Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Achievement in the Synthesis of Imidazoles

Author(s): Tran Trung Hieu, Vo Cong Dung, Nguyen Thi Chung and Dau Xuan Duc*

Volume 27, Issue 16, 2023

Published on: 18 October, 2023

Page: [1398 - 1446] Pages: 49

DOI: 10.2174/0113852728259414231010050749

Price: $65

Abstract

Imidazole derivatives, which belong to 1,3-diazole family, have two nitrogen atoms at 1 and 3 positions in the aromatic ring. Imidazole derivatives diversely appear both in nature and synthetic sources. Some natural imidazoles play important roles in human life such as histidine, histamine and biotin. Imidazole-based compounds possess a wide range of bioactivities such as those including antimicrobial, anticancer, antiparasitic, antihypertensive, antineuropathic and anti-inflammatory activities. Many compounds with imidazole skeleton have been marketed as drugs in the market. The synthesis of imidazole derivatives has drawn great attention of chemists and numerous articles on the synthesis of this class of heterocyclic compound have been reported over the years. In this article, we will give a comprehensive review on the synthesis of imidazoles which date back to 2013. In this articles, 182 studies on the synthesis of imidazoles are summerized. The Debus–Radziszewski imidazole synthesis have still recceived great attention of chemists and many articles have been published recently. Besides, a huge number of novel methods have also developed. We have also tried to describe reaction mechanisms as much as we can. The work might be useful for chemists who are involved in the synthesis of heterocycles or drug chemistry.

Graphical Abstract

[1]
Husain, A.; Drabu, S.; Kumar, N.; Alam, M.M.; Bawa, S. Synthesis and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents. J. Pharm. Bioallied Sci., 2013, 5(2), 154-161.
[http://dx.doi.org/10.4103/0975-7406.111822] [PMID: 23833522]
[2]
Emami, S.; Kazemi-Najafabadi, M.; Pashangzadeh, S.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N.; Falahati, M.; Fateh, R.; Ashrafi-Khozani, M. Synthesis and antifungal activity of 1-[(2-benzyloxy)phenyl]-2-(azol-1-yl)ethanone derivatives: Exploring the scaffold flexibility. Chem. Biol. Drug Des., 2011, 78(6), 979-987.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01243.x] [PMID: 21920030]
[3]
Ramachandran, R.; Rani, M.; Senthan, S.; Jeong, Y.T.; Kabilan, S. Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives. Eur. J. Med. Chem., 2011, 46(5), 1926-1934.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.036] [PMID: 21397368]
[4]
Parameshwar, R.; Ranganath, Y.S.; Babu, V.H.; Sandeep, G. Synthesis and antifungal screening of some novel coumarin linked imidazole derivatives. Res. J. Pharm. Biol. Chem. Sci., 2011, 2, 514-520.
[5]
Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[6]
Padmavathi, V. Prema kumari, C.; Venkatesh, B.C.; Padmaja, A. Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur. J. Med. Chem., 2011, 46(11), 5317-5326.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.032] [PMID: 21906854]
[7]
Narasimhan, B.; Sharma, D.; Kumar, P.; Yogeeswari, P.; Sriram, D. Synthesis, antimicrobial and antimycobacterial evaluation of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 720-727.
[http://dx.doi.org/10.3109/14756366.2010.548331] [PMID: 21250824]
[8]
Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2009, 44(10), 4199-4210.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.015] [PMID: 19535178]
[9]
Chen, J.; Li, C.M.; Wang, J.; Ahn, S.; Wang, Z.; Lu, Y.; Dalton, J.T.; Miller, D.D.; Li, W. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Bioorg. Med. Chem., 2011, 19(16), 4782-4795.
[http://dx.doi.org/10.1016/j.bmc.2011.06.084] [PMID: 21775150]
[10]
Gomaa, M.S.; Bridgens, C.E.; Aboraia, A.S.; Veal, G.J.; Redfern, C.P.F.; Brancale, A.; Armstrong, J.L.; Simons, C. Small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26): Synthesis and biological evaluation of imidazole methyl 3-(4-(aryl-2-ylamino)phenyl)propanoates. J. Med. Chem., 2011, 54(8), 2778-2791.
[http://dx.doi.org/10.1021/jm101583w] [PMID: 21428449]
[11]
Gobbi, S.; Zimmer, C.; Belluti, F.; Rampa, A.; Hartmann, R.W.; Recanatini, M.; Bisi, A. Novel highly potent and selective nonsteroidal aromatase inhibitors: Synthesis, biological evaluation and structure-activity relationships investigation. J. Med. Chem., 2010, 53(14), 5347-5351.
[http://dx.doi.org/10.1021/jm100319h] [PMID: 20568782]
[12]
Kim, D.K.; Lee, Y.I.; Lee, Y.W.; Dewang, P.M.; Sheen, Y.Y.; Kim, Y.W.; Park, H.J.; Yoo, J.; Lee, H.S.; Kim, Y.K. Synthesis and biological evaluation of 4(5)-(6-methylpyridin-2-yl)imidazoles and pyrazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorg. Med. Chem., 2010, 18(12), 4459-4467.
[http://dx.doi.org/10.1016/j.bmc.2010.04.071] [PMID: 20472445]
[13]
Santos, R.C.; Salvador, J.A.R.; Marín, S.; Cascante, M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg. Med. Chem., 2009, 17(17), 6241-6250.
[http://dx.doi.org/10.1016/j.bmc.2009.07.050] [PMID: 19674909]
[14]
Hernández-Núñez, E.; Tlahuext, H.; Moo-Puc, R.; Torres-Gómez, H.; Reyes-Martínez, R.; Cedillo-Rivera, R.; Nava-Zuazo, C.; Navarrete-Vazquez, G. Synthesis and in vitro trichomonicidal, giardicidal and amebicidal activity of N-acetamide(sulfonamide)-2-methyl-4-nitro-1H-imidazoles. Eur. J. Med. Chem., 2009, 44(7), 2975-2984.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.005] [PMID: 19208443]
[15]
Kumar, L.; Sarswat, A.; Lal, N.; Jain, A.; Kumar, S.; Kiran Kumar, S.T.V.S.; Maikhuri, J.P.; Pandey, A.K.; Shukla, P.K.; Gupta, G.; Sharma, V.L. Design and synthesis of 3-(azol-1-yl)phenylpropanes as microbicidal spermicides for prophylactic contraception. Bioorg. Med. Chem. Lett., 2011, 21(1), 176-181.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.042] [PMID: 21130651]
[16]
Marrapu, V.K.; Srinivas, N.; Mittal, M.; Shakya, N.; Gupta, S.; Bhandari, K. Design and synthesis of novel tetrahydronaphthyl azoles and related cyclohexyl azoles as antileishmanial agents. Bioorg. Med. Chem. Lett., 2011, 21(5), 1407-1410.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.026] [PMID: 21295472]
[17]
Srinivas, N.; Palne, S. Nishi; Gupta, S.; Bhandari, K. Aryloxy cyclohexyl imidazoles: A novel class of antileishmanial agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 324-327.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.094]
[18]
Liesen, A.P.; de Aquino, T.M.; Carvalho, C.S.; Lima, V.T.; de Araújo, J.M.; de Lima, J.G.; de Faria, A.R.; de Melo, E.J.T.; Alves, A.J.; Alves, E.W.; Alves, A.Q.; Góes, A.J.S. Synthesis and evaluation of anti-toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(9), 3685-3691.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.017] [PMID: 20541294]
[19]
Agelis, G.; Roumelioti, P.; Resvani, A.; Durdagi, S.; Androutsou, M.E.; Kelaidonis, K.; Vlahakos, D.; Mavromoustakos, T.; Matsoukas, J. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT1 Angiotensin II receptor antagonist: Reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies. J. Comput. Aided Mol. Des., 2010, 24(9), 749-758.
[http://dx.doi.org/10.1007/s10822-010-9371-3] [PMID: 20623162]
[20]
García, G.; Serrano, I.; Sánchez-Alonso, P.; Rodríguez-Puyol, M.; Alajarín, R.; Griera, M.; Vaquero, J.J.; Rodríguez-Puyol, D.; Álvarez-Builla, J.; Díez-Marqués, M.L. New losartan-hydrocaffeic acid hybrids as antihypertensive-antioxidant dual drugs: Ester, amide and amine linkers. Eur. J. Med. Chem., 2012, 50, 90-101.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.043] [PMID: 22336384]
[21]
Iman, M.; Davood, A.; Nematollahi, A.R.; Dehpoor, A.R.; Shafiee, A. Design and synthesis of new 1,4-dihydropyridines containing 4(5)-chloro-5(4)-imidazolyl substituent as a novel calcium channel blocker. Arch. Pharm. Res., 2011, 34(9), 1417-1426.
[http://dx.doi.org/10.1007/s12272-011-0902-9] [PMID: 21975802]
[22]
Ahangar, N.; Ayati, A.; Alipour, E.; Pashapour, A.; Foroumadi, A.; Emami, S. 1-[(2-arylthiazol-4-yl)methyl]azoles as a new class of anticonvulsants: Design, synthesis, in vivo screening, and in silico drug-like properties. Chem. Biol. Drug Des., 2011, 78(5), 844-852.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01211.x] [PMID: 21827633]
[23]
Areias, F.; Costa, M.; Castro, M.; Brea, J.; Gregori-Puigjané, E.; Proença, M.F.; Mestres, J.; Loza, M.I. New chromene scaffolds for adenosine A2A receptors: Synthesis, pharmacology and structure-activity relationships. Eur. J. Med. Chem., 2012, 54, 303-310.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.009] [PMID: 22677030]
[24]
Sugimoto, Y.; Kobayashi, K.; Asai, M.; Ohno, A.; Yamada, K.; Ozaki, S.; Ohta, H.; Okamoto, O. Synthesis and biological evaluation of imidazole derivatives as novel NOP/ORL1 receptor antagonists: Exploration and optimization of alternative pyrazole structure. Bioorg. Med. Chem. Lett., 2009, 19(16), 4611-4616.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.095] [PMID: 19604695]
[25]
Shankar, B.; Jalapathi, P.; Valeru, A.; Kishor Kumar, A.; Saikrishna, B.; Kudle, K. Synthesis and biological evaluation of new 2-(6-alkyl-pyrazin-2-yl)-1H-benz[d]imidazoles as potent anti-inflammatory and antioxidant agents. Med. Chem. Res., 2017, 26(9), 1835-1846.
[http://dx.doi.org/10.1007/s00044-017-1897-7]
[26]
Shantharam, C.; Swaroopa, M. Synthesis and SAR studies of potent antioxidant and anti-inflammatory activities of imidazole Derived Schiff base analogues. Biochem. Anal. Biochem., 2017, 06(2), 314-320.
[27]
Moutevelis-Minakakis, P.; Papavassilopoulou, E.; Michas, G.; Georgikopoulou, K.; Ragoussi, M.E.; Neophytou, N.; Zoumpoulakis, P.; Mavromoustakos, T.; Hadjipavlou-Litina, D. Synthesis, in silico docking experiments of new 2-pyrrolidinone derivatives and study of their anti-inflammatory activity. Bioorg. Med. Chem., 2011, 19(9), 2888-2902.
[http://dx.doi.org/10.1016/j.bmc.2011.03.044] [PMID: 21507662]
[28]
Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther., 2021, 15, 3289-3312.
[http://dx.doi.org/10.2147/DDDT.S307113] [PMID: 34354342]
[29]
Verma, A.; Joshi, S.; Singh, D. Imidazole: Having versatile biological activities. J. Chem., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/329412]
[30]
Gujjarappa, R.; Kabi, A.K.; Sravani, S.; Garg, A.; Vodnala, N.; Tyagi, U.; Kaldhi, D.; Velayutham, R.; Singh, V.; Gupta, S.; Malakar, C.C. Overview on biological activities of imidazole derivatives. In: Nanostructured Biomaterials. Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022; pp. 135-227.
[http://dx.doi.org/10.1007/978-981-16-8399-2_6]
[31]
Sahiba, N.; Teli, P.; Agarwal, D.K.; Agarwal, S. Miscellaneous biological activity profile of imidazole-based compounds: An aspirational goal for medicinal chemistry. In: Imidazole-Based Drug Discovery; Elsevier, 2021; pp. 291-322.
[http://dx.doi.org/10.1016/B978-0-323-85479-5.00008-3]
[32]
Renno, G.; Cardano, F.; Volpi, G.; Barolo, C.; Viscardi, G.; Fin, A. Imidazo[1,5-a]pyridine-based fluorescent probes: A photophysical investigation in liposome models. Molecules, 2022, 27(12), 3856.
[http://dx.doi.org/10.3390/molecules27123856] [PMID: 35744979]
[33]
Vanda, D.; Zajdel, P.; Soural, M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur. J. Med. Chem., 2019, 181, 111569.
[http://dx.doi.org/10.1016/j.ejmech.2019.111569] [PMID: 31404862]
[34]
Chitrakar, R.; Rawat, D.; Sistla, R.; Vadithe, L.N.; Subbarayappa, A. Design, synthesis and anticancer activity of sulfenylated imidazo-fused heterocycles. Bioorg. Med. Chem. Lett., 2021, 49, 128307.
[http://dx.doi.org/10.1016/j.bmcl.2021.128307] [PMID: 34363936]
[35]
Zhu, H.J.; Wang, J.S.; Patrick, K.S.; Donovan, J.L.; DeVane, C.L.; Markowitz, J.S. A novel HPLC fluorescence method for the quantification of methylphenidate in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 858(1-2), 91-95.
[http://dx.doi.org/10.1016/j.jchromb.2007.08.014] [PMID: 17804308]
[36]
Kulkarni, A.P.; Tonzola, C.J.; Babel, A.; Jenekhe, S.A. Electron transport materials for organic light-emitting diodes. Chem. Mater., 2004, 16(23), 4556-4573.
[http://dx.doi.org/10.1021/cm049473l]
[37]
Wang, Z.; Lu, P.; Chen, S.; Gao, Z.; Shen, F.; Zhang, W.; Xu, Y.; Kwok, H.S.; Ma, Y. Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials. J. Mater. Chem., 2011, 21(14), 5451-5456.
[http://dx.doi.org/10.1039/c1jm10321k]
[38]
Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett., 2008, 10(24), 5577-5580.
[http://dx.doi.org/10.1021/ol802436j] [PMID: 19053722]
[39]
Mowry, D.T. The preparation of nitriles. Chem. Rev., 1948, 42(2), 189-283.
[http://dx.doi.org/10.1021/cr60132a001] [PMID: 18914000]
[40]
Ellis, G.P.; Romney-Alexander, T.M. Cyanation of aromatic halides. Chem. Rev., 1987, 87(4), 779-794.
[http://dx.doi.org/10.1021/cr00080a006]
[41]
Bacon, R.G.R.; Hill, H.A.O. 210. Metal ions and complexes in organic reactions. Part I. Substitution reactions between aryl halides and cuprous salts in organic solvents. J. Chem. Soc., 1964, 1097-1107.
[http://dx.doi.org/10.1039/jr9640001097]
[42]
Sandmeyer, T. Ueber die ersetzung der amid‐gruppe durch chlor, brom und cyan in den aromatischen substanzen. Ber. Dtsch. Chem. Ges., 1884, 17(2), 2650-2653.
[http://dx.doi.org/10.1002/cber.188401702202]
[43]
Koelsch, C.F.; Whitney, A.G. The rosenmund-von braun nitrile synthesis. J. Org. Chem., 1941, 6(6), 795-803.
[http://dx.doi.org/10.1021/jo01206a002]
[44]
Mori, K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Catalysis of a hydroxyapatite-bound Ru complex: Efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun., 2001, 461-462(5), 461-462.
[http://dx.doi.org/10.1039/b009944i]
[45]
Yamaguchi, K.; Mizuno, N. Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst. Angew. Chem. Int. Ed., 2003, 42(13), 1480-1483.
[http://dx.doi.org/10.1002/anie.200250779] [PMID: 12698478]
[46]
Kotani, M.; Koike, T.; Yamaguchi, K.; Mizuno, N. Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction. Green Chem., 2006, 8(8), 735-741.
[http://dx.doi.org/10.1039/b603204d]
[47]
Li, F.; Chen, J.; Zhang, Q.; Wang, Y. Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chem., 2008, 10(5), 553-562.
[http://dx.doi.org/10.1039/b715627h]
[48]
Zhang, Y.; Xu, K.; Chen, X.; Hu, T.; Yu, Y.; Zhang, J.; Huang, J. Highly selective aerobic oxidation of primary amines to nitriles by ruthenium hydroxide. Catal. Commun., 2010, 11(11), 951-954.
[http://dx.doi.org/10.1016/j.catcom.2010.04.009]
[49]
Sun, Y.F.; Huang, W.; Lu, C.G.; Cui, Y.P. The synthesis, two-photon absorption and blue upconversion fluorescence of novel, nitrogen-containing heterocyclic chromophores. Dyes Pigments, 2009, 81(1), 10-17.
[http://dx.doi.org/10.1016/j.dyepig.2008.08.003]
[50]
Zhao, Z.; Wisnoski, D.D.; Wolkenberg, S.E.; Leister, W.H.; Wang, Y.; Lindsley, C.W. General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Lett., 2004, 45(25), 4873-4876.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.144]
[51]
Kantevari, S.; Vuppalapati, S.V.N.; Biradar, D.O.; Nagarapu, L. Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO4–SiO2 as novel heterogeneous catalyst. J. Mol. Catal. Chem., 2007, 266(1-2), 109-113.
[http://dx.doi.org/10.1016/j.molcata.2006.10.048]
[52]
Laufer, S.A.; Zimmermann, W.; Ruff, K.J. Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position. J. Med. Chem., 2004, 47(25), 6311-6325.
[http://dx.doi.org/10.1021/jm0496584] [PMID: 15566301]
[53]
Li, W.J.; Li, Q.; Liu, D.L.; Ding, M.W. Synthesis, fungicidal activity, and sterol 14α-demethylase binding interaction of 2-azolyl-3,4-dihydroquinazolines on Penicillium digitatum. J. Agric. Food Chem., 2013, 61(7), 1419-1426.
[http://dx.doi.org/10.1021/jf305355u] [PMID: 23350742]
[54]
Choi, J.H.; Abe, N.; Tanaka, H.; Fushimi, K.; Nishina, Y.; Morita, A.; Kiriiwa, Y.; Motohashi, R.; Hashizume, D.; Koshino, H.; Kawagishi, H. Plant-growth regulator, imidazole-4-carboxamide, produced by the fairy ring forming fungus Lepista sordida. J. Agric. Food Chem., 2010, 58(18), 9956-9959.
[http://dx.doi.org/10.1021/jf101619a] [PMID: 20734987]
[55]
Chowdhury, S.; Mohan, R.S.; Scott, J.L. Reactivity of ionic liquids. Tetrahedron, 2007, 63(11), 2363-2389.
[http://dx.doi.org/10.1016/j.tet.2006.11.001]
[56]
Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[57]
Zeng, J.; Bai, Y.; Cai, S.; Ma, J.; Liu, X.W. Direct synthesis of pyrrolesvia a silver-promoted three-component reaction involving unusual imidazole ring opening. Chem. Commun., 2011, 47(48), 12855-12857.
[http://dx.doi.org/10.1039/c1cc14716a] [PMID: 22046585]
[58]
Sezen, B.; Sames, D. Diversity synthesis via C-H bond functionalization: Concept-guided development of new C-arylation methods for imidazoles. J. Am. Chem. Soc., 2003, 125(35), 10580-10585.
[http://dx.doi.org/10.1021/ja036157j] [PMID: 12940740]
[59]
Kuwano, R.; Kameyama, N.; Ikeda, R. Catalytic asymmetric hydrogenation of N-Boc-imidazoles and oxazoles. J. Am. Chem. Soc., 2011, 133(19), 7312-7315.
[http://dx.doi.org/10.1021/ja201543h] [PMID: 21524077]
[60]
Ueda, S.; Su, M.; Buchwald, S.L. Completely N1-selective palladium-catalyzed arylation of unsymmetric imidazoles: Application to the synthesis of nilotinib. J. Am. Chem. Soc., 2012, 134(1), 700-706.
[http://dx.doi.org/10.1021/ja2102373] [PMID: 22126442]
[61]
Laroche, C.; Li, J.; Freyer, M.W.; Kerwin, S.M. Coupling reactions of bromoalkynes with imidazoles mediated by copper salts: Synthesis of novel N-alkynylimidazoles. J. Org. Chem., 2008, 73(16), 6462-6465.
[http://dx.doi.org/10.1021/jo801118q] [PMID: 18646827]
[62]
Trofimov, B.A.; Andriyankova, L.V.; Belyaeva, K.V.; Mal’kina, A.G.; Nikitina, L.P.; Afonin, A.V.; Ushakov, I.A. Stereoselective C(2)-vinylation of 1-substituted imidazoles with 3-phenyl-2-propynenitrile. J. Org. Chem., 2008, 73(22), 9155-9157.
[http://dx.doi.org/10.1021/jo801240x] [PMID: 18925782]
[63]
Konishi, H.; Ueda, T.; Muto, T.; Manabe, K. Remarkable improvement achieved by imidazole derivatives in ruthenium-catalyzed hydroesterification of alkenes using formates. Org. Lett., 2012, 14(18), 4722-4725.
[http://dx.doi.org/10.1021/ol301850y] [PMID: 22934690]
[64]
Garrison, J.C.; Youngs, W.J. Ag(I) N-heterocyclic carbene complexes: Synthesis, structure, and application. Chem. Rev., 2005, 105(11), 3978-4008.
[http://dx.doi.org/10.1021/cr050004s] [PMID: 16277368]
[65]
Hindi, K.M.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev., 2009, 109(8), 3859-3884.
[http://dx.doi.org/10.1021/cr800500u] [PMID: 19580262]
[66]
Fulwa, V.K.; Sahu, R.; Jena, H.S.; Manivannan, V. Novel synthesis of 2,4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazo[1,5-a]pyridine)picolinamidines: Nitrogen-rich ligands. Tetrahedron Lett., 2009, 50(46), 6264-6267.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.002]
[67]
Kounavi, K.A.; Papatriantafyllopoulou, C.; Tasiopoulos, A.J.; Perlepes, S.P.; Nastopoulos, V. The supramolecular chemistry of metal complexes with heavily substituted imidazoles as ligands: Cobalt(II) and zinc(II) complexes of 1-methyl-4,5-diphenylimidazole. Polyhedron, 2009, 28(15), 3349-3355.
[http://dx.doi.org/10.1016/j.poly.2009.05.007]
[68]
Hahn, F.E.; Jahnke, M.C. Heterocyclic carbenes: Synthesis and coordination chemistry. Angew. Chem. Int. Ed., 2008, 47(17), 3122-3172.
[http://dx.doi.org/10.1002/anie.200703883] [PMID: 18398856]
[69]
Bhalla, R.; Helliwell, M.; Garner, C.D. Synthesis and coordination chemistry of the bis(imidazole) ligand, bis(1-methyl-4,5-diphenylimidaz-2-oyl)(benzyloxy)methane. Inorg. Chem., 1997, 36(14), 2944-2949.
[http://dx.doi.org/10.1021/ic961204c] [PMID: 11669941]
[70]
Zhou, L.; Nicholas, K.M. Imidazole substituent effects on oxidative reactivity of tripodal(imid)2(thioether)CuI complexes. Inorg. Chem., 2008, 47(10), 4356-4367.
[http://dx.doi.org/10.1021/ic800007t] [PMID: 18399624]
[71]
Chawla, A.; Sharma, A.; Sharma, A.K. Review: A convenient approach for the synthesis of imidazole derivatives using microwaves. Pharm. Chem., 2012, 4(1), 116-140.
[72]
Patel, G.; Dewangan, D.K.; Bhakat, N.; Banerjee, S. Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review. Curr. Res. Green Sustainable Chem., 2021, 4, 100175.
[http://dx.doi.org/10.1016/j.crgsc.2021.100175]
[73]
Shabalin, D.A.; Camp, J.E. Recent Adv. in the synthesis of imidazoles. Org. Biomol. Chem., 2020, 18(21), 3950-3964.
[http://dx.doi.org/10.1039/D0OB00350F] [PMID: 32419000]
[74]
Daraji, D.G.; Prajapati, N.P.; Patel, H.D. Synthesis and applications of 2‐substituted imidazole and its derivatives: A review. J. Heterocycl. Chem., 2019, 56(9), 2299-2317.
[http://dx.doi.org/10.1002/jhet.3641]
[75]
Duc, D.X. Recent progress in the synthesis of furan. Mini Rev. Org. Chem., 2019, 16(5), 422-452.
[http://dx.doi.org/10.2174/1570193X15666180608084557]
[76]
Xuan, D.D. Recent progress in the synthesis of pyrroles. Curr. Org. Chem., 2020, 24(6), 622-657.
[http://dx.doi.org/10.2174/1385272824666200228121627]
[77]
Xuan, D.D. Recent achievement in the synthesis of thiophenes. Mini Rev. Org. Chem., 2021, 18(1), 110-134.
[http://dx.doi.org/10.2174/1570193X17999200507095224]
[78]
Duc, D.X. Recent achievement in the synthesis of benzo[b]furans. Curr. Org. Synth., 2020, 17(7), 498-517.
[http://dx.doi.org/10.2174/1570179417666200625212639] [PMID: 32586253]
[79]
Duc, D.X. Recent progress in the synthesis of benzo[b]thiophene. Curr. Org. Chem., 2020, 24(19), 2256-2271.
[http://dx.doi.org/10.2174/1385272824999200820151545]
[80]
Duc, D.X.; Chung, N.T. Recent achievements in the synthesis of oxazoles. Curr. Org. Chem., 2021, 25(15), 1755-1782.
[http://dx.doi.org/10.2174/1385272825666210608114724]
[81]
Duc, D.X.; Dung, V.C. Recent progress in the synthesis of isoxazoles. Curr. Org. Chem., 2021, 25(24), 2938-2989.
[http://dx.doi.org/10.2174/1385272825666211118104213]
[82]
Duc, D.X.; Chung, N.T. Recent developments in the synthesis of thiazoles. Curr. Org. Synth., 2022, 19(6), 702-730.
[http://dx.doi.org/10.2174/1570179419666220216122637] [PMID: 35170413]
[83]
Debus, H. Ueber die einwirkung des ammoniaks auf glyoxal. Justus Liebigs Ann. Chem., 1858, 107(2), 199-208.
[http://dx.doi.org/10.1002/jlac.18581070209]
[84]
Radzisewski, B. Ueber glyoxalin und seine homologe. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2706-2708.
[http://dx.doi.org/10.1002/cber.188201502245]
[85]
Nemati, F.; Hosseini, M.M.; Kiani, H. Glycerol as a green solvent for efficient, one-pot and catalyst free synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazole derivatives. J. Saudi Chem. Soc., 2016, 20, S503-S508.
[http://dx.doi.org/10.1016/j.jscs.2013.02.004]
[86]
Evjen, S.; Fiksdahl, A. Syntheses of polyalkylated imidazoles. Synth. Commun., 2017, 47(15), 1392-1399.
[http://dx.doi.org/10.1080/00397911.2017.1330416]
[87]
Chen, Y.; Wang, R.; Ba, F.; Hou, J.; Ding, A.; Zhou, M.; Guo, H. Synthesis of 2,4,5-triarylated imidazoles via three-component domino reaction under catalyst-free conditions. J. Saudi Chem. Soc., 2017, 21(1), 76-81.
[http://dx.doi.org/10.1016/j.jscs.2016.03.001]
[88]
Patel, G.; Patel, A.R.; Banerjee, S. Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. New J. Chem., 2020, 44(31), 13295-13300.
[http://dx.doi.org/10.1039/D0NJ02527E]
[89]
Zarnegar, Z.; Safari, J. Catalytic activity of Cu nanoparticles supported on Fe3O4–polyethylene glycol nanocomposites for the synthesis of substituted imidazoles. New J. Chem., 2014, 38(9), 4555-4565.
[http://dx.doi.org/10.1039/C4NJ00645C]
[90]
Rafiee, E.; Joshaghani, M.; Ghaderi-Shekhi Abadi, P. Shape-dependent catalytic activity of Fe3O4 nanostructures under the influence of an external magnetic field for multicomponent reactions in aqueous media. RSC Adv., 2015, 5(90), 74091-74101.
[http://dx.doi.org/10.1039/C5RA14467A]
[91]
El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M. CuFe2O4 nanoparticles: An efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron, 2015, 71(17), 2579-2584.
[http://dx.doi.org/10.1016/j.tet.2015.02.057]
[92]
Zarnegar, Z.; Safari, J. Fe3O4 @chitosan nanoparticles: A valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles. RSC Adv., 2014, 4(40), 20932-20939.
[http://dx.doi.org/10.1039/C4RA03176H]
[93]
Naeimi, H.; Aghaseyedkarimi, D. Fe3O4 @SiO2•HM•SO3H as a recyclable heterogeneous nanocatalyst for the microwave-promoted synthesis of 2,4,5-trisubstituted imidazoles under solvent free conditions. New J. Chem., 2015, 39(12), 9415-9421.
[http://dx.doi.org/10.1039/C5NJ01273B]
[94]
Esmaeilpour, M.; Javidi, J.; Zandi, M. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2–imid–PMAn magnetic porous nanospheres as a recyclable catalyst. New J. Chem., 2015, 39(5), 3388-3398.
[http://dx.doi.org/10.1039/C5NJ00050E]
[95]
Maleki, A.; Rahimi, J.; Valadi, K. Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst. Nano-Struct. Nano-Objects, 2019, 18, 100264.
[http://dx.doi.org/10.1016/j.nanoso.2019.100264]
[96]
Mahmoudiani Gilan, M.; Khazaei, A.; Sarmasti, N. Utilization of eggshell waste as green catalyst for application in the synthesis of 1,2,4,5-tetra-substituted imidazole derivatives. Res. Chem. Intermed., 2021, 47(5), 2173-2188.
[http://dx.doi.org/10.1007/s11164-018-03724-w]
[97]
Kalhor, M.; Zarnegar, Z. Fe3O4/SO3H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Adv., 2019, 9(34), 19333-19346.
[http://dx.doi.org/10.1039/C9RA02910A] [PMID: 35519374]
[98]
Limouzadeh, A.; Naeimi, H. Nife2o4 @Sio2pra/PC-Ni(II) as a highly efficient catalyst for microwave promoted one pot synthesis of tetra substituted imidazoles. J. Coord. Chem., 2020, 73(13), 1907-1924.
[http://dx.doi.org/10.1080/00958972.2020.1802019]
[99]
Khalifeh, R.; Naseri, V.; Rajabzadeh, M. Synthesis of imidazolium‐based ionic liquid on modified magnetic nanoparticles for application in one‐pot synthesis of trisubstituted imidazoles. ChemistrySelect, 2020, 5(37), 11453-11462.
[http://dx.doi.org/10.1002/slct.202003133]
[100]
Mahmoudiani Gilan, M.; Khazaei, A.; Yousefi Seyf, J.; Sarmasti, N.; Keypour, H.; Mahmoudabadi, M. Synthesis of magnetic Fe3O4@SiO2@ Si(CH2)3@N-ligand@Co with application in the synthesis of 1,2,4,5-substituted imidazole derivatives. Polycycl. Aromat. Compd., 2021, 41(6), 1200-1211.
[http://dx.doi.org/10.1080/10406638.2019.1666886]
[101]
Hosseini, S.; Kiasat, A.R.; Farhadi, A. Fe3O4@SiO2/Bipyridinium nanocomposite as a magnetic and recyclable heterogeneous catalyst for the synthesis of highly substituted imidazoles via multi-component condensation strategy. Polycycl. Aromat. Compd., 2021, 41(4), 761-771.
[http://dx.doi.org/10.1080/10406638.2019.1616306]
[102]
Nikoofar, K.; Haghighi, M.; Lashanizadegan, M.; Ahmadvand, Z. ZnO nanorods: Efficient and reusable catalysts for the synthesis of substituted imidazoles in water. J. Taibah Univ. Sci., 2015, 9(4), 570-578.
[http://dx.doi.org/10.1016/j.jtusci.2014.12.007]
[103]
Jayashree, A.; Narayana, B.; Uppine, G.B.; Ghate, V.M.; Lewis, S.A.; Prakash, B.; Kunhanna, S.B.; Kumar, M.S. ZnO nanocatalyst mediated convergent synthesis of highly substituted imidazole and imidazole‐derived Bi‐heterocyclic scaffolds as potential antibacterial agents. J. Heterocycl. Chem., 2019, 56(9), 2398-2410.
[http://dx.doi.org/10.1002/jhet.3627]
[104]
Nakhaei, A.; Davoodnia, A. Application of a Keplerate type giant nanoporous isopolyoxomolybdate as a reusable catalyst for the synthesis of 1,2,4,5-tetrasubstituted imidazoles. Chin. J. Catal., 2014, 35(10), 1761-1767.
[http://dx.doi.org/10.1016/S1872-2067(14)60174-1]
[105]
Masteri-Farahani, M.; Ezabadi, A.; Mazarei, R.; Ataeinia, P.; Shahsavarifar, S.; Mousavi, F. A new nanocomposite catalyst based on clay‐supported heteropolyacid for the green synthesis of 2,4,5‐trisubstituted imidazoles. Appl. Organomet. Chem., 2020, 34(8), e5727.
[http://dx.doi.org/10.1002/aoc.5727]
[106]
Raghu, M.S.; Pradeep Kumar, C.B.; Prasad, K.N.N.; Prashanth, M.K.; Kumarswamy, Y.K.; Chandrasekhar, S.; Veeresh, B. MoS2–calix[4]arene catalyzed synthesis and molecular docking study of 2,4,5-trisubstituted imidazoles as potent inhibitors of mycobacterium tuberculosis. ACS Comb. Sci., 2020, 22(10), 509-518.
[http://dx.doi.org/10.1021/acscombsci.0c00038] [PMID: 32806898]
[107]
Keivanloo, A.; Bakherad, M.; Imanifar, E.; Mirzaee, M. Boehmite nanoparticles, an efficient green catalyst for the multi-component synthesis of highly substituted imidazoles. Appl. Catal. A Gen., 2013, 467, 291-300.
[http://dx.doi.org/10.1016/j.apcata.2013.07.027]
[108]
Safari, J.; Gandomi-Ravandi, S.; Akbari, Z. Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst. J. Adv. Res., 2013, 4(6), 509-514.
[http://dx.doi.org/10.1016/j.jare.2012.09.001] [PMID: 25685459]
[109]
Gandhare, N.V.; Chaudhary, R.G.; Meshram, V.P.; Tanna, J.A.; Lade, S.; Gharpure, M.P.; Juneja, H.D. An efficient and one-pot synthesis of 2,4,5-trisubstituted imidazole compounds catalyzed by copper nanoparticles. J. Chinese Adv. Mater. Soci., 2015, 3(4), 270-279.
[http://dx.doi.org/10.1080/22243682.2015.1068134]
[110]
Sinha, D.; Biswas, S.; Das, M.; Ghatak, A. An eco-friendly, one pot synthesis of tri-substituted imidazoles in aqueous medium catalyzed by RGO supported Au nano-catalyst and computational studies. J. Mol. Struct., 2021, 1242, 130823.
[http://dx.doi.org/10.1016/j.molstruc.2021.130823]
[111]
Alipour, S.; Vahdat, S.M.; Chekin, F. Ag–TiO2 nanocomposite-catalyzed one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles: A green and benign approach. J. Indian Chem. Soc., 2021, 18(9), 2315-2321.
[http://dx.doi.org/10.1007/s13738-021-02192-1]
[112]
Nikoofar, K.; Dizgarani, S.M. HNO 3 @nano SiO2: An efficient catalytic system for the synthesis of multi-substituted imidazoles under solvent-free conditions. J. Saudi Chem. Soc., 2017, 21(7), 787-794.
[http://dx.doi.org/10.1016/j.jscs.2015.11.006]
[113]
Kolvari, E.; Koukabi, N.; Hosseini, M.M.; Khandani, Z. Perlite: An inexpensive natural support for heterogenization of HBF4. RSC Adv., 2015, 5(46), 36828-36836.
[http://dx.doi.org/10.1039/C5RA03229F]
[114]
Zolfigol, M.A.; Baghery, S.; Moosavi-Zare, A.R.; Vahdat, S.M. Synthesis of 1,2,4,5-tetrasubstituted imidazoles using 2,6-dimethylpyridinium trinitromethanide [2,6-DMPyH]C(NO2)3 as a novel nanostructured molten salt and green catalyst. RSC Adv., 2015, 5(42), 32933-32940.
[http://dx.doi.org/10.1039/C5RA03241E]
[115]
Girish, Y.R.; Sharath Kumar, K.S.; Thimmaiah, K.N.; Rangappa, K.S.; Shashikanth, S. ZrO2-β-cyclodextrin catalyzed synthesis of 2,4,5-trisubstituted imidazoles and 1,2-disubstituted benzimidazoles under solvent free conditions and evaluation of their antibacterial study. RSC Adv., 2015, 5(92), 75533-75546.
[http://dx.doi.org/10.1039/C5RA13891D]
[116]
Safari, J.; Akbari, Z.; Naseh, S. Nanocrystalline MgAl2O4 as an efficient catalyst for one-pot synthesis of multisubstituted imidazoles under solvent-free conditions. J. Saudi Chem. Soc., 2016, 20, S250-S255.
[http://dx.doi.org/10.1016/j.jscs.2012.10.012]
[117]
Mirjalili, B.F.; Bamoniri, A.; Mirhoseini, M.A. Nano-SnCl4•SiO2: An efficient catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazoles under solvent-free conditions. Scientia Iranica Iranian Sci., 2013, 20(3), 587-591.
[118]
Khalifeh, R.; Niknam, A. Nanoparticle-promoted synthesis of trisubstituted imidazoles in a green medium. Org. Prep. Proced. Int., 2020, 52(2), 91-98.
[http://dx.doi.org/10.1080/00304948.2020.1716433]
[119]
Aghahosseini, H.; Ramazani, A.; Ślepokura, K.; Lis, T. The first protection-free synthesis of magnetic bifunctional l-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. J. Colloid Interface Sci., 2018, 511, 222-232.
[http://dx.doi.org/10.1016/j.jcis.2017.10.020] [PMID: 29028573]
[120]
Hosseini Mohtasham, N.; Gholizadeh, M. Magnetic horsetail plant ash (Fe3O4@HA): A novel, natural and highly efficient heterogeneous nanocatalyst for the green synthesis of 2,4,5-trisubstituted imidazoles. Res. Chem. Intermed., 2021, 47(6), 2507-2525.
[http://dx.doi.org/10.1007/s11164-021-04420-y]
[121]
Khazaei, A.; Alavi Nik, H.A.; Ranjbaran, A.; Moosavi-Zare, A.R. Synthesis, characterization and application of Ni0.5Zn0.5Fe2O4 nanoparticles for the one pot synthesis of triaryl-1H-imidazoles. RSC Adv., 2016, 6(82), 78881-78886.
[http://dx.doi.org/10.1039/C6RA05158H]
[122]
Kohan, E.; Gholamhosseini-Nazari, M.; Allahvirdinesbat, M.; Alemi, A.A. Green and efficiently synthesized tetrasubstituted imidazole: Introduced bismuth oxide co-doped Lu3+, Er3+ as a novel reusable heterogeneous nanocatalyst. Inorg. Nano-Metal Chem., 2021, 51(8), 1036-1046.
[http://dx.doi.org/10.1080/24701556.2020.1814327]
[123]
Naeimi, H.; Aghaseyedkarimi, D. Ionophore silica-coated magnetite nanoparticles as a recyclable heterogeneous catalyst for one-pot green synthesis of 2,4,5-trisubstituted imidazoles. Dalton Trans., 2016, 45(3), 1243-1253.
[http://dx.doi.org/10.1039/C5DT03488D] [PMID: 26671724]
[124]
Mohammadi Ziarani, G.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst. J. Saudi Chem. Soc., 2016, 20(4), 419-427.
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[125]
Alinezhad, H.; Tajbakhsh, M.; Maleki, B.; Pourshaban Oushibi, F. Acidic ionic liquid [H-NP]HSO4 promoted one-pot synthesis of Dihydro-1H-Indeno[1,2-b]pyridines and polysubstituted imidazoles. Polycycl. Aromat. Compd., 2020, 40(5), 1485-1500.
[http://dx.doi.org/10.1080/10406638.2018.1557707]
[126]
Zhang, Y.; Zhou, Z. One-pot synthesis of 2,4,5-trisubstituted imidazoles using [BPy]H2PO4, an efficient and recyclable catalyst. Prep. Biochem. Biotechnol., 2013, 43(2), 189-196.
[http://dx.doi.org/10.1080/10826068.2012.719845] [PMID: 23302106]
[127]
MaGee D.I.; Bahramnejad, M.; Dabiri, M. Highly efficient and eco-friendly synthesis of 2-alkyl and 2-aryl-4,5-diphenyl-1H-imidazoles under mild conditions. Tetrahedron Lett., 2013, 54(21), 2591-2594.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.008]
[128]
Wan, Y.; Liu, G.; Zhao, L.; Wang, H.; Huang, S.; Chen, L.; Wu, H. One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles in ionic liquid. J. Heterocycl. Chem., 2014, 51(3), 713-718.
[http://dx.doi.org/10.1002/jhet.1751]
[129]
Safari, J.; Zarnegar, Z. Immobilized ionic liquid on superparamagnetic nanoparticles as an effective catalyst for the synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. C. R. Chim., 2013, 16(10), 920-928.
[http://dx.doi.org/10.1016/j.crci.2013.01.019]
[130]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A.; Asgari, Z.; Khakyzadeh, V.; Hasaninejad, A. Design of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as a dual-catalyst for the one-pot multi-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. J. Ind. Eng. Chem., 2013, 19(3), 721-726.
[http://dx.doi.org/10.1016/j.jiec.2012.10.014]
[131]
Saffari Jourshari, M.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K.; Rassa, M.; Langari, H. An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chin. Chem. Lett., 2013, 24(11), 993-996.
[http://dx.doi.org/10.1016/j.cclet.2013.06.005]
[132]
Maleki, B.; Kahoo, G.E.; Tayebee, R. One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid. Org. Prep. Proced. Int., 2015, 47(6), 461-472.
[http://dx.doi.org/10.1080/00304948.2015.1088757]
[133]
Akbari, A. Tri(1-butyl-3-methylimidazolium) gadolinium hexachloride, ([bmim]3[GdCl6]), a magnetic ionic liquid as a green salt and reusable catalyst for the synthesis of tetrasubstituted imidazoles. Tetrahedron Lett., 2016, 57(3), 431-434.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.053]
[134]
Albayati, M.R.; Marzouk, A.A.; Abdelhamid, A.A. Piperidinium Hydrogen Sulfate (PHS) as an efficient ionic liquid catalyst for the synthesis of imidazole derivative under solvent‐free condition. J. Heterocycl. Chem., 2019, 56(5), 1514-1519.
[http://dx.doi.org/10.1002/jhet.3525]
[135]
Ahmed, N.S.; Hanoon, H.D. A green and simple method for the synthesis of 2,4,5-trisubstituted-1H-imidazole derivatives using acidic ionic liquid as an effective and recyclable catalyst under ultrasound. Res. Chem. Intermed., 2021, 47(10), 4083-4100.
[http://dx.doi.org/10.1007/s11164-021-04517-4]
[136]
Marzouk, A.A.; Mohamed, S.K.; Aljohani, E.T.; Abdelhamid, A.A. New method for synthesis of multi-substituted imidazoles. J. Heterocycl. Chem., 2018, 55(7), 1775-1782.
[http://dx.doi.org/10.1002/jhet.3215]
[137]
Duc, D.X.; Lanh, H.T. Microwave-assisted, [Bmim]HSO4-catalyzed synthesis of tetrasubstituted imidazole via four-component reaction. Vietnam J. Sci. Technol., 2022, 60(2), 383-390.
[http://dx.doi.org/10.15625/2525-2518/16492]
[138]
Chen, C.Y.; Hu, W.P.; Yan, P.C.; Senadi, G.C.; Wang, J.J. Metal-free, acid-promoted synthesis of imidazole derivatives via a multicomponent reaction. Org. Lett., 2013, 15(24), 6116-6119.
[http://dx.doi.org/10.1021/ol402892z] [PMID: 24274256]
[139]
Al Munsur, A.Z.; Roy, H.N.; Imon, M.K. Highly efficient and metal-free synthesis of tri- and tetrasubstituted imidazole catalyzed by 3-picolinic acid. Arab. J. Chem., 2020, 13(12), 8807-8814.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.010]
[140]
Pervaiz, S.; Mutahir, S.; Ullah, I.; Ashraf, M.; Liu, X.; Tariq, S.; Zhou, B.J.; Khan, M.A. Organocatalyzed solvent free and efficient synthesis of 2,4,5-trisubstituted imidazoles as potential acetylcholinesterase inhibitors for Alzheimer’s disease. Chem. Biodivers., 2020, 17(3), e1900493.
[http://dx.doi.org/10.1002/cbdv.201900493] [PMID: 31968151]
[141]
Zhang, F.; Gao, Q.; Chen, B.; Bai, Y.; Sun, W.; Lv, D.; Ge, M. A practical and green approach towards synthesis of multisubstituted imidazoles using boric acid as efficient catalyst. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(5), 786-789.
[http://dx.doi.org/10.1080/10426507.2015.1100184]
[142]
Chavan, L.D.; Shankarwar, S.G. KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives under solvent-free condition. Chin. J. Catal., 2015, 36(7), 1054-1059.
[http://dx.doi.org/10.1016/S1872-2067(15)60830-0]
[143]
Khandebharad, A.U.; Sarda, S.R.; Gill, C.; Agrawal, B.R. An efficient synthesis of substituted imidazoles catalyzed by 3-N-Morpholinopro-panesulfonic Acid (MOPS) under ultrasound irradiation. Org. Prep. Proced. Int., 2020, 52(6), 524-529.
[http://dx.doi.org/10.1080/00304948.2020.1804773]
[144]
Mohammadi Ziarani, G.; Dashtianeh, Z.; Shakiba Nahad, M.; Badiei, A. One-pot synthesis of 1,2,4,5-tetra substituted imidazoles using sulfonic acid functionalized silica (SiO2-Pr-SO3H). Arab. J. Chem., 2015, 8(5), 692-697.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.020]
[145]
Bouchakour, M.; Daaou, M.; Duguet, N. Synthesis of imidazoles from fatty 1,2‐diketones. Eur. J. Org. Chem., 2021, 2021(11), 1647-1652.
[http://dx.doi.org/10.1002/ejoc.202100053]
[146]
Arora, G.; Gupta, R.; Yadav, P.; Dixit, R.; Srivastava, A.; Sharma, R.K. Ultrasonically-mediated one-pot synthesis of substituted imidazoles via sulfamic acid functionalized hollow magnetically retrievable solid-acid catalyst. Curr. Res. Green Sustainable Chem., 2021, 4, 100050.
[http://dx.doi.org/10.1016/j.crgsc.2020.100050]
[147]
Heravi, M.R.P.; Vessally, E.; Behbehani, G.R.R. An efficient green MCR protocol for the synthesis of 2,4,5-trisubstituted imidazoles by Selectfluor™ under ultrasound irradiation. C. R. Chim., 2014, 17(2), 146-150.
[http://dx.doi.org/10.1016/j.crci.2012.12.007]
[148]
Maleki, A.; Paydar, R. Graphene oxide-chitosan bionanocomposite: A highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC Adv., 2015, 5(42), 33177-33184.
[http://dx.doi.org/10.1039/C5RA03355A]
[149]
Salimi, M.; Nasseri, M.A.; Chapesshloo, T.D.; Zakerinasab, B. (Carboxy-3-oxopropylamino)-3-propylsilylcellulose as a novel organocatalyst for the synthesis of substituted imidazoles under solvent-free conditions. RSC Adv., 2015, 5(43), 33974-33980.
[http://dx.doi.org/10.1039/C5RA01909E]
[150]
Xu, F.; Wang, N.; Tian, Y.; Li, G. Simple and efficient method for the synthesis of highly substituted imidazoles catalyzed by benzotriazole. J. Heterocycl. Chem., 2013, 50(3), 668-675.
[http://dx.doi.org/10.1002/jhet.1818]
[151]
Waheed, M.; Ahmed, N.A.; Alsharif, M.; Alahmdi, M.I.; Mukhtar, S. An efficient synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using dihydroquinolines as novel organocatalyst. ChemistrySelect, 2017, 2(26), 7946-7950.
[http://dx.doi.org/10.1002/slct.201701299]
[152]
Ray, S.; Das, P.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. Covalently anchored organic carboxylic acid on porous silica nano particle: A novel organometallic catalyst (PSNP-CA) for the chromatography-free highly product selective synthesis of tetrasubstituted imidazoles. Appl. Catal. A Gen., 2013, 458, 183-195.
[http://dx.doi.org/10.1016/j.apcata.2013.03.024]
[153]
Kumar, A.; Saini, H.; Dhiman, S.; Pericherla, K. Synthesis of imidazo[1,2-f]phenanthridines through palladium-catalyzed intramolecular C–C bond formation. Synthesis, 2015, 47(23), 3727-3732.
[http://dx.doi.org/10.1055/s-0035-1560177]
[154]
Dekamin, M.G.; Arefi, E.; Yaghoubi, A. Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): A highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles. RSC Adv., 2016, 6(90), 86982-86988.
[http://dx.doi.org/10.1039/C6RA14550G]
[155]
Ochoa-Puentes, C.; Higuera, N.; Peña-Solórzano, D. Urea-zinc chloride eutectic mixture-mediated one-pot synthesis of imidazoles: Efficient and ecofriendly access to trifenagrel. Synlett, 2019, 30(2), 225-229.
[http://dx.doi.org/10.1055/s-0037-1610679]
[156]
Tamuli, K.J.; Dutta, D.; Nath, S.; Bordoloi, M. A greener and facile synthesis of imidazole and dihydropyrimidine derivatives under solvent-free condition using nature-derived catalyst. ChemistrySelect, 2017, 2(26), 7787-7791.
[http://dx.doi.org/10.1002/slct.201701487]
[157]
Kapale, S.S.; Chaudhari, H.K.; Mali, S.N.; Takale, B.S.; Pawar, H. A sustainable approach towards the three-component synthesis of unsubstituted 1H-imidazoles in the water at ambient conditions. J. Asian Nat. Prod. Res., 2021, 23(7), 712-716.
[http://dx.doi.org/10.1080/10286020.2020.1760852] [PMID: 32400182]
[158]
Behrouz, S.; Navid Soltani Rad, M.; Abdollahzadeh, M.; Amin Piltan, M. Ultrasound‐promoted mild, and efficient protocol for three‐component synthesis of 2,4,5‐trisubstituted imidazoles using urea and PPh3 as the sources of nitrogen and organocatalyst. ChemistrySelect, 2020, 5(25), 7467-7473.
[http://dx.doi.org/10.1002/slct.202001722]
[159]
Kannan, V.; Sreekumar, K. Clay supported titanium catalyst for the solvent free synthesis of tetrasubstituted imidazoles and benzimidazoles. J. Mol. Catal. Chem., 2013, 376, 34-39.
[http://dx.doi.org/10.1016/j.molcata.2013.04.004]
[160]
Sarkar, R.; Mukhopadhyay, C. Silver-mediated Cα(sp3)-H functionalization of primary amines: An oxidative C-N coupling strategy for the synthesis of two different types of 1,2,4,5-tetrasubstituted imidazoles. Eur. J. Org. Chem., 2015, 2015(6), 1246-1256.
[http://dx.doi.org/10.1002/ejoc.201403465]
[161]
Bhagat, S.; Chundawat, T.; Sharma, N.; Kumari, P. Microwave-assisted nickel-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazoles. Synlett, 2015, 27(3), 404-408.
[http://dx.doi.org/10.1055/s-0035-1560825]
[162]
Thimmaraju, N.; Shamshuddin, S.Z.M. Synthesis of 2,4,5-trisubstituted imidazoles, quinoxalines and 1,5-benzodiazepines over an eco-friendly and highly efficient ZrO2–Al2O3 catalyst. RSC Adv., 2016, 6(65), 60231-60243.
[http://dx.doi.org/10.1039/C6RA13956F]
[163]
Wang, D.; Li, Z.; Huang, X.; Li, Y. Ce(SO4)2⋅4H2O as a highly efficient catalyst for the one-pot synthesis of tri- and tetra-substituted imidazoles under solvent-free conditions. ChemistrySelect, 2016, 1(4), 664-668.
[http://dx.doi.org/10.1002/slct.201600029]
[164]
Kadu, V.D.; Mali, G.A.; Khadul, S.P.; Kothe, G.J. Simple practical method for synthesis of trisubstituted imidazoles: An efficient copper catalyzed multicomponent reaction. RSC Adv., 2021, 11(36), 21955-21963.
[http://dx.doi.org/10.1039/D1RA01767E] [PMID: 35480836]
[165]
Aziizi, N.; Manochehri, Z.; Nahayi, A.; Torkashvand, S. A facile one-pot synthesis of tetrasubstituted imidazoles catalyzed by eutectic mixture stabilized ferrofluid. J. Mol. Liq., 2014, 196, 153-158.
[http://dx.doi.org/10.1016/j.molliq.2014.03.013]
[166]
Salmasi, R.; Gholizadeh, M.; Salimi, A. New phosphonium molybdate‐promoted green, fast and selective catalytic procedure for the synthesis of trisubstituted imidaz-oles. Appl. Organomet. Chem., 2020, 34(9), 5738.
[http://dx.doi.org/10.1002/aoc.5738]
[167]
Hell, Z.; Magyar, Á. One-pot three-component synthesis of 2,4,5-triaryl-1H-imidazoles in the presence of a molecular sieve supported titanium catalyst under mild basic conditions. Synlett, 2019, 30(1), 89-93.
[http://dx.doi.org/10.1055/s-0037-1611155]
[168]
Vaid, R.; Gupta, M.; Kour, G.; Gupta, V.K. Sulfoacetate modified silica supported indium(III) triflate [SiSAIn(OTf)2]: A novel solid acid nano‐catalyst and investigation of its catalytic potential for one‐pot synthesis of 1,2,4,5‐tetrasubstituted imidazole derivatives. ChemistrySelect, 2019, 4(31), 9179-9184.
[http://dx.doi.org/10.1002/slct.201902012]
[169]
Sharghi, H.; Razavi, S.F.; Aberi, M. One-pot three-component synthesis of 2,4,5-triaryl-1h-imidazoles using Mn2+ complex of [7-Hydroxy-4-methyl-8-coumarinyl] glycine as a heterogeneous catalyst. Catal. Lett., 2022, 152(6), 1769-1783.
[http://dx.doi.org/10.1007/s10562-021-03717-2]
[170]
Kumar, T.D.A.; Yamini, N.; Subrahmanyam, C.V.S.; Satyanarayana, K. Design and optimization of ecofriendly one-pot synthesis of 2,4,5-Triaryl-1 H-imidazoles by three-component condensation using response surface methodology. Synth. Commun., 2014, 44(15), 2256-2268.
[http://dx.doi.org/10.1080/00397911.2014.893359]
[171]
Safari, J.; Naseh, S.; Zarnegar, Z.; Akbari, Z. Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst. J. Taibah Univ. Sci., 2014, 8(4), 323-330.
[http://dx.doi.org/10.1016/j.jtusci.2014.01.007]
[172]
Bansal, R.; Soni, P.K.; Halve, A.K. Green synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazole derivatives involving one-pot multicomponent reaction. J. Heterocycl. Chem., 2018, 55(6), 1308-1312.
[http://dx.doi.org/10.1002/jhet.3160]
[173]
Chavan, H.V.; Narale, D.K. Synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazoles using silica chloride as an efficient and recyclable catalyst under solvent-free conditions. C. R. Chim., 2014, 17(10), 980-984.
[http://dx.doi.org/10.1016/j.crci.2013.12.003]
[174]
Indalkar, K.; Malge, S.S.; Mali, A.S.; Chaturbhuj, G.U. Expeditious and highly efficient one-pot synthesis of functionalized imidazoles catalyzed by sulfated polyborate. Org. Prep. Proced. Int., 2021, 53(4), 387-396.
[http://dx.doi.org/10.1080/00304948.2021.1920304]
[175]
Wong, L.C.; Gehre, A.; Stanforth, S.P.; Tarbit, B. Convenient synthesis of highly substituted imidazole derivatives. Synth. Commun., 2013, 43(1), 80-84.
[http://dx.doi.org/10.1080/00397911.2011.591957]
[176]
Jayram, J.; Jeena, V. An iodine/DMSO-catalyzed sequential one-pot approach to 2,4,5-trisubstituted-1H-imidazoles from α-methylene ketones. RSC Adv, 2018, 8(66), 37557-37563.
[http://dx.doi.org/10.1039/C8RA07238H] [PMID: 35558600]
[177]
Adhikary, S.; Majumder, L.; Pakrashy, S.; Srinath, R.; Mukherjee, K.; Mandal, C.; Banerji, B. Polysubstituted imidazoles as lysotracker molecules: Their synthesis via Iodine/H2O and cell-imaging studies. ACS Omega, 2020, 5(24), 14394-14407.
[http://dx.doi.org/10.1021/acsomega.0c00934] [PMID: 32596577]
[178]
Naidoo, S.; Jeena, V. One-pot, two-step metal and acid-free synthesis of trisubstituted imidazole derivatives via oxidation of internal alkynes using an iodine/DMSO system. Eur. J. Org. Chem., 2019, 2019(5), 1107-1113.
[http://dx.doi.org/10.1002/ejoc.201801584]
[179]
Naidoo, S.; Jeena, V. Molecular iodine/DMSO mediated oxidation of internal alkynes and primary alcohols using a one-pot, two step approach towards 2,4,5-trisubstituted imidazoles: Substrate scope and mechanistic studies. Tetrahedron, 2020, 76(12), 131028.
[http://dx.doi.org/10.1016/j.tet.2020.131028]
[180]
Li, S.; Li, Z.; Yuan, Y.; Li, Y.; Zhang, L.; Wu, Y. Gold(I)-catalyzed aminohalogenation of fluorinated N′-aryl-N-propargyl amidines for the synthesis of imidazole derivatives under mild conditions. Chemistry, 2013, 19(4), 1496-1501.
[http://dx.doi.org/10.1002/chem.201202402] [PMID: 23255354]
[181]
Gao, F.; Tian, X.C.; Qu, X.X.; Wang, D.; Pu, D. Highly efficient, environment-friendly, one-pot synthesis of 2-substituted 4-formylimidazoles from 4-acylaminoisoxazoles. Synthesis, 2014, 47(1), 65-70.
[http://dx.doi.org/10.1055/s-0034-1379201]
[182]
Lasalle, M.; Picon, S.; Boulahjar, R.; Hoguet, V.; Van Obbergen, J.; Roussel, P.; Deprez, B.; Charton, J. Access to newly functionalized imidazole derivatives: Efficient synthesis of novel 5-amino-2-thioimidazoles using propylphosphonic anhydride (®T3P). Tetrahedron Lett., 2015, 56(8), 1011-1014.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.046]
[183]
Qu, J.; Bhadbhade, M.; Kumar, N.; Black, D.S. Unusual formation of novel highly substituted N-(3-indolyl)-imidazoles. Tetrahedron, 2018, 74(52), 7438-7441.
[http://dx.doi.org/10.1016/j.tet.2018.11.007]
[184]
Li, S.; Li, Y.; Feng, B.; Liang, J.; You, G.; Liu, X.; Xian, L. Bi(III)-catalyzed aminooxygenation of propargyl amidines to synthesize 2-fluoroalkyl imidazole-5-carbaldehydes and their decarbonylations. Chem. Commun., 2020, 56(47), 6400-6403.
[http://dx.doi.org/10.1039/D0CC02143A] [PMID: 32390034]
[185]
Chen, J.; Chen, W.; Yu, Y.; Zhang, G. One-pot synthesis of disubstituted imidazole derivatives from α-azido ketones catalyzed by potassium ethylxanthate. Tetrahedron Lett., 2013, 54(12), 1572-1575.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.042]
[186]
Huang, H.; Ji, X.; Wu, W.; Jiang, H. Practical synthesis of polysubstituted imidazoles via iodine- catalyzed aerobic oxidative cyclization of aryl ketones and benzylamines. Adv. Synth. Catal., 2013, 355(1), 170-180.
[http://dx.doi.org/10.1002/adsc.201200582]
[187]
Liu, C.; Yang, Z.; Zeng, Y.; Fang, Z.; Guo, K. Metal-free amine-mediated oxidative synthesis of polysubstituted imidazoles from aryl methyl ketones, ammonium iodide or benzylamine, and hydrogen peroxide. Asian J. Org. Chem., 2017, 6(8), 1104-1109.
[http://dx.doi.org/10.1002/ajoc.201700198]
[188]
Alanthadka, A.; Elango, S.D.; Thangavel, P.; Subbiah, N.; Vellaisamy, S.; Chockalingam, U.M. Construction of substituted imidazoles from aryl methyl ketones and benzylamines via N-heterocyclic carbene-catalysis. Catal. Commun., 2019, 125, 26-31.
[http://dx.doi.org/10.1016/j.catcom.2019.03.009]
[189]
Qu, J.; Wu, P.; Tang, D.; Meng, X.; Chen, Y.; Guo, S.; Chen, B. I2-Catalyzed diamination of acetyl-compounds for the synthesis of multi-substituted imidazoles. New J. Chem., 2015, 39(6), 4235-4239.
[http://dx.doi.org/10.1039/C5NJ00910C]
[190]
Tang, D.; Li, X.L.; Guo, X.; Wu, P.; Li, J.H.; Wang, K.; Jing, H.W.; Chen, B.H. Copper and zinc co-catalyzed synthesis of imidazoles via the activation of sp3 C–H and N–H bonds. Tetrahedron, 2014, 70(26), 4038-4042.
[http://dx.doi.org/10.1016/j.tet.2014.04.054]
[191]
Zhou, X.; Ma, H.; Shi, C.; Zhang, Y.; Liu, X.; Huang, G. Facile synthesis of polysubstituted imidazoles through CBr4-mediated tandem cyclization of amidines with 1,3-dicarbonyl compounds or ketones. Eur. J. Org. Chem., 2017, 2017(2), 237-240.
[http://dx.doi.org/10.1002/ejoc.201601428]
[192]
Zhang, X.; Wu, P.; Fu, Y.; Zhang, F.; Chen, B. A practical metal-free route to 1,2,4,5-tetrasubstituted imidazoles derivatives from the annulation of amidines and β-keto esters. Tetrahedron Lett., 2017, 58(9), 870-873.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.052]
[193]
Liu, X.; Wang, D.; Chen, B. Iron(III)-catalyzed synthesis of multi-substituted imidazoles via [3+2] cycloaddition reaction of nitroolefins and N-aryl benzamidines. Tetrahedron, 2013, 69(45), 9417-9421.
[http://dx.doi.org/10.1016/j.tet.2013.08.077]
[194]
Tang, D.; Wu, P.; Liu, X.; Chen, Y.X.; Guo, S.B.; Chen, W.L.; Li, J.G.; Chen, B.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3+2] cycloadditions. J. Org. Chem., 2013, 78(6), 2746-2750.
[http://dx.doi.org/10.1021/jo302555z] [PMID: 23409756]
[195]
Kumar, T.; Verma, D.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Org. Biomol. Chem., 2015, 13(7), 1996-2000.
[http://dx.doi.org/10.1039/C4OB02561J] [PMID: 25573664]
[196]
Gopi, E.; Kumar, T.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: Synthesis and trypanocidal activity studies. Org. Biomol. Chem., 2015, 13(38), 9862-9871.
[http://dx.doi.org/10.1039/C5OB01444A] [PMID: 26288376]
[197]
Kalhor, M.; Seyedzade, Z.; Zarnegar, Z. (NH4)2Ce(NO3)6/HNO3 as a high-performance oxidation catalyst for the one-step, solvent-free synthesis of dicyano imidazoles. Polycycl. Aromat. Compd., 2021, 41(7), 1506-1514.
[http://dx.doi.org/10.1080/10406638.2019.1686402]
[198]
Kalhor, M.; Samiei, S.; Mirshokraei, S.A. Microwave-assisted one-step rapid synthesis of dicyano imidazoles by HNO3 as a high efficient promoter. Green Chem. Lett. Rev., 2021, 14(3), 500-508.
[http://dx.doi.org/10.1080/17518253.2021.1943005]
[199]
Huang, X.; Cong, X.; Mi, P.; Bi, X. Azomethine-isocyanide [3+2] cycloaddition to imidazoles promoted by silver and DBU. Chem. Commun., 2017, 53(27), 3858-3861.
[http://dx.doi.org/10.1039/C7CC00772H] [PMID: 28317960]
[200]
Hu, Z.; Dong, J.; Xu, X. Silver-catalyzed [3+2] cycloaddition of azomethine ylides with isocyanides for imidazole synthesis. Adv. Synth. Catal., 2017, 359(20), 3585-3591.
[http://dx.doi.org/10.1002/adsc.201700447]
[201]
Hsu, M.Y.; Dietrich, J.; Hulme, C.; Shaw, A.Y. Synthesis of di- and tri-Substituted Imidazole-4-carboxylates via PBu3-Mediated [3+2] cycloaddition. Synth. Commun., 2013, 43(11), 1538-1542.
[http://dx.doi.org/10.1080/00397911.2011.644846]
[202]
Zhao, Y.; Hu, Y.; Li, X.; Wan, B. Tf2NH-catalyzed formal [3+2] cycloaddition of oxadiazolones with ynamides: A simple access to aminoimidazoles. Org. Biomol. Chem., 2017, 15(16), 3413-3417.
[http://dx.doi.org/10.1039/C7OB00701A] [PMID: 28383597]
[203]
Hao, W.; Jiang, Y.; Cai, M. Synthesis of indolyl imidazole derivatives via base-promoted tandem reaction of N-[2-(1-alkynyl)phenyl]carbodiimides with isocyanides. J. Org. Chem., 2014, 79(8), 3634-3640.
[http://dx.doi.org/10.1021/jo402552c] [PMID: 24650146]
[204]
Kuruba, B.K.; Vasanthkumar, S.; Emmanuvel, L. Cu(OTf)2-catalyzed synthesis of highly substituted 1-methoxy imidazoles via (3+2) cycloaddition between imino carbenoids and nitriles. Synth. Commun., 2016, 46(9), 799-804.
[http://dx.doi.org/10.1080/00397911.2016.1176200]
[205]
Alzieu, T.; Lehmann, J.; Naidu, A.B.; Martin, R.E.; Britton, R. Converting oxazoles into imidazoles: New opportunities for diversity-oriented synthesis. Chem. Commun., 2014, 50(15), 1867-1870.
[http://dx.doi.org/10.1039/C3CC48467J] [PMID: 24402236]
[206]
Krasavin, M.; Safrygin, A.; Krivosheyeva, E.; Dar’in, D. Efficient conversion of tertiary propargylamides into imidazoles via hydroamination-cyclization. Synthesis, 2018, 50(15), 3048-3058.
[http://dx.doi.org/10.1055/s-0036-1591599]
[207]
Li, Y.; Fu, Y.; Ren, C.; Tang, D.; Wu, P.; Meng, X.; Chen, B. Copper-catalyzed oxidative coupling reaction of α,β-unsaturated aldehydes with amidines: Synthesis of 1,2,4-trisubstituted-1H-imidazole-5-carbaldehydes. Org. Chem. Front., 2015, 2(12), 1632-1636.
[http://dx.doi.org/10.1039/C5QO00285K]
[208]
Wang, C.; Jiang, H.; Chen, W.; Dong, J.; Chen, Z.; Cao, H. Silver-catalyzed [3 + 2] domino reaction: An efficient strategy to synthesize imidazole-5-carbaldehydes. Org. Biomol. Chem., 2017, 15(31), 6463-6466.
[http://dx.doi.org/10.1039/C7OB01242J] [PMID: 28650499]
[209]
Luo, J.; Chen, W.; Shao, J.; Liu, X.; Shu, K.; Tang, P.; Yu, Y. Synthesis of poly-functionalized imidazoles via vinyl azides annulation. RSC Adv., 2015, 5(69), 55808-55811.
[http://dx.doi.org/10.1039/C5RA07320K]
[210]
Adiyala, P.R.; Borra, S.; Kamal, A.; Maurya, R.A. Access to imidazole derivatives by silver(I) carbonate mediated coupling of vinyl azides with secondary amines. Eur. J. Org. Chem., 2016, 2016(7), 1269-1273.
[http://dx.doi.org/10.1002/ejoc.201600015]
[211]
Dukanya, D.; Swaroop, T.R.; Rangappa, S.; Rangappa, K.S.; Basappa, B. Cyclization of activated methylene isocyanides with methyl N(N),N′-Di(tri)substituted carbamimidothioate: A novel entry for the synthesis of N,1-Aryl-4-tosyl/ethoxycarbonyl-1H-imidazol-5-amines. SynOpen, 2019, 3(3), 71-76.
[http://dx.doi.org/10.1055/s-0039-1690328]
[212]
Harisha, M.B.; Dhanalakshmi, P.; Suresh, R.; Kumar, R.R.; Muthusubramanian, S.; Bhuvanesh, N. TMSOTf-catalysed synthesis of 2,4,5-trisubstituted imidazoles from vinyl azides and nitriles. ChemistrySelect, 2019, 4(10), 2954-2958.
[http://dx.doi.org/10.1002/slct.201801543]
[213]
Jin, H-W.; Jia, J-H.; Yu, C.; Xu, M.; Ma, J-W. Synthesis of imidazole derivatives by cascade reaction: Base-mediated addition/alkyne hydroamination of propargylamines and carbodiimides. Synthesis, 2015, 47(22), 3473-3478.
[http://dx.doi.org/10.1055/s-0034-1378787]
[214]
Das, U.K.; Shimon, L.J.W.; Milstein, D. Imidazole synthesis by transition metal free, base-mediated deaminative coupling of benzylamines and nitriles. Chem. Commun., 2017, 53(98), 13133-13136.
[http://dx.doi.org/10.1039/C7CC08322J] [PMID: 29168852]
[215]
Chen, X.Y.; Englert, U.; Bolm, C. Base-mediated syntheses of Di- and trisubstituted imidazoles from amidine hydrochlorides and bromoacetylenes. Chemistry, 2015, 21(38), 13221-13224.
[http://dx.doi.org/10.1002/chem.201502707] [PMID: 26332229]
[216]
Tong, S.; Wang, Q.; Wang, M.X.; Zhu, J. Tuning the reactivity of isocyano group: Synthesis of imidazoles and imidazoliums from propargylamines and isonitriles in the presence of multiple catalysts. Angew. Chem. Int. Ed., 2015, 54(4), 1293-1297.
[http://dx.doi.org/10.1002/anie.201410113] [PMID: 25430618]
[217]
Wu, P.; Zhang, L.; Zhang, X.; Guo, X.; Chen, B. A transition-metal-free synthesis of multisubstituted imidazoles. Chin. J. Chem., 2016, 34(4), 363-367.
[http://dx.doi.org/10.1002/cjoc.201500759]
[218]
Wang, Y.; Li, J.; He, Y.; Xie, Y.; Wang, H.; Pan, Y. Synthesis of polysubstituted imidazoles and pyridines via samarium(III) triflate-catalyzed [2+2+1] and [4+2] annulations of unactivated aromatic alkenes with azides. Adv. Synth. Catal., 2015, 357(14-15), 3229-3241.
[http://dx.doi.org/10.1002/adsc.201500584]
[219]
Wang, H.; Kumar, R.K.; Yu, Y.; Zhang, L.; Liu, Z.; Liao, P.; Bi, X. Silver-catalyzed isocyanide-isocyanide [3+2] cross-cycloaddition involving 1,2-group migration: Efficient synthesis of trisubstituted lmidazoles. Chem. Asian J., 2016, 11(20), 2841-2845.
[http://dx.doi.org/10.1002/asia.201601024] [PMID: 27459607]
[220]
Wu, P.; Qu, J.; Li, Y.; Guo, X.; Tang, D.; Meng, X.; Yan, R.; Chen, B. Iron(III)/iodine-catalyzed C(sp2)-H activation of α,β-unsaturated aldehydes/ketones with amidines: Synthesis of 1,2,4,5-tetrasubstituted imidazoles. Adv. Synth. Catal., 2015, 357(18), 3868-3874.
[http://dx.doi.org/10.1002/adsc.201500701]
[221]
Zhou, X.; Jiang, Z.; Xue, L.; Lu, P.; Wang, Y. Preparation of 1,2,5-trisubstituted 1H-imidazoles from ketenimines and propargylic amines by silver-catalyzed or iodine-promoted electrophilic cyclization reaction of alkynes. Eur. J. Org. Chem., 2015, 2015(26), 5789-5797.
[http://dx.doi.org/10.1002/ejoc.201500704]
[222]
Deng, Q.H.; Zou, Y.Q.; Lu, L.Q.; Tang, Z.L.; Chen, J.R.; Xiao, W.J. De novo synthesis of imidazoles by visible-light-induced photocatalytic aerobic oxidation/[3+2] cycloaddition/aromatization cascade. Chem. Asian J., 2014, 9(9), 2432-2435.
[http://dx.doi.org/10.1002/asia.201402443] [PMID: 24986800]
[223]
Beuvin, M.; Manneveau, M.; Diab, S.; Picard, B.; Sanselme, M.; Piettre, S.R.; Legros, J.; Chataigner, I. New synthesis of imidazole derivatives from cyanobenzenes. Tetrahedron Lett., 2018, 59(51), 4487-4491.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.020]
[224]
Tian, Y.; Qin, M.; Yang, X.; Zhang, X.; Liu, Y.; Guo, X.; Chen, B. Acid-catalyzed synthesis of imidazole derivatives via N-phenylbenzimidamides and sulfoxonium ylides cyclization. Tetrahedron, 2019, 75(19), 2817-2823.
[http://dx.doi.org/10.1016/j.tet.2019.04.004]
[225]
Pandya, A.N.; Agrawal, D.K. A concise synthesis of highly substituted imidazoles via copper-mediated oxidative C–H functionalization. Tetrahedron Lett., 2014, 55(10), 1835-1838.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.136] [PMID: 24882889]
[226]
Takashima, R.; Tsunekawa, K.; Shinozaki, M.; Suzuki, Y. Selective synthesis of 1,4,5-trisubstituted imidazoles from α-imino ketones prepared by N-heterocyclic-carbene-catalyzed aroylation. Tetrahedron, 2018, 74(18), 2261-2267.
[http://dx.doi.org/10.1016/j.tet.2018.03.048]
[227]
Hu, S.; Yang, H.; Chen, Z.; Wu, X.F. Base-mediated [3+2] annulation of trifluoroacetimidoyl chlorides and isocyanides: An improved approach for regioselective synthesis of 5-trifluoromethyl-imidazoles. Tetrahedron, 2020, 76(19), 131168.
[http://dx.doi.org/10.1016/j.tet.2020.131168]
[228]
Tang, B.Z.; Hao, W.J.; Li, J.Z.; Zhu, S.S.; Tu, S.J.; Jiang, B. Stereoselective synthesis of fully substituted ethylenes via an Ag-catalyzed 1,6-nucleophilic addition/annulation cascade. Chem. Commun., 2020, 56(56), 7749-7752.
[http://dx.doi.org/10.1039/C9CC10022A] [PMID: 32662779]
[229]
Lv, L.; Chen, Y.; Shatskiy, A.; Liu, J.Q.; Liu, X.; Kärkäs, M.D.; Wang, X.S. Silver‐catalyzed [3+1+1] annulation of nitrones with isocyanoacetates as an approach to 1,4,5‐trisubstituted imidazoles. Eur. J. Org. Chem., 2021, 2021(6), 964-968.
[http://dx.doi.org/10.1002/ejoc.202001536]
[230]
Makra, Z.; Bényei, A.; Puskás, L.G.; Kanizsai, I. One-pot access towards 4,5-disubstituted 2-amino-1H-imidazoles starting from Mannich substrates and their transformation utilities. Eur. J. Org. Chem., 2020, 2020(46), 7184-7196.
[http://dx.doi.org/10.1002/ejoc.202001253]
[231]
Gao, P.; Chen, H.; Bai, Z.J.; Zhang, S.; Zhao, M.N.; Yang, D.; Li, Y.; Zhang, J.; Wang, X. Iodine-mediated cyclization of enamines to imidazole-4-carboxylic derivatives with sequential removal of nitrogen atoms from TMSN 3. J. Org. Chem., 2021, 86(15), 10492-10500.
[http://dx.doi.org/10.1021/acs.joc.1c01145] [PMID: 34308649]
[232]
Dai, L.; Yu, S.; Lv, N.; Ye, X.; Shao, Y.; Chen, Z.; Chen, J. Synthesis of imidazoles and oxazoles via a palladium-catalyzed decarboxylative addition/cyclization reaction sequence of aromatic carboxylic acids with functionalized aliphatic nitriles. Org. Lett., 2021, 23(15), 5664-5668.
[http://dx.doi.org/10.1021/acs.orglett.1c01762] [PMID: 34251821]
[233]
Wang, W.; Zhang, S.; Shi, G.; Chen, Z. Electrochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles from enamines and benzylamines. Org. Biomol. Chem., 2021, 19(30), 6682-6686.
[http://dx.doi.org/10.1039/D1OB00942G] [PMID: 34282817]
[234]
Zhan, Z.; Zhang, M.; Jiang, P.; He, J.; Luo, N.; Wang, H.; Wang, M.; Huang, G. Selective synthesis of trisubstituted imidazoles by iodine‐catalyzed [3+2] cycloadditions. Asian J. Org. Chem., 2021, 10(7), 1801-1813.
[http://dx.doi.org/10.1002/ajoc.202100287]
[235]
Strelnikova, J.O.; Koronatov, A.N.; Rostovskii, N.V.; Khlebnikov, A.F.; Khoroshilova, O.V.; Kryukova, M.A.; Novikov, M.S. Rhodium-catalyzed denitrogenative diazole–triazole coupling toward aza-bridged structures and imidazole-based chelating ligands. Org. Lett., 2021, 23(11), 4173-4178.
[http://dx.doi.org/10.1021/acs.orglett.1c01092] [PMID: 33999636]
[236]
Pedroso de Lima, F.; Lence, E.; Suárez de Cepeda, P.; Correia, C.; Carvalho, M.A.; González-Bello, C.; Proença, M.F. Regioselective synthesis of 2-Aryl-5-cyano-1-(2-hydroxyaryl)-1H-imidazole-4-carboxamides self-assisted by a 2-hydroxyaryl group. ACS Omega, 2022, 7(27), 23289-23301.
[http://dx.doi.org/10.1021/acsomega.2c01399] [PMID: 35847303]
[237]
Chen, X.; Wang, Z.; Huang, H.; Deng, G-J. Elemental sulfur-promoted aerobic cyclization of ketones and aliphatic amines for synthesis of tetrasubstituted imidazoles. Adv. Synth. Catal., 2018, 360(20), 4017-4022.
[http://dx.doi.org/10.1002/adsc.201800765]
[238]
Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. An electrochemical oxidative multicomponent cascade annulation of ketones and amines used to produce imidazoles. Green Chem., 2020, 22(11), 3416-3420.
[http://dx.doi.org/10.1039/D0GC00375A]
[239]
Wang, C.; Lai, J.; Chen, C.; Li, X.; Cao, H. Ag-catalyzed tandem three-component reaction toward the synthesis of multisubstituted imidazoles. J. Org. Chem., 2017, 82(24), 13740-13745.
[http://dx.doi.org/10.1021/acs.joc.7b02612] [PMID: 29161038]
[240]
Wang, C.; Yu, Y.; Su, Z.; Li, X.; Cao, H. Metal-free C–B bond cleavage: An acid catalyzed three-component reaction construction of imidazole-containing triarylmethanes. Org. Lett., 2019, 21(12), 4420-4423.
[http://dx.doi.org/10.1021/acs.orglett.9b00969] [PMID: 31184175]
[241]
Liu, W.; He, J.; Liu, X.; Yu, Y.; Pei, Y.; Zhu, B.; Cao, H. Controllable site-selective construction of 4- and 5-hydroxyalkyl-substituted imidazoles from amidines, ynals, and water. J. Org. Chem., 2020, 85(23), 14954-14962.
[http://dx.doi.org/10.1021/acs.joc.0c01715] [PMID: 33147029]
[242]
Melone, L.; Chaskar, A.; Pardeshi, S.; Sathe, P.; Vadagaonkar, K. Copper-catalyzed simultaneous activation of C–H and N–H bonds: Three-component one-pot cascade synthesis of multisubstituted imidazoles. Synthesis, 2018, 50(2), 361-370.
[http://dx.doi.org/10.1055/s-0036-1588585]
[243]
Xue, W.J.; Li, H.Z.; Gao, F.F.; Wu, A. Synthesis of trisubstituted imidazoles via a convergent reaction network from methyl ketones and benzoins. Tetrahedron, 2014, 70(2), 239-244.
[http://dx.doi.org/10.1016/j.tet.2013.11.080]
[244]
Pusch, S.; Opatz, T. A photochemical one-pot three-component synthesis of tetrasubstituted imidazoles. Org. Lett., 2014, 16(20), 5430-5433.
[http://dx.doi.org/10.1021/ol502667h] [PMID: 25286171]
[245]
Rajaguru, K.; Suresh, R.; Mariappan, A.; Muthusubramanian, S.; Bhuvanesh, N. Erbium triflate promoted multicomponent synthesis of highly substituted imidazoles. Org. Lett., 2014, 16(3), 744-747.
[http://dx.doi.org/10.1021/ol403456b] [PMID: 24428260]
[246]
Sapuppo, G.; Wang, Q.; Swinnen, D.; Zhu, J. Copper-catalyzed three-component synthesis of 5-acetamidoimidazoles from carbodiimides, acyl chlorides and isocyanides. Org. Chem. Front., 2014, 1(3), 240-246.
[http://dx.doi.org/10.1039/c4qo00034j]
[247]
Khalafi-Nezhad, A.; Shekouhy, M.; Sharghi, H.; Aboonajmi, J.; Zare, A. A new more atom-efficient multi-component approach to tetrasubstituted imidazoles: One-pot condensation of nitriles, amines and benzoin. RSC Adv., 2016, 6(71), 67281-67289.
[http://dx.doi.org/10.1039/C6RA11171H]
[248]
Xie, Z.; Deng, J.; Qiu, Z.; Li, J.; Zhu, Q. Copper-mediated C(sp3)–H azidation with Me3SiN3: Synthesis of imidazoles from ketones and aldehydes. Chem. Commun., 2016, 52(38), 6467-6470.
[http://dx.doi.org/10.1039/C6CC01863G] [PMID: 27101465]
[249]
Saito, A.; Kambara, Y.; Yagyu, T.; Noguchi, K.; Yoshimura, A.; Zhdankin, V.V. Metal-free [2+2+1] annulation of alkynes, nitriles and nitrogen atoms from iminoiodanes for synthesis of highly substituted imidazoles. Adv. Synth. Catal., 2015, 357(4), 667-671.
[http://dx.doi.org/10.1002/adsc.201500032]
[250]
Pardeshi, S.D.; Vadagaonkar, K.S.; Lade, J.J.; Melone, L.; Chaskar, A.C. An efficient synthesis of 1,2,4-trisubstituted imidazoles from arylacetic acids and N -arylbenzamidines via simultaneous C-H and N-H bond activation. ChemistrySelect, 2017, 2(19), 5409-5413.
[http://dx.doi.org/10.1002/slct.201700522]
[251]
Rossa, T.A.; Fantinel, M.; Bortoluzzi, A.J.; Sá, M.M. Multicomponent synthesis of structurally diverse imidazoles featuring azirines, amines and aldehydes. Eur. J. Org. Chem., 2018, 2018(30), 4171-4177.
[http://dx.doi.org/10.1002/ejoc.201800687]
[252]
Wu, J.; Zhang, H.; Ding, X.; Tan, X.; Shen, H.C.; Chen, J.; He, W.; Deng, H.; Song, L.; Cao, W. Efficient synthesis of fluoroalkylated imidazoles via a metal-free cascade michael addition/azidation/cycloamination process. Eur. J. Org. Chem., 2018, 2018(47), 6758-6763.
[http://dx.doi.org/10.1002/ejoc.201801310]
[253]
Shaker, M.; Davoodnia, A.; Vahedi, H.; Lari, J.; Roshani, M.; Mallaeke, H. Synthesis of some new 1,3,4,5-tetrasubstituted-1H-imidazole-2(3H)-thiones via a facile one-pot three-component reaction in the presence of solvent and heteropolyacids. J. Heterocycl. Chem., 2017, 54(1), 313-317.
[http://dx.doi.org/10.1002/jhet.2585]
[254]
Liu, X.; Wang, D.; Chen, Y.; Tang, D.; Chen, B. Iron(III)-catalyzed synthesis of 1,2,4-trisubstituted imidazoles through the reactions of amidines and aldehydes in air. Adv. Synth. Catal., 2013, 355(14-15), 2798-2802.
[http://dx.doi.org/10.1002/adsc.201300590]
[255]
Geigle, S.N.; Petersen, A.C.; Satz, A.L. Development of DNA-compatible van leusen three-component imidazole synthesis. Org. Lett., 2019, 21(22), 9001-9004.
[http://dx.doi.org/10.1021/acs.orglett.9b03406] [PMID: 31664846]
[256]
Geng, X.; Wang, C.; Huang, C.; Bao, Y.; Zhao, P.; Zhou, Y.; Wu, Y.D.; Feng, L.; Wu, A.X. Employing TosMIC as a C1N1 “two-atom synthon” in imidazole synthesis by neighboring group assistance strategy. Org. Lett., 2020, 22(1), 140-144.
[http://dx.doi.org/10.1021/acs.orglett.9b04060] [PMID: 31858804]
[257]
de Toledo, I.; Grigolo, T.A.; Bennett, J.M.; Elkins, J.M.; Pilli, R.A. Modular Synthesis of Di- and trisubstituted imidazoles from ketones and aldehydes: A route to kinase inhibitors. J. Org. Chem., 2019, 84(21), 14187-14201.
[http://dx.doi.org/10.1021/acs.joc.9b01844] [PMID: 31460764]
[258]
Wang, Q.; Xi Chen Wang, X.G.; Liu, H.C.; Liang, Y.M. Base-promoted nitrile-alkyne domino-type cyclization: A general method to trisubstituted imidazoles. Org. Lett., 2019, 21(24), 9874-9877.
[http://dx.doi.org/10.1021/acs.orglett.9b03782] [PMID: 31820647]
[259]
Camp, J.E.; Shabalin, D.A.; Dunsford, J.J.; Ngwerume, S.; Saunders, A.R.; Gill, D.M. Synthesis of 2,4-disubstituted imidazoles via nucleophilic catalysis. Synlett, 2020, 31(8), 797-800.
[http://dx.doi.org/10.1055/s-0039-1690832]
[260]
Mehrabi, H.; Hajipour, M.; Rezazadeh-Jabalbarezi, F.; Alizadeh-Bami, F. Synthesis of 1,2,4,5‐tetrasubstituted imidazoles and 2,4,5,6‐tetrasubstituted pyrimidines: Three‐component, the one‐pot reaction of arylamidines, malononitrile, and arylglyoxals or aryl aldehydes. J. Heterocycl. Chem., 2020, 57, 4053.
[http://dx.doi.org/10.1002/jhet.4053]
[261]
Asressu, K.H.; Chan, C.K.; Wang, C.C. TMSOTf-catalyzed synthesis of trisubstituted imidazoles using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. RSC Adv., 2021, 11(45), 28061-28071.
[http://dx.doi.org/10.1039/D1RA05802A] [PMID: 35480777]
[262]
Aly, S.; Romashko, M.; Arndtsen, B.A. Multicomponent synthesis of substituted and fused-ring imidazoles via phospha-münchnone cycloaddition. J. Org. Chem., 2015, 80(5), 2709-2714.
[http://dx.doi.org/10.1021/jo5028936] [PMID: 25688846]
[263]
Sun, W.; Zhang, M.; Li, P.; Li, Y. One-pot synthesis of polysubstituted imidazoles based on Pd(OAc)2/Ce(SO4)2/Bi(NO3)3 trimetallic cascade of decarboxylation/wacker-type oxidation/debus–radziszewski reaction. Synthesis, 2019, 51(17), 3221-3230.
[http://dx.doi.org/10.1055/s-0037-1611835]
[264]
Tjutrins, J.; Arndtsen, B.A. A palladium-catalyzed synthesis of (hetero)aryl-substituted imidazoles from aryl halides, imines and carbon monoxide. Chem. Sci., 2017, 8(2), 1002-1007.
[http://dx.doi.org/10.1039/C6SC04371B] [PMID: 28451237]
[265]
Mehrabi, H.; Alizadeh-Bami, F.; Ranjbar-Karimi, R. Catalyst-free synthesis of 1,2,4,5-tetrasubstituted imidazoles from arylamins, benzonitriles, arylglyoxals, and Meldrum’s acid. Tetrahedron Lett., 2018, 59(20), 1924-1927.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.093]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy