848.
[http://dx.doi.org/10.2147/OTT.S227541] [PMID: 31819482]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy