Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Design, Synthesis, Molecular Docking and Cytotoxicity of Stilbene-arylcinnamide Hybrids on A549 Lung Cancer Cells

Author(s): Nurain Syazwani Mohd. Zaki, Nik Nur Syazni Nik Mohamad Kamal, Unang Supratman, Desi Harneti, Mohd. Zaheen Hassan and Mohamad Nurul Azmi Mohamad Taib*

Volume 27, Issue 16, 2023

Published on: 18 October, 2023

Page: [1458 - 1470] Pages: 13

DOI: 10.2174/0113852728267280231010065610

Price: $65

Abstract

A new series of stilbene-arylcinnamide hybrids have been designed and synthesized with various substituents. These compounds were characterized by FTIR, 1D- and 2D-NMR as well as mass spectroscopy analysis (HRESIMS). The synthesized compounds were tested for their cytotoxic activity against human lung cancer A549 cell. The most active compound was further studied via in silico molecular docking on α,β- interface of tubulin. Total 18 new stilbene-arylcinnamide hybrids have been synthesized with 42-80% yield and evaluated for their cytotoxic activity against human lung cancer A549 cell. Particularly, compound 6b exhibited potent cytotoxicity against A549 cells with the IC50 value of 19.9 μM. In addition, compound 7b displayed moderate activities with the IC50 value of 33.9 μM, while other hybrids were considered inactive. Structural activity relationship (SAR) studies revealed that the presence of an isopropyl group at the para position on ring A and a methyl group at the para position on ring C is beneficial for enhanced cytotoxicity. Furthermore, we also developed an in silico molecular docking to study the binding interaction of the active compounds to the α,β-interface of tubulin (PDB ID: 3E22). Hybrids 6b and 7b demonstrated promising binding interactions and affinities into the tubulin active site with calculated binding energy of -7.2 and -8.0 kcal/mol, respectively.

« Previous
Graphical Abstract

[1]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anticancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[2]
Huang, X.; Chen, Y.; Zhong, W.; Liu, Z.; Zhang, H.; Zhang, B.; Wang, H. Novel combretastatin A-4 derivative containing aminophosphonates as dual inhibitors of tubulin and matrix metalloproteinases for lung cancer treatment. Eur. J. Med. Chem., 2022, 244, 114817.
[http://dx.doi.org/10.1016/j.ejmech.2022.114817] [PMID: 36252396]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Verstappen, C.C.P.; Heimans, J.J.; Hoekman, K.; Postma, T.J. Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management. Drugs, 2003, 63(15), 1549-1563.
[http://dx.doi.org/10.2165/00003495-200363150-00003] [PMID: 12887262]
[5]
Devarajan, N.; Jayaraman, S.; Mahendra, J.; Venkatratnam, P.; Rajagopal, P.; Palaniappan, H.; Ganesan, S.K. Berberine: A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother. Res., 2021, 35(6), 3059-3077.
[http://dx.doi.org/10.1002/ptr.7032] [PMID: 33559280]
[6]
Marjani, N.; Dareini, M.; Asadzade-Lotfabad, M.; Pejhan, M.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Evaluation of the binding effect and cytotoxicity assay of 2‐Ethyl‐5‐(4‐methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics ap-proaches. Luminescence, 2022, 37(2), 310-322.
[http://dx.doi.org/10.1002/bio.4173] [PMID: 34862709]
[7]
Zare-Feizabadi, N.; Amiri-Tehranizadeh, Z.; Sharifi-Rad, A.; Mokaberi, P.; Nosrati, N.; Hashemzadeh, F.; Rahimi, H.R.; Saberi, M.R.; Chamani, J. Determining the interaction behavior of calf thymus DNA with anastrozole in the presence of histone H1: Spectroscopies and cell viability of MCF-7 cell line investigations. DNA Cell Biol., 2021, 40(8), 1039-1051.
[http://dx.doi.org/10.1089/dna.2021.0052] [PMID: 34165362]
[8]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[9]
Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. Neoplasm, 2018, 1, 139-157.
[10]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9(12), 767-776.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[11]
Song, H.; Liu, D.; Dong, S.; Zeng, L.; Wu, Z.; Zhao, P.; Zhang, L.; Chen, Z.S.; Zou, C. Epitranscriptomics and epiproteomics in cancer drug resistance: Therapeutic implications. Signal Transduct. Target. Ther., 2020, 5(1), 193.
[http://dx.doi.org/10.1038/s41392-020-00300-w] [PMID: 32900991]
[12]
Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Reza Saberi, M.; Chamani, J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J. Mol. Liq., 2022, 356, 119042.
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[13]
Hashmi, M.A.; Khan, A.; Farooq, U.; Khan, S. Alkaloids as cyclooxygenase inhibitors in anticancer drug discovery. Curr. Protein Pept. Sci., 2018, 19(3), 292-301.
[PMID: 28059042]
[14]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or poly-phenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(12), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[15]
Hu, Q.; Li, L.; Zou, X.; Xu, L.; Yi, P. Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4α/WNT5A pathway in gastric carcinoma. Front. Pharmacol., 2018, 9, 1150.
[http://dx.doi.org/10.3389/fphar.2018.01150] [PMID: 30405404]
[16]
Sarkar, F.H.; Li, Y.; Wang, Z.; Kong, D. Cellular signaling perturbation by natural products. Cell. Signal., 2009, 21(11), 1541-1547.
[http://dx.doi.org/10.1016/j.cellsig.2009.03.009] [PMID: 19298854]
[17]
Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr., 2020, 1(2), 9.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[18]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[19]
Mulakayala, C.; Babajan, B.; Madhusudana, P.; Anuradha, C.M.; Rao, R.M.; Nune, R.P.; Manna, S.K.; Mulakayala, N.; Kumar, C.S. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J. Mol. Graph. Model., 2013, 41, 43-54.
[http://dx.doi.org/10.1016/j.jmgm.2013.01.005] [PMID: 23500626]
[20]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268.
[PMID: 19908231]
[21]
Yang, L.; Qin, X.; Liu, H.; Wei, Y.; Zhu, H.; Jiang, M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. R. Soc. Open Sci., 2019, 6(9), 190125-190137.
[http://dx.doi.org/10.1098/rsos.190125] [PMID: 31598278]
[22]
Hong, T.; Jiang, W.; Dong, H.M.; Qiu, S.X.; Lu, Y. Synthesis and cytotoxic activities of E-resveratrol derivatives. Chin. J. Nat. Med., 2015, 13(5), 375-382.
[http://dx.doi.org/10.1016/S1875-5364(15)30029-7] [PMID: 25986287]
[23]
Feng, Y.; Clayton, J.; Yake, W.; Li, J.; Wang, W.; Winne, L.; Hong, M. Resveratrol derivative, trans-3,5,4-trimethoxystilbene sensitizes osteosarcoma cells to apoptosis via ROS-induced caspases activation. Oxid. Med. Cell. Longev., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/8840692] [PMID: 33833855]
[24]
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci., 2020, 21(16), 5712-5746.
[http://dx.doi.org/10.3390/ijms21165712] [PMID: 32784935]
[25]
Hu, Y.; Zhang, C.; Zou, L.; Zheng, Z.; Ouyang, J. Efficient biosynthesis of pinosylvin from lignin-derived cinnamic acid by metabolic engineering of Escherichia coli. Biotechnol. Biofuels Bioproducts, 2022, 15(1), 136-148.
[http://dx.doi.org/10.1186/s13068-022-02236-5] [PMID: 36503554]
[26]
Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Ferrarese, M.L.L.; Ferrarese-Filho, O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS One, 2013, 8(7), e69105-e69115.
[http://dx.doi.org/10.1371/journal.pone.0069105] [PMID: 23922685]
[27]
Chandra, S.; Roy, A.; Jana, M.; Pahan, K. Cinnamic acid activates PPARα to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol. Dis., 2019, 124, 379-395.
[http://dx.doi.org/10.1016/j.nbd.2018.12.007] [PMID: 30578827]
[28]
Nair, A.; Preetha Rani, M.R.; Salin Raj, P.; Ranjit, S.; Rajankutty, K.; Raghu, K.G. Cinnamic acid is beneficial to diabetic cardiomyopathy via its cardioprotective, anti‐inflammatory, anti‐dyslipidemia, and antidiabetic properties. J. Biochem. Mol. Toxicol., 2022, 36(12), e23215.
[http://dx.doi.org/10.1002/jbt.23215] [PMID: 36117386]
[29]
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents: A review. Curr. Med. Chem., 2011, 18(11), 1672-1703.
[http://dx.doi.org/10.2174/092986711795471347] [PMID: 21434850]
[30]
Zolfaghari, B.; Yazdiniapour, Z.; Sadeghi, M.; Akbari, M.; Troiano, R.; Lanzotti, V. Cinnamic acid derivatives from welsh onion (ALLIUM FISTULOSUM) and their antibacterial and cytotoxic activities. Phytochem. Anal., 2021, 32(1), 84-90.
[http://dx.doi.org/10.1002/pca.2924] [PMID: 32023359]
[31]
Rychlicka, M.; Rot, A.; Gliszczyńska, A. Biological properties, health benefits and enzymatic modifications of dietary methoxylated derivatives of cinnamic acid. Foods, 2021, 10(6), 1417-1430.
[http://dx.doi.org/10.3390/foods10061417] [PMID: 34207377]
[32]
Shi, H.; Xie, D.; Yang, R.; Cheng, Y. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. J. Agric. Food Chem., 2014, 62(22), 5046-5053.
[http://dx.doi.org/10.1021/jf500464k] [PMID: 24840770]
[33]
Pfenning, C.; Esch, H.L.; Fliege, R.; Lehmann, L. The mycotoxin patulin reacts with DNA bases with and without previous conjugation to GSH: Implication for related α,β-unsaturated carbonyl compounds? Arch. Toxicol., 2016, 90(2), 433-448.
[http://dx.doi.org/10.1007/s00204-014-1443-z] [PMID: 25537190]
[34]
Lan, J.S.; Hou, J.W.; Liu, Y.; Ding, Y.; Zhang, Y.; Li, L.; Zhang, T. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 776-788.
[http://dx.doi.org/10.1080/14756366.2016.1256883] [PMID: 28585866]
[35]
Kaur, P.; Grewal, A.S.; Pandita, D.; Lather, V. Novel cinnamic acid derivatives as potential anticancer agents: synthesis, in vitro cytotoxicity and molecular docking studies. Biointerface Res. Appl. Chem., 2023, 13(2), 150-161.
[36]
Kumari, G.S.; Siva, B.; Reddy, S.D.; Nayak, V.L.; Tiwari, A.K.; Rao, B.G.; Babu, K.S. Synthesis and biological evaluation of 1,2,3-triazole hybrids of 4-methoxy ethyl cinnamate isolated from Hedychium spicatum (Sm) rhizomes: Identification of antiproliferative lead actives against prostate cancer. Nat. Prod. Res., 2023, 37(2), 289-295.
[http://dx.doi.org/10.1080/14786419.2021.1969928] [PMID: 34579616]
[37]
Hu, S.; Yang, X.; Xue, J.; Chen, X.; Bai, X.; Yu, Z. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines. J. Sep. Sci., 2017, 40(14), 2959-2966.
[http://dx.doi.org/10.1002/jssc.201700169] [PMID: 28513989]
[38]
Mancilla-Montelongo, G.; Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Borges-Argáez, R. Evaluation of cinnamic acid and six analogues against eggs and larvae of Haemonchus contortus. Vet. Parasitol., 2019, 270, 25-30.
[http://dx.doi.org/10.1016/j.vetpar.2019.05.009] [PMID: 31213238]
[39]
Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm, 2019, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[40]
Endo, S.; Hoshi, M.; Matsunaga, T.; Inoue, T.; Ichihara, K.; Ikari, A. Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochem. Biophys. Res. Commun., 2018, 497(1), 437-443.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.105] [PMID: 29452093]
[41]
Luo, Y.; Zhou, Y.; Song, Y.; Chen, G.; Wang, Y.X.; Tian, Y.; Fan, W.W.; Yang, Y.S.; Cheng, T.; Zhu, H.L. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3634-3638.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.037] [PMID: 30389289]
[42]
Sharma, S.; Rajasagi, N.K.; Veiga-Parga, T.; Rouse, B.T. Herpes virus entry mediator (HVEM) modulates proliferation and activation of regulatory T cells following HSV-1 infection. Microbes Infect., 2014, 16(8), 648-660.
[http://dx.doi.org/10.1016/j.micinf.2014.06.005] [PMID: 24956596]
[43]
Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol., 2014, 4, 153-172.
[http://dx.doi.org/10.3389/fonc.2014.00153] [PMID: 24995158]
[44]
Jordan, A.; Hadfield, J.A.; Lawrence, N.J.; McGown, A.T. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med. Res. Rev., 1998, 18(4), 259-296.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199807)18:4<259:AID-MED3>3.0.CO;2-U] [PMID: 9664292]
[45]
McNamara, D.E.; Senese, S.; Yeates, T.O.; Torres, J.Z. Structures of potent anticancer compounds bound to tubulin. Prot. Sci. A Publ. Prot. Soc., 2015, 24(7), 1164-1172.
[46]
Sharma, N.; Mohanakrishnan, D.; Shard, A.; Sharma, A.; Saima, S.A.K.; Sahal, D. Stilbene-chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J. Med. Chem., 2012, 55(1), 297-311.
[http://dx.doi.org/10.1021/jm201216y] [PMID: 22098429]
[47]
Micale, N.; Molonia, M.S.; Citarella, A.; Cimino, F.; Saija, A.; Cristani, M.; Speciale, A. Natural product-based hybrids as potential candidates for the treatment of cancer: Focus on curcumin and resveratrol. Molecules, 2021, 26(15), 4665-4699.
[http://dx.doi.org/10.3390/molecules26154665] [PMID: 34361819]
[48]
Yin, Y.; Lian, B.P.; Xia, Y.Z.; Shao, Y.Y.; Kong, L.Y. Design, synthesis and biological evaluation of resveratrol-cinnamoyl derivates as tubulin polymerization inhibitors targeting the colchicine binding site. Bioorg. Chem., 2019, 93, 103319.
[http://dx.doi.org/10.1016/j.bioorg.2019.103319] [PMID: 31585270]
[49]
Kamal, A.; Bajee, S.; Lakshma Nayak, V.; Venkata Subba Rao, A.; Nagaraju, B.; Ratna Reddy, C.; Jeevak Sopanrao, K.; Alarifi, A. Synthesis and biological evaluation of arylcinnamide linked combretastatin-A4 hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2957-2964.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.049] [PMID: 27161282]
[50]
Ceramella, J.; Chimento, A.; Iacopetta, D.; De Luca, A.; Coronel Vargas, G.; Rosano, C.; Pezzi, V.; Saturnino, C.; Sinicropi, M.S. A resveratrol phenylacetamide derivative perturbs the cytoskeleton dynamics interfering with the migration potential in breast cancer. Appl. Sci., 2022, 12(13), 6531.
[http://dx.doi.org/10.3390/app12136531]
[51]
de Freitas Silva, M.; Coelho, L.F.; Guirelli, I.M.; Pereira, R.M.; Ferreira-Silva, G.Á.; Graravelli, G.Y.; Horvath, R.O.; Caixeta, E.S.; Ionta, M.; Viegas, C. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells. Toxicol. In Vitro, 2018, 50, 75-85.
[http://dx.doi.org/10.1016/j.tiv.2018.02.020] [PMID: 29501629]
[52]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nano-crystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (in vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[53]
Assaran Darban, R.; Shareghi, B.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. J. Biomol. Struct. Dyn., 2017, 35(16), 3648-3662.
[http://dx.doi.org/10.1080/07391102.2016.1264892] [PMID: 27897084]
[54]
Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules, 2009, 14(8), 3037-3072.
[http://dx.doi.org/10.3390/molecules14083037] [PMID: 19701144]
[55]
Badisa, R.B.; Mina, D.A.; Latinwo, L.M.; Soliman, K.F. Selective anticancer activity of neurotoxin 1-methyl-4-phenylpyridinium on non-small cell lung adenocarcinoma A549 cells. Anticancer Res., 2014, 34(10), 5447-5452.
[PMID: 25275040]
[56]
Li, X.; Wang, D.; Zhao, Q.C.; Shi, T.; Chen, J. Resveratrol inhibited non-small cell lung cancer through inhibiting STAT-3 signaling. Am. J. Med. Sci., 2016, 352(5), 524-530.
[http://dx.doi.org/10.1016/j.amjms.2016.08.027] [PMID: 27865301]
[57]
Narva, S.; Chitti, S.; Amaroju, S.; Bhattacharjee, D.; Rao, B.B.; Jain, N.; Alvala, M.; Sekhar, K.V.G.C. Design and synthesis of 4-morpholino-6-(1,2,3,6-tetrahydropyridin-4-yl)-N-(3,4,5-trimethoxyphenyl)-1,3,5-triazin-2-amine analogues as tubulin polymerization inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(16), 3794-3801.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.060] [PMID: 28684120]
[58]
Ulasli, S.S.; Celik, S.; Gunay, E.; Ozdemir, M.; Hazman, O.; Ozyurek, A.; Koyuncu, T.; Unlu, M. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac. J. Cancer Prev., 2013, 14(10), 6159-6164.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.6159] [PMID: 24289642]
[59]
Zhao, Y.; Guo, C.; Wang, L.; Wang, S.; Li, X.; Jiang, B.; Wu, N.; Guo, S.; Zhang, R.; Liu, K.; Shi, D. A novel fluorinated thiosemicarbazone derivative- 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway. Biochem. Biophys. Res. Commun., 2017, 491(1), 65-71.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.042] [PMID: 28698138]
[60]
Konkoľová, E.; Hudáčová, M.; Hamuľaková, S.; Jendželovský, R.; Vargová, J.; Ševc, J.; Fedoročko, P.; Kožurková, M. Tacrine-coumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines. Molecules, 2021, 26(4), 1133.
[http://dx.doi.org/10.3390/molecules26041133] [PMID: 33672694]
[61]
Shan, Y.; Hong, T.; Wang, Y.F.; Zhang, N.L.; Yu, B.; Lu, Y.; Qiu, S.X. Synthesis and cytotoxicity of longistylin C derivatives. Chin. J. Nat. Med., 2015, 13(4), 311-315.
[http://dx.doi.org/10.1016/S1875-5364(15)30021-2] [PMID: 25908631]
[62]
Da Violante, G.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull., 2002, 25(12), 1600-1603.
[http://dx.doi.org/10.1248/bpb.25.1600] [PMID: 12499647]
[63]
Cronin, M. T. Quantitative structure-activity relationships (QSARs): Applications and methodology. Rec. Adv. QSAR Stud. Meth. Appl., 2010, 3(11)
[64]
Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.K.; Lin, C.M.; Hamel, E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J. Med. Chem., 1991, 34(8), 2579-2588.
[http://dx.doi.org/10.1021/jm00112a036] [PMID: 1875350]
[65]
Martello, L.A.; Verdier-Pinard, P.; Shen, H.J.; He, L.; Torres, K.; Orr, G.A.; Horwitz, S.B. Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res., 2003, 63(6), 1207-1213.
[PMID: 12649178]
[66]
Azmi, M.; Din, M.; Kee, C.; Suhaimi, M.; Ping, A.; Ahmad, K.; Nafiah, M.; Thomas, N.; Mohamad, K.; Hoong, L.; Awang, K. Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 2013, 14(12), 23369-23389.
[http://dx.doi.org/10.3390/ijms141223369] [PMID: 24287912]
[67]
Manikandan, R.; Jeganmohan, M. Ruthenium-catalyzed hydroarylation of anilides with alkynes: An efficient route to ortho-alkenylated anilines. Org. Lett., 2014, 16(3), 912-915.
[http://dx.doi.org/10.1021/ol403666s] [PMID: 24437701]
[68]
Kim, B.R.; Park, J.Y.; Jeong, H.J.; Kwon, H.J.; Park, S.J.; Lee, I.C.; Ryu, Y.B.; Lee, W.S. Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1256-1265.
[http://dx.doi.org/10.1080/14756366.2018.1488695] [PMID: 30126306]
[69]
Chen, Y.B.; Li, J.L.; Shao, X.S.; Xu, X.Y.; Li, Z. Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold. Chin. Chem. Lett., 2013, 24(8), 673-676.
[http://dx.doi.org/10.1016/j.cclet.2013.04.047]
[70]
Cormier, A.; Marchand, M.; Ravelli, R.B.G.; Knossow, M.; Gigant, B. Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep., 2008, 9(11), 1101-1106.
[http://dx.doi.org/10.1038/embor.2008.171] [PMID: 18787557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy