Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Stereoselective Bioreduction of Acetophenone to (R)-1-Phenylethanol by Bacillus thuringiensis

Author(s): Farah Naz Talpur*, Shafiq Ur Rahman, Ahsanullah Unar, Adnan Ibrahim, Muhammad Raza Shah, Hassan Imran Afridi, Zafar Ali and Muhammad Sohail Bashir*

Volume 27, Issue 20, 2023

Published on: 18 October, 2023

Page: [1814 - 1820] Pages: 7

DOI: 10.2174/0113852728240964231010103534

Price: $65

conference banner
Abstract

Optically pure alcohols have a pivotal synthetic role, being key intermediates for numerous pharmaceutical agents. Therefore, the synthesis of optically pure alcohols is now becoming a foremost research field in both academia and industries. Herein, Bacillus thuringiensis has been described for the first time for the bioreduction of acetophenone to 1-phenylethanol. Five incubated bacillus species and a consortium were investigated for the reduction of acetophenone. Among them, Bacillus thuringiensis (growing cells) exhibited >99% conversion efficiency of acetophenone (40 mM). The biocatalyst produced (R)-1-phenyl ethanol with excellent stereoselection (99%) at pH 7.5 after 24 h reaction intervals. To enhance the solubility of substrate and cofactor regeneration, isopropanol (10% v/v) was found to be effective among different tested cosolvents. The biocatalyst displayed excellent stereoselectivity and provided R-enantiomer with 99% enantiomeric excess.

Graphical Abstract

[1]
Li, J.; Wang, P.; Huang, J.; Sun, J. Design and application of a novel ionic liquid with the property of strengthening coenzyme regeneration for whole-cell bioreduction in an ionic liquid-distilled water medium. Bioresour. Technol., 2015, 175, 42-50.
[http://dx.doi.org/10.1016/j.biortech.2014.10.059] [PMID: 25459802]
[2]
Mahajabeen, P.; Chadha, A. One-pot synthesis of enantiomerically pure 1, 2-diols: Asymmetric reduction of aromatic α-oxoaldehydes catalysed by Candida parapsilosis ATCC 7330. Tetrahedron Asymmetry, 2011, 22(24), 2156-2160.
[http://dx.doi.org/10.1016/j.tetasy.2011.12.008]
[3]
Yang, X.; Li, X.; Chen, P.; Liu, G. Palladium(II)-catalyzed enantioselective hydrooxygenation of unactivated terminal alkenes. J. Am. Chem. Soc., 2022, 144(18), 7972-7977.
[http://dx.doi.org/10.1021/jacs.2c02753] [PMID: 35468295]
[4]
Trader, D.J.; Carlson, E.E. Chemoselective hydroxyl group transformation: An elusive target. Mol. Biosyst., 2012, 8(10), 2484-2493.
[http://dx.doi.org/10.1039/c2mb25122a] [PMID: 22695722]
[5]
Carvalho, R.L.; Almeida, R.G.; Murali, K.; Machado, L.A.; Pedrosa, L.F.; Dolui, P.; Maiti, D.; da Silva Júnior, E.N. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: The magical step of conversion into ‘conventional’ functional groups. Org. Biomol. Chem., 2021, 19(3), 525-547.
[http://dx.doi.org/10.1039/D0OB02232B] [PMID: 33393535]
[6]
Chua, L.S.; Sarmidi, M.R. Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. J. Mol. Catal., B Enzym., 2004, 28(2-3), 111-119.
[http://dx.doi.org/10.1016/j.molcatb.2004.02.004]
[7]
Nandal, N.; Prajapati, P.K.; Abraham, B.M.; Jain, S.L. CO2 to ethanol: A selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework. Electrochim. Acta, 2022, 404, 139612.
[http://dx.doi.org/10.1016/j.electacta.2021.139612]
[8]
Simić, S.; Zukić, E.; Schmermund, L.; Faber, K.; Winkler, C.K.; Kroutil, W. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem. Rev., 2022, 122(1), 1052-1126.
[http://dx.doi.org/10.1021/acs.chemrev.1c00574] [PMID: 34846124]
[9]
Gupta, P.; Taneja, S.C.; Shah, B.A.; Mukherjee, D.; Parshad, R.; Chimni, S.S.; Qazi, G.N. An expedient chemo-enzymatic method for the synthesis of optically active masked 1,2-amino alcohols. Tetrahedron Asymmetry, 2008, 19(16), 1898-1903.
[http://dx.doi.org/10.1016/j.tetasy.2008.08.004]
[10]
Hildebrand, F.; Lütz, S. Electroenzymatic synthesis of chiral alcohols in an aqueous–organic two-phase system. Tetrahedron Asymmetry, 2007, 18(10), 1187-1193.
[http://dx.doi.org/10.1016/j.tetasy.2007.05.002]
[11]
Gupta, P.; Mahajan, N. Chemoenzymatic synthesis of pharmacologically active compounds containing chiral 1,2‐amino alcohol moiety. Chem. Bio. Potent Nat. Prod. Syn. Comp; Wiley Online Library, 2021, pp. 93-131.
[http://dx.doi.org/10.1002/9781119640929.ch4]
[12]
Li, Z.; Liu, W.; Chen, X.; Jia, S.; Wu, Q.; Zhu, D.; Ma, Y. Highly enantioselective double reduction of phenylglyoxal to (R)-1-phenyl-1,2-ethanediol by one NADPH-dependent yeast carbonyl reductase with a broad substrate profile. Tetrahedron, 2013, 69(17), 3561-3564.
[http://dx.doi.org/10.1016/j.tet.2013.02.085]
[13]
Guo, R.; Nie, Y.; Mu, X.Q.; Xu, Y.; Xiao, R. Genomic mining-based identification of novel stereospecific aldo-keto reductases toolbox from Candida parapsilosis for highly enantioselective reduction of carbonyl compounds. J. Mol. Catal., B Enzym., 2014, 105, 66-73.
[http://dx.doi.org/10.1016/j.molcatb.2014.04.003]
[14]
Dokli, I.; Brkljača, Z.; Švaco, P.; Tang, L.; Stepanić, V.; Majerić Elenkov, M. Biocatalytic approach to chiral fluoroaromatic scaffolds. Org. Biomol. Chem., 2022, 20(48), 9734-9741.
[http://dx.doi.org/10.1039/D2OB01955H] [PMID: 36440739]
[15]
de Carvalho, C.C.C.R. Whole cell biocatalysts: Essential workers from Nature to the industry. Microb. Biotechnol., 2017, 10(2), 250-263.
[http://dx.doi.org/10.1111/1751-7915.12363] [PMID: 27145540]
[16]
Zhao, Q.; Ansorge-Schumacher, M.B.; Haag, R.; Wu, C. Living whole-cell catalysis in compartmentalized emulsion. Bioresour. Technol., 2020, 295, 122221.
[http://dx.doi.org/10.1016/j.biortech.2019.122221] [PMID: 31615701]
[17]
Duncker, K.E.; Holmes, Z.A.; You, L. Engineered microbial consortia: Strategies and applications. Microb. Cell Fact., 2021, 20(1), 211.
[http://dx.doi.org/10.1186/s12934-021-01699-9] [PMID: 34784924]
[18]
Żymańczyk-Duda, E.; Głąb, A.; Górak, M.; Klimek-Ochab, M.; Brzezińska-Rodak, M.; Strub, D.; Śliżewska, A. Reductive capabilities of different cyanobacterial strains towards acetophenone as a model substrate: Prospect of applications for chiral building blocks synthesis. Bioorg. Chem., 2019, 93, 102810.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.035] [PMID: 30819508]
[19]
Bizerra, A.M.C.; Gonzalo, G.; Lavandera, I.; Gotor-Fernández, V.; de Mattos, M.C.; de Oliveira, M.C.F.; Lemos, T.L.G.; Gotor, V. Reduction processes biocatalyzed by Vigna unguiculata. Tetrahedron Asymmetry, 2010, 21(5), 566-570.
[http://dx.doi.org/10.1016/j.tetasy.2010.03.005]
[20]
Uzura, A.; Katsuragi, T.; Tani, Y. Conversion of various aromatic compounds by resting cells of Fusarium moniliforme strain MS31. J. Biosci. Bioeng., 2001, 92(4), 381-384.
[http://dx.doi.org/10.1016/S1389-1723(01)80243-7] [PMID: 16233114]
[21]
Li, A.; Ye, L.; Guo, F.; Yang, X.; Yu, H. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of a newly isolated strain Empedobacter brevis ZJUY-1401. J. Mol. Catal., B Enzym., 2015, 117, 31-37.
[http://dx.doi.org/10.1016/j.molcatb.2015.04.004]
[22]
Kansal, H.; Banerjee, U.C. Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous-organic solvent system. Bioresour. Technol., 2009, 100(3), 1041-1047.
[http://dx.doi.org/10.1016/j.biortech.2008.08.042] [PMID: 18840394]
[23]
Perna, F.M.; Ricci, M.A.; Scilimati, A.; Mena, M.C.; Pisano, I.; Palmieri, L.; Agrimi, G.; Vitale, P. Cheap and environmentally sustainable stereoselective arylketones reduction by Lactobacillus reuteri whole cells. J. Mol. Catal., B Enzym., 2016, 124, 29-37.
[http://dx.doi.org/10.1016/j.molcatb.2015.11.025]
[24]
Hummel, W. Enzyme-catalyzed synthesis of optically pure R(+)-phenylethanol. Biotechnol. Lett., 1990, 12(6), 403-408.
[http://dx.doi.org/10.1007/BF01024393]
[25]
Hummel, W. Reduction of acetophenone to R(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir. Appl. Microbiol. Biotechnol., 1990, 34(1), 15-19.
[http://dx.doi.org/10.1007/BF00170916]
[26]
Zhu, D.; Mukherjee, C.; Hua, L. ‘Green’ synthesis of important pharmaceutical building blocks: Enzymatic access to enantiomerically pure α-chloroalcohols. Tetrahedron Asymmetry, 2005, 16(19), 3275-3278.
[http://dx.doi.org/10.1016/j.tetasy.2005.08.037]
[27]
Ogawa, J.; Kodera, T.; Smirnov, S.V.; Hibi, M.; Samsonova, N.N.; Koyama, R.; Yamanaka, H.; Mano, J.; Kawashima, T.; Yokozeki, K.; Shimizu, S. A novel l-isoleucine metabolism in Bacillus thuringiensis generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid. Appl. Microbiol. Biotechnol., 2011, 89(6), 1929-1938.
[http://dx.doi.org/10.1007/s00253-010-2983-7] [PMID: 21069315]
[28]
Shin, J.S.; Kim, B.G.; Liese, A.; Wandrey, C. Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol. Bioeng., 2001, 73(3), 179-187.
[http://dx.doi.org/10.1002/bit.1050] [PMID: 11257600]
[29]
Homola, P.; Kurák, T.; Illeová, V.; Polakovič, M. Cultivation of Pichia capsulata as a whole-cell biocatalyst with NADH-dependent alcohol dehydrogenase activity for R-1-phenylethanol production. Food Bioprod. Process., 2015, 96, 126-132.
[http://dx.doi.org/10.1016/j.fbp.2015.07.007]
[30]
Voss, M.; Küng, R.; Hayashi, T.; Jonczyk, M.; Niklaus, M.; Iding, H.; Wetzl, D.; Buller, R. Multi‐faceted set‐up of a diverse ketoreductase library enables the synthesis of pharmaceutically‐relevant secondary alcohols. ChemCatChem, 2021, 13(6), 1538-1545.
[http://dx.doi.org/10.1002/cctc.202001871]
[31]
Bhurgri, S.; Talpur, F.; Nizamani, S.; Afridi, H.; Surhio, M.; Shah, M.R.; Bong, C. Isolation of Bacillus cereus from botanical soil and subsequent biodegradation of waste engine oil. Int. J. Environ. Sci. Technol., 2018, 15, 1453-1466.
[http://dx.doi.org/10.1007/s13762-017-1502-0]
[32]
Surhio, M.A.; Talpur, F.N.; Nizamani, S.M.; Amin, F.; Bong, C.W.; Lee, C.W.; Ashraf, M.A.; Shah, M.R. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Adv., 2014, 4(99), 55960-55966.
[http://dx.doi.org/10.1039/C4RA09465D]
[33]
Khaskheli, A.A.; Talpur, F.N.; Demir, A.S.; Cebeci, A.; Jawaid, S. A highly selective whole cell biocatalysis method for the production of two major bioactive conjugated linoleic acid isomers. Biocatal. Agric. Biotechnol., 2013, 2(4), 328-332.
[http://dx.doi.org/10.1016/j.bcab.2013.06.004]
[34]
Khaskheli, A.A.; Talpur, F.N.; Cebeci Aydin, A.; Jawaid, S.; Surhio, M.A.; Afridi, H.I. One-pot conjugated linoleic acid production from castor oil by Rhizopus oryzae lipase and resting cells of Lactobacillus plantarum. Biosci. Biotechnol. Biochem., 2017, 81(10), 2002-2008.
[http://dx.doi.org/10.1080/09168451.2017.1356218] [PMID: 28752804]
[35]
Ottone, C.; Romero, O.; Aburto, C.; Illanes, A.; Wilson, L. Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 595-621.
[http://dx.doi.org/10.1111/1541-4337.12538] [PMID: 33325181]
[36]
Zheng, R.C.; Ge, Z.; Qiu, Z.K.; Wang, Y.S.; Zheng, Y.G. Asymmetric synthesis of (R)-1,3-butanediol from 4-hydroxy-2-butanone by a newly isolated strain Candida krusei ZJB-09162. Appl. Microbiol. Biotechnol., 2012, 94(4), 969-976.
[http://dx.doi.org/10.1007/s00253-012-3942-2] [PMID: 22361860]
[37]
Luo, D.H.; Zong, M.H.; Xu, J.H. Biocatalytic synthesis of (−)-1-trimethylsilylethanol by asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp. AS2.2241. J. Mol. Catal., B Enzym., 2003, 24-25, 83-88.
[http://dx.doi.org/10.1016/S1381-1177(03)00114-0]
[38]
Xu, Q.; Xu, X.; Huang, H.; Li, S. Efficient synthesis of (R)-2-chloro-1-phenylethol using a yeast carbonyl reductase with broad substrate spectrum and 2-propanol as cosubstrate. Biochem. Eng. J., 2015, 103, 277-285.
[http://dx.doi.org/10.1016/j.bej.2015.08.009]
[39]
Kasprzak, J.; Bischoff, F.; Rauter, M.; Becker, K.; Baronian, K.; Bode, R.; Schauer, F.; Vorbrodt, H.M.; Kunze, G. Synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate using recombinant Rhodococcus erythropolis alcohol dehydrogenase produced by two yeast species. Biochem. Eng. J., 2016, 106, 107-117.
[http://dx.doi.org/10.1016/j.bej.2015.11.007]
[40]
Ferreira, J.G.L.; Takarada, W.H.; Orth, E.S. Waste-derived biocatalysts for pesticide degradation. J. Hazard. Mater., 2022, 427, 127885.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127885] [PMID: 34872781]
[41]
Chang, X.; Yang, Z.; Zeng, R.; Yang, G.; Yan, J. Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst. Chin. J. Chem. Eng., 2010, 18(6), 1029-1033.
[http://dx.doi.org/10.1016/S1004-9541(09)60164-6]
[42]
Meissner, M.P.; Süss, P.; Brundiek, H.; Woodley, J.M.; von Langermann, J. Scoping the enantioselective desymmetrization of a poorly water-soluble diester by recombinant pig liver esterase. Org. Process Res. Dev., 2018, 22(11), 1518-1523.
[http://dx.doi.org/10.1021/acs.oprd.8b00277]
[43]
Yang, Z.H.; Luo, L.; Chang, X.; Zhou, W.; Chen, G.H.; Zhao, Y.; Wang, Y.J. Production of chiral alcohols from prochiral ketones by microalgal photo-biocatalytic asymmetric reduction reaction. J. Ind. Microbiol. Biotechnol., 2012, 39(6), 835-841.
[http://dx.doi.org/10.1007/s10295-012-1088-y] [PMID: 22322691]
[44]
Kamble, A.L.; Soni, P.; Banerjee, U.C. Biocatalytic synthesis of S(−)-1-(1′-naphthyl) ethanol by a novel isolate of Candida viswanathii. J. Mol. Catal., B Enzym., 2005, 35(1-3), 1-6.
[http://dx.doi.org/10.1016/j.molcatb.2005.04.012]
[45]
Tantayotai, P.; Gundupalli, M.P.; Panakkal, E.J.; Sriariyanun, M.; Rattanaporn, K.; Bhattacharyya, D. Differential influence of imidazolium ionic liquid on cellulase kinetics in saccharification of cellulose and lignocellulosic biomass substrate. AppL. Sci. Eng. Prog., 2021, 15, 5510-5510.
[http://dx.doi.org/10.14416/j.asep.2021.11.003]
[46]
Yang, Z-H.; Zeng, R.; Chang, X.; Li, X-K.; Wang, G-H. Toxicity of aromatic ketone to yeast cell and improvement of the asymmetric reduction of aromatic ketone catalyzed by yeast cell with the introduction of resin adsorption. Food Technol. Biotechnol., 2008, 46, 322-327.
[47]
Li, H.; Li, Z.; Ruan, G.; Yu, Y.; Liu, X. Asymmetric reduction of acetophenone into R -(+)-1-phenylethanol by endophytic fungus Neofusicoccum parvum BYEF07 isolated from Illicium verum. Biochem. Biophys. Res. Commun., 2016, 473(4), 874-878.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.142] [PMID: 27038548]
[48]
Pinedo-Rivilla, C.; Cafêu, M.C.; Casatejada, J.A.; Araujo, Â.R.; Collado, I.G. Asymmetric microbial reduction of ketones: Absolute configuration of trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol. Tetrah. Asymm., 2009, 20(23), 2666-2672.
[http://dx.doi.org/10.1016/j.tetasy.2009.11.001]
[49]
Soni, P.; Banerjee, U.C. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158. Biotechnol. J., 2006, 1(1), 80-85.
[http://dx.doi.org/10.1002/biot.200500020] [PMID: 16892228]
[50]
Thorarensen, A.; Balbo, P.; Banker, M.E.; Czerwinski, R.M.; Kuhn, M.; Maurer, T.S.; Telliez, J.B.; Vincent, F.; Wittwer, A.J. The advantages of describing covalent inhibitor in vitro potencies by IC50 at a fixed time point. IC50 determination of covalent inhibitors provides meaningful data to medicinal chemistry for SAR optimization. Bioorg. Med. Chem., 2021, 29, 115865.
[http://dx.doi.org/10.1016/j.bmc.2020.115865] [PMID: 33285410]
[51]
Yan, Z.; Nie, Y.; Xu, Y.; Liu, X.; Xiao, R. Biocatalytic reduction of prochiral aromatic ketones to optically pure alcohols by a coupled enzyme system for cofactor regeneration. Tetrahedron Lett., 2011, 52(9), 999-1002.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.069]
[52]
Holtmann, D.; Hollmann, F. Is water the best solvent for biocatalysis? Molec. Cataly., 2022, 517, 112035.
[http://dx.doi.org/10.1016/j.mcat.2021.112035]
[53]
Lavandera, I.; Höller, B.; Kern, A.; Ellmer, U.; Glieder, A.; de Wildeman, S.; Kroutil, W. Asymmetric anti-prelog reduction of ketones catalysed by Paracoccus pantotrophus and Comamonas sp. cells via hydrogen transfer. Tetrahedron Asymmetry, 2008, 19(16), 1954-1958.
[http://dx.doi.org/10.1016/j.tetasy.2008.08.005]
[54]
Bering, L.; Thompson, J.; Micklefield, J. New reaction pathways by integrating chemo- and biocatalysis. Trends Chem., 2022, 4(5), 392-408.
[http://dx.doi.org/10.1016/j.trechm.2022.02.008]
[55]
Shen, N.D.; Ni, Y.; Ma, H.M.; Wang, L.J.; Li, C.X.; Zheng, G.W.; Zhang, J.; Xu, J.H. Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors. Org. Lett., 2012, 14(8), 1982-1985.
[http://dx.doi.org/10.1021/ol300397d] [PMID: 22480179]
[56]
Mahajabeen, P.; Chadha, A. Regio- and enantioselective reduction of diketones: preparation of enantiomerically pure hydroxy ketones catalysed by Candida parapsilosis ATCC 7330. Tetrahedron Asymmetry, 2015, 26(20), 1167-1173.
[http://dx.doi.org/10.1016/j.tetasy.2015.09.001]
[57]
Tiwari, V.K.; Kumar, A.; Rajkhowa, S.; Tripathi, G.; Singh, A.K. Green solvents: Application in organic synthesis. Green Chem; Springer, 2022, pp. 79-112.
[http://dx.doi.org/10.1007/978-981-19-2734-8_3]
[58]
Salvi, N.A.; Chattopadhyay, S. Laboratory scale-up synthesis of chiral carbinols using Rhizopus arrhizus. Tetrah. Asymm., 2016, 27(4-5), 188-192.
[http://dx.doi.org/10.1016/j.tetasy.2016.01.008]
[59]
Geedkar, D.; Kumar, A.; Sharma, P. Molecular iodine-catalyzed synthesis of imidazo[1,2-a]Pyridines: Screening of their in silico selectivity, binding affinity to biological targets, and density functional theory studies insight. ACS Omega, 2022, 7(26), 22421-22439.
[http://dx.doi.org/10.1021/acsomega.2c01570] [PMID: 35811892]
[60]
Cicco, L.; Dilauro, G.; Perna, F.M.; Vitale, P.; Capriati, V. Advances in deep eutectic solvents and water: Applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org. Biomol. Chem., 2021, 19(12), 2558-2577.
[http://dx.doi.org/10.1039/D0OB02491K] [PMID: 33471017]
[61]
Van Eygen, G.; Van der Bruggen, B.; Buekenhoudt, A.; Luis Alconero, P. Efficient membrane-based affinity separations for chemical applications: A review. Chem. Eng. Process., 2021, 169, 108613.
[http://dx.doi.org/10.1016/j.cep.2021.108613]
[62]
Xie, Y.; Xu, J.H.; Xu, Y. Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance. Bioresour. Technol., 2010, 101(3), 1054-1059.
[http://dx.doi.org/10.1016/j.biortech.2009.09.003] [PMID: 19767205]
[63]
Sodré, V.; Vilela, N.; Tramontina, R.; Squina, F.M. Microorganisms as bioabatement agents in biomass to bioproducts applications. Biomass Bioenergy, 2021, 151, 106161.
[http://dx.doi.org/10.1016/j.biombioe.2021.106161]
[64]
Nealon, C.M.; Welsh, T.P.; Kim, C.S.; Phillips, R.S. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones. Arch. Biochem. Biophys., 2016, 606, 151-156.
[http://dx.doi.org/10.1016/j.abb.2016.08.002] [PMID: 27495738]
[65]
Ni, Y.; Xu, J.H. Asymmetric reduction of aryl ketones with a new isolate Rhodotorula sp. AS2.2241. J. Mol. Catal., B Enzym., 2002, 18(4-6), 233-241.
[http://dx.doi.org/10.1016/S1381-1177(02)00101-7]
[66]
Haq, S.F.; Shanbhag, A.P.; Karthikeyan, S.; Hassan, I.; Thanukrishnan, K.; Ashok, A.; Sukumaran, S.; Ramaswamy, S.; Bharatham, N.; Datta, S. A strategy to identify a ketoreductase that preferentially synthesizes pharmaceutically relevant (S)-alcohols using whole-cell biotransformation. Microb. Cell Fact., 2018, 17, 192.
[http://dx.doi.org/10.1186/s12934-018-1036-2]
[67]
Çelik, A.; Aktaş, F. A new NADH-dependent, zinc containing alcohol dehydrogenase from Bacillus thuringiensis serovar israelensis involved in oxidations of short to medium chain primary alcohols. J. Mol. Catal., B Enzym., 2013, 89, 114-121.
[http://dx.doi.org/10.1016/j.molcatb.2013.01.005]
[68]
Jiang, Y.; Qu, G.; Sheng, X.; Tong, F.; Sun, Z. Unraveling the mechanism of enantio-controlling switches of an alcohol dehydrogenase toward sterically small ketone. Catal. Sci. Technol., 2022, 12(6), 1777-1787.
[http://dx.doi.org/10.1039/D2CY00031H]
[69]
Pollard, D.J.; Telari, K.; Lane, J.; Humphrey, G.; McWilliams, C.; Nidositko, S.; Salmon, P.; Moore, J. Asymmetric reduction of α, β-unsaturated ketone to (R) allylic alcohol by Candida chilensis. Biotechnol. Bioeng., 2006, 93(4), 674-686.
[http://dx.doi.org/10.1002/bit.20751] [PMID: 16395718]
[70]
Talpur, F.N.; Unar, A.; Bhatti, S.K.; Alsawalha, L.; Fouad, D.; Bashir, H.; Afridi, H.I.; Ataya, F.S.; Jefri, O.A.; Bashir, M.S. Bioremediation of neonicotinoid pesticide, imidacloprid, mediated by Bacillus cereus. Bioengineering., 2023, 10(8), 951.
[http://dx.doi.org/10.3390/bioengineering10080951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy