Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Oligomers Electrosynthesis: A Selective and Greener Synthetic Tool

Author(s): Vincenzo Scarano*, Leonardo Mattiello and Daniele Rocco

Volume 28, Issue 2, 2024

Published on: 18 October, 2023

Page: [89 - 104] Pages: 16

DOI: 10.2174/0113852728270655231009092210

Price: $65

Abstract

Oligomeric compounds can be considered from two points of view: polymer chemistry often sees them as undesired by-products of polymerization processes or, more fruitfully, synthesizes them as structural models for polymers, while organic chemistry synthesizes oligomers, with a typical bottom-up approach, starting from the respective monomers. Conjugated oligomers play a fundamental role in the field of organic semiconductors and therefore in the field of industrial and high-tech applications. Electrochemistry can make a significant contribution to the field of oligomers by rendering the syntheses more expeditious in comparison with the classical organic ones. The electrochemical approach may offer several advantages over the traditional organic synthesis. For example, cleaner and more sustainable syntheses and simpler and shorter synthetic pathways. This review outlines the application of electrochemistry techniques in the synthesis of oligomers.

Graphical Abstract

[1]
Namazi, H. Polymers in our daily life. Bioimpacts, 2017, 7(2), 73-74.
[http://dx.doi.org/10.15171/bi.2017.09] [PMID: 28752070]
[2]
Khare, R.; Khare, S. Polymer and its effect on environment. J. Indian Chem. Soc., 2023, 100(1), 100821.
[http://dx.doi.org/10.1016/j.jics.2022.100821]
[3]
Characteristics, Applications and Properties of Polymers. Polymer Engineering Science and Viscoelasticity; Springer US: Boston, MA, 2008, pp. 55-97.
[http://dx.doi.org/10.1007/978-0-387-73861-1_3]
[4]
Pearce, A.K.; O’Reilly, R.K. Polymers for biomedical applications: The importance of hydrophobicity in directing biological interactions and application efficacy. Biomacromolecules, 2021, 22(11), 4459-4469.
[http://dx.doi.org/10.1021/acs.biomac.1c00434] [PMID: 34495643]
[5]
Fornari, A.; Rossi, M.; Rocco, D.; Mattiello, L. A review of applications of nanocellulose to preserve and protect cultural heritage wood, paintings, and historical papers. Appl. Sci., 2022, 12(24), 12846.
[http://dx.doi.org/10.3390/app122412846]
[6]
Kausar, A. Prominence of conjugated polymers. Conducting Polymer-Based Nanocomposites; Elsevier, 2021, pp. 1-25.
[http://dx.doi.org/10.1016/B978-0-12-822463-2.00009-9]
[7]
Blom, P.W.M. Polymer electronics: To be or not to be? Adv. Mater. Technol., 2020, 5(6), 2000144.
[http://dx.doi.org/10.1002/admt.202000144]
[8]
Naka, K. Monomers, oligomers, polymers, and macromolecules (Overview).Encyclopedia of Polymeric Nanomaterials; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014, pp. 1-6.
[http://dx.doi.org/10.1007/978-3-642-36199-9_237-1]
[9]
Helfand, E. Theory of inhomogeneous polymers: Fundamentals of the Gaussian random-walk model. J. Chem. Phys., 1975, 62(3), 999-1005.
[http://dx.doi.org/10.1063/1.430517]
[10]
Chang, A.B.; Lin, T.P.; Thompson, N.B.; Luo, S.X.L.; Liberman-Martin, A.L.; Chen, H.Y.; Lee, B.; Grubbs, R.H. Design, synthesis, and self-assembly of polymers with tailored graft distributions. J. Am. Chem. Soc., 2017, 139(48), 17683-17693.
[http://dx.doi.org/10.1021/jacs.7b10525] [PMID: 29117478]
[11]
Deguchi, T.; Uehara, E. Statistical and dynamical properties of topological polymers with graphs and ring polymers with knots. Polymers, 2017, 9(12), 252.
[http://dx.doi.org/10.3390/polym9070252] [PMID: 30970929]
[12]
Müllen, K.; Wegner, G. ,Eds.; Electronic Materials: The Oligomer Approach; Wiley, 1998.
[http://dx.doi.org/10.1002/9783527603220]
[13]
Duda, E.; Madayanad Suresh, S.; Hall, D.; Bagnich, S.; Saxena, R.; Cordes, D.B.; Slawin, A.M.Z.; Beljonne, D.; Olivier, Y.; Köhler, A.; Zysman-Colman, E. An oligomer approach for blue thermally activated delayed fluorescent emitters based on twisted donor-acceptor units. Chem. Mater., 2023, 35(5), 2027-2037.
[http://dx.doi.org/10.1021/acs.chemmater.2c03438] [PMID: 36936179]
[14]
Ma, C.; Fang, P.; Liu, Z.R.; Xu, S.S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.C.; Zeng, C.; Mei, T.S. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci. Bull., 2021, 66(23), 2412-2429.
[http://dx.doi.org/10.1016/j.scib.2021.07.011] [PMID: 36654127]
[15]
Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem., 2010, 12(12), 2099.
[http://dx.doi.org/10.1039/c0gc00382d]
[16]
Cardoso, D.S.P.; Šljukić, B.; Santos, D.M.F.; Sequeira, C.A.C. Organic electrosynthesis: From laboratorial practice to industrial applications. Org. Process Res. Dev., 2017, 21(9), 1213-1226.
[http://dx.doi.org/10.1021/acs.oprd.7b00004]
[17]
Cembellín, S.; Batanero, B. Organic electrosynthesis towards sustainability: Fundamentals and greener methodologies. Chem. Rec., 2021, 21(9), 2453-2471.
[http://dx.doi.org/10.1002/tcr.202100128] [PMID: 33955158]
[18]
Scarano, V.; Bortolami, M.; Pandolfi, F.; Petrucci, R.; Rocco, D.; Zollo, G.; Feroci, M. Reaction of electrogenerated cyanomethyl anion with cyclohexylisocyanate: Syn-thesis of N-(cyclohexylcarbamoyl)acetamide. An unexpected product. J. Electrochem. Soc., 2020, 167(15), 155514.
[http://dx.doi.org/10.1149/1945-7111/abb8f4]
[19]
Lu, G.; Shi, G. Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem., 2006, 586(2), 154-160.
[http://dx.doi.org/10.1016/j.jelechem.2005.10.020]
[20]
Qu, L.; Shi, G. Crystalline oligopyrene nanowires with multicolored emission. Chem. Commun., 2004, 2800(24), 2800-2801.
[http://dx.doi.org/10.1039/b412638f] [PMID: 15599413]
[21]
Lu, B.; Xu, J.; Fan, C.; Jiang, F.; Miao, H. Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission. Electrochim. Acta, 2008, 54(2), 334-340.
[http://dx.doi.org/10.1016/j.electacta.2008.07.075]
[22]
Xu, J.; Nie, G.; Zhang, S.; Han, X.; Hou, J.; Pu, S. Electrosyntheses of freestanding polyindole films in boron trifluoride diethyl etherate. J. Polym. Sci. A Polym. Chem., 2005, 43(7), 1444-1453.
[http://dx.doi.org/10.1002/pola.20610]
[23]
Nie, G.; Xu, J.; Zhang, S.; Han, X. Electrodeposition of high-quality polycarbazole films in composite electrolytes of boron trifluoride diethyl etherate and ethyl ether. J. Appl. Electrochem., 2006, 36(8), 937-944.
[http://dx.doi.org/10.1007/s10800-006-9151-x]
[24]
Xu, J.; Zhang, Y.; Hou, J.; Wei, Z.; Pu, S.; Zhao, J.; Du, Y. Low potential electrosyntheses of free-standing polyfluorene films in boron trifluoride diethyl etherate. Eur. Polym. J., 2006, 42(5), 1154-1163.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.10.014]
[25]
Wang, Z.; Lai, C.; Lu, B.; Guo, W.; Yue, R.; Pei, M.; Xu, J. Electrosynthesis of blue-light-emitting oligo(1-bromopyrene) with favorable solubility. J. Solid State Electrochem., 2012, 16(5), 1907-1915.
[http://dx.doi.org/10.1007/s10008-011-1588-0]
[26]
Jian, N.; Lin, K.; Guo, B.; Zhang, G.; Liu, X.; Zou, L.; Lu, B.; Xu, J. A reusable fluorescent sensor from electrosynthesized water-soluble oligo(1-pyrenesulfonic acid) for effective detection of Fe3+. New J. Chem., 2018, 42(24), 19450-19457.
[http://dx.doi.org/10.1039/C8NJ05000G]
[27]
Aguilar-Martínez, M.; Reyna-González, J.M.; Bautista-Martínez, J.A.; Palomar, C.; Rivera, E. Electrosynthesis, characterization, thermal, optical, electrochemical proper-ties and conductivity of conjugated oligomers bearing pyrenyl groups. Polym. Bull., 2008, 61(4), 461-472.
[http://dx.doi.org/10.1007/s00289-008-0966-y]
[28]
Giraudeau, A.; Ruhlmann, L.; El Kahef, L.; Gross, M. Electrosynthesis and characterization of symmetrical and unsymmetrical linear porphyrin dimers and their precur-sor monomers. J. Am. Chem. Soc., 1996, 118(12), 2969-2979.
[http://dx.doi.org/10.1021/ja9523956]
[29]
Ruhlmann, L.; Gross, M.; Giraudeau, A. Bisporphyrins with bischlorin features obtained by direct anodic coupling of porphyrins. Chemistry, 2003, 9(20), 5085-5096.
[http://dx.doi.org/10.1002/chem.200304924] [PMID: 14562326]
[30]
Schaming, D.; Marggi-Poullain, S.; Ahmed, I.; Farha, R.; Goldmann, M.; Gisselbrecht, J.P.; Ruhlmann, L. Electrosynthesis and electrochemical properties of porphyrin dimers with pyridinium as bridging spacer. New J. Chem., 2011, 35(11), 2534.
[http://dx.doi.org/10.1039/c1nj20177h]
[31]
Schaming, D.; Xia, Y.; Thouvenot, R.; Ruhlmann, L. An original electrochemical pathway for the synthesis of porphyrin oligomers. Chemistry, 2013, 19(5), 1712-1719.
[http://dx.doi.org/10.1002/chem.201203271] [PMID: 23212927]
[32]
Pandolfi, F.; Rocco, D.; Mattiello, L. Synthesis and characterization of new D-π-A and A-π-D-π-A type oligothiophene derivatives. Org. Biomol. Chem., 2019, 17(11), 3018-3025.
[http://dx.doi.org/10.1039/C8OB03077D] [PMID: 30816390]
[33]
Feroci, M.; Civitarese, T.; Pandolfi, F.; Petrucci, R.; Rocco, D.; Zane, D.; Zollo, G.; Mattiello, L. Electrochemical studies of new donor‐acceptor oligothiophenes. ChemElectroChem, 2019, 6(15), 4016-4021.
[http://dx.doi.org/10.1002/celc.201900920]
[34]
D’Anna, F.; Pandolfi, F.; Rocco, D.; Marullo, S.; Feroci, M.; Mattiello, L. Solvatochromic behaviour of new donor-acceptor oligothiophenes. New J. Chem., 2021, 45(26), 11636-11643.
[http://dx.doi.org/10.1039/D1NJ01715B]
[35]
Pandolfi, F.; Bortolami, M.; Feroci, M.; Mattiello, L.; Scarano, V.; Rocco, D. Electrochemistry: A useful tool in the synthesis of oligothiophenes. Curr. Org. Chem., 2021, 25(17), 2028-2036.
[http://dx.doi.org/10.2174/1385272825666210715104931]
[36]
Pilo, M.I.; Masolo, E.; Maidich, L.; Manca, P.; Sanna, G.; Spano, N.; Zucca, A. Voltammetric and spectroscopic investigation of electrogenerated oligo-thiophenes: Effect of substituents on the energy-gap value. Appl. Sci., 2022, 12(22), 11714.
[http://dx.doi.org/10.3390/app122211714]
[37]
Camarada, M.B.; Saldías, C.; Castro-Castillo, C.; Angel, F.A. Evaluation of electro-synthesized oligothiophenes as donor materials in vacuum-processed organic photo-voltaic devices. Mater. Lett., 2023, 339, 134114.
[http://dx.doi.org/10.1016/j.matlet.2023.134114]
[38]
Prabhu, S.; Nisha, Y.S.; Arulperumjothi, M.; Jeba, D.S.R.; Manimozhi, V. On detour index of cycloparaphenylene and polyphenylene molecular structures. Sci. Rep., 2021, 11(1), 15264.
[http://dx.doi.org/10.1038/s41598-021-94765-6] [PMID: 34316003]
[39]
Li, C.; Liu, M.; Pschirer, N.G.; Baumgarten, M.; Müllen, K. Polyphenylene-based materials for organic photovoltaics. Chem. Rev., 2010, 110(11), 6817-6855.
[http://dx.doi.org/10.1021/cr100052z] [PMID: 20583837]
[40]
Jones, MB; Kovacic, P Polyphenylenes Comprehensive Polymer Science and Supplements; Elsevier, 1989, pp. 465-472.
[http://dx.doi.org/10.1016/B978-0-08-096701-1.00168-3]
[41]
Bergaoui, S.; Saîd, A.H.; Roudesli, S.; Matoussi, F. Electrosynthesis and characterization of a poly(paraphenylene) deriving from p-fluoroanisole. Electrochim. Acta, 2006, 51(20), 4309-4315.
[http://dx.doi.org/10.1016/j.electacta.2005.12.031]
[42]
Li, C.; Bai, H.; Shi, G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev., 2009, 38(8), 2397-2409.
[http://dx.doi.org/10.1039/b816681c] [PMID: 19623357]
[43]
Nakamura, Y.; Tanaka, K.; Matsumura, Y.; Atobe, M. Flow electrosynthesis and molecular weight control of polyphenylene deriving from 1,4-bis(trimethylsilyl)benzene: Effect of a silyl substituent on the coupling position. Electrochemistry, 2020, 88(4), 336-339.
[http://dx.doi.org/10.5796/electrochemistry.20-00060]
[44]
Chen, G.; Mohanty, A.K.; Misra, M. Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons. Compos., Part B Eng., 2021, 209, 108553.
[http://dx.doi.org/10.1016/j.compositesb.2020.108553]
[45]
Yamamoto, K.; Tsuchida, E.; Nishide, H.; Yoshida, S.; Park, Y.S. Anodic oxidation of diphenyl disulfides for preparation of oligo(p‐phenylene sulfide)s in acidic media. J. Electrochem. Soc., 1992, 139(9), 2401-2406.
[http://dx.doi.org/10.1149/1.2221239]
[46]
Angélica del Valle, M.; Díaz, F.R.; Bodini, M.E.; Alfonso, G.; Soto, G.M.; Borrego, E.D. Electrosynthesis and characterization of o-phenylenediamine oligomers. Polym. Int., 2005, 54(3), 526-532.
[http://dx.doi.org/10.1002/pi.1700]
[47]
Besbes-Hentati, S.; Said, H.; Bouvet, M. Electrosynthesis and structural characterization of a novel aryl ether trimer. Electrochim. Acta, 2007, 52(14), 4715-4723.
[http://dx.doi.org/10.1016/j.electacta.2007.01.023]
[48]
Haj Saïd, A.; Dridi, C.; Roudesli, S.; Matoussi Mhalla, F. Electrochemical synthesis of a polyphenylene deriving from p-methoxytoluene. Eur. Polym. J., 2000, 36(5), 909-914.
[http://dx.doi.org/10.1016/S0014-3057(99)00142-1]
[49]
Said, A.H.; Ayachi, S.; Chefia, I.; Wéry, J.; Alimi, K. Optical and vibrational studies on single walled carbon nanotubes/short oligo-para-methoxy-toluene composite. J. Appl. Polym. Sci., 2011, 122(3), 1889-1897.
[http://dx.doi.org/10.1002/app.34287]
[50]
Amor, S.B.; Said, A.H.; Chemek, M.; Ayachi, S.; Massuyeau, F.; Wéry, J.; Alimi, K.; Roudesli, S. Electrosynthesis and characterization of oligophenylene deriving from 4-(methoxyphenyl)acetonitrile. J. Mol. Struct., 2013, 1031, 186-193.
[http://dx.doi.org/10.1016/j.molstruc.2012.03.050]
[51]
Gong, W.L.; Zhong, F.; Aldred, M.P.; Fu, Q.; Chen, T.; Huang, D.K.; Shen, Y.; Qiao, X-F.; Ma, D.; Zhu, M-Q. Carbazole oligomers revisited: new additions at the carbazole 1- and 8-positions. RSC Advances, 2012, 2(29), 10821.
[http://dx.doi.org/10.1039/c2ra21657d]
[52]
Haque, I.U. Electrodimerization of 2,3,4,9-tetrahydro-1H-carbazole. Bull. Electrochem., 2003, 19, 75-78.
[53]
Fabre-Francke, I.; Zagorska, M.; Louarn, G.; Hapiot, P.; Pron, A.; Sadki, S. Synthesis, electrochemical and spectroscopic investigations of New N-BEDOT derivatives containing anil substituted carbazole subunits. Electrochim. Acta, 2008, 53(22), 6469-6476.
[http://dx.doi.org/10.1016/j.electacta.2008.04.049]
[54]
Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J. Solid State Chem., 2023, 317, 123679.
[http://dx.doi.org/10.1016/j.jssc.2022.123679]
[55]
Simon, P.; Farsang, G.; Amatore, C. Mechanistic investigation of the oxidation of p-anisidine in unbuffered DMF using fast scan rates at ultramicroelectrodes. J. Electroanal. Chem., 1997, 435(1-2), 165-171.
[http://dx.doi.org/10.1016/S0022-0728(97)00284-2]
[56]
Amatore, C.; Farsang, G.; Maisonhaute, E.; Simon, P. Voltammetric investigation of the anodic dimerization of p-halogenoanilines in DMF. J. Electroanal. Chem., 1999, 462(1), 55-62.
[http://dx.doi.org/10.1016/S0022-0728(98)00389-1]
[57]
Pusztai, S.; Pánczél, J.; Dankházi, T.; Farsang, G. The electrodimerization mechanism of 2,4,6-trichloro- and tribromoanilines in unbuffered acetonitrile. J. Electroanal. Chem., 2004, 571(2), 233-239.
[http://dx.doi.org/10.1016/j.jelechem.2004.04.020]
[58]
Del Valle, M.A.; Gacitúa, M.A.; Borrego, E.D.; Zamora, P.P.; Díaz, F.R.; Camarada, M.B. Electro-synthesis and characterization of aniline and o-anisidine oligomers. Int. J. Electrochem. Sci., 2012, 7, 2552-2565.
[59]
Solmaz, A.; İlter, Z.; Kaya, İ. Synthesis, characterization and thermal properties of chalcone methacrylamide polymers containing methoxy group in side chain. J. Polym. Res., 2021, 28(6), 233.
[http://dx.doi.org/10.1007/s10965-021-02592-0]
[60]
Aribi, I.; Ghomrasni, S.; Ayachi, S.; Alimi, K.; Roudesli, S.; Said, A.H. Electrosynthesis, spectral and structural studies of a semi-conducting oligomer deriving from a methoxy-substituted chalcone. J. Mol. Struct., 2016, 1123, 276-283.
[http://dx.doi.org/10.1016/j.molstruc.2016.06.010]
[61]
Aribi, I.; Ayachi, S.; Alimi, K.; Roudesli, S.; Said, A.H. The anodic reactivity of 4,4′-dimethoxychalcone: A synthetic and mechanistic investigation. Res. Chem. Intermed., 2017, 43(1), 73-89.
[http://dx.doi.org/10.1007/s11164-016-2607-7]
[62]
Messaoudi, I.; Aribi, I.; Zaaboub, Z.; Ayachi, S.; Othman, M.; Said, A.H. Electrosynthesis and characterization of a new semi-conducting oligomer deriving from a disub-stituted chalcone: 4-dimethylamino-4′-methoxychalcone. J. Mol. Struct., 2021, 1231, 129810.
[http://dx.doi.org/10.1016/j.molstruc.2020.129810]
[63]
Navarro, I.; Rueda, M.; Ramirez, G.; Prieto, F. Mechanism of electrodimerization of pyrimidine on mercury from acid solutions. J. Electroanal. Chem., 1995, 384(1-2), 123-130.
[http://dx.doi.org/10.1016/0022-0728(94)03700-D]
[64]
Angulo, M.; Prieto, I.; Mellado, J.M.R. ED mechanisms: Electrodimerization of N′-methyl nicotinamide on mercury electrodes in aqueous solutions. J. Electroanal. Chem., 1995, 399(1-2), 141-146.
[http://dx.doi.org/10.1016/0022-0728(95)04122-2]
[65]
El-Desoky, H.; Heinze, J.; Ghoneim, M.M. Electrodimerization of cyano-substituted derivatives of anthracene and naphthalene. Electrochem. Commun., 2001, 3(12), 697-702.
[http://dx.doi.org/10.1016/S1388-2481(01)00241-7]
[66]
Lu, B.; Chen, S.; Wang, J.; Xu, J.; Duan, X.; Pei, M. Soluble and green-light-emitting oligo(9-fluorenylideneacetic acid): Electrosynthesis and characterization. Chin. J. Chem., 2012, 30(5), 1177-1184.
[http://dx.doi.org/10.1002/cjoc.201100567]
[67]
Lu, B.; Chen, S.; Qin, L.; Huang, Y.; Xu, J. Low-potential electrosynthesis of conducting and electroactive oligocatecholborane with blue light-emitting properties. Chin. J. Polym. Sci., 2013, 31(1), 159-170.
[http://dx.doi.org/10.1007/s10118-013-1205-z]
[68]
Tuğral, S.; Berkem, M.L. Electrochemical behavior of some ethylenedioxycoumarins: Cathodic dimerization. J. Mol. Liq., 2014, 196, 363-369.
[http://dx.doi.org/10.1016/j.molliq.2014.04.006]
[69]
Subramanian, K.; Yedage, S.L.; Bhanage, B.M. An electrochemical method for carboxylic ester synthesis from N-alkoxyamides. J. Org. Chem., 2017, 82(19), 10025-10032.
[http://dx.doi.org/10.1021/acs.joc.7b01473] [PMID: 28872313]
[70]
Subramanian, K.; Yedage, S.L.; Bhanage, B.M. Electrodimerization of N-alkoxyamides for zinc(ii) catalyzed phenolic ester synthesis under mild reaction conditions. Adv. Synth. Catal., 2018, 360(13), 2511-2521.
[http://dx.doi.org/10.1002/adsc.201701646]
[71]
Nasier, A.; Chang, X.; Guo, C. Electrodimerization of N-alkoxyamides for the synthesis of hydrazines. J. Org. Chem., 2021, 86(22), 16068-16076.
[http://dx.doi.org/10.1021/acs.joc.1c01294] [PMID: 34464121]
[72]
Gallardo, I.; Gómez, A.B.; Guirado, G.; Lariño, A.; Moreno, M.; Ortigosa, M.; Soler, S. From 4-nitrotoluene and 4,4′-dinitrobibenzyl to E-4,4′-dinitrostilbene: An elec-trochemical approach. New J. Chem., 2018, 42(9), 7005-7015.
[http://dx.doi.org/10.1039/C8NJ00131F]
[73]
Shahparast, S.; Nematollahi, D.; Sharafi-Kolkeshvandi, M.; Goljani, H. Direct electrochemical dimerization of N,N′-Diphenylbenzidine. J. Electrochem. Soc., 2019, 166(8), G47-G53.
[http://dx.doi.org/10.1149/2.0081908jes]
[74]
Karimi, F.; Mohammadi, F.; Ashrafizadeh, S.N. An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile. J. Electrochem. Soc., 2011, 158(12), E129.
[http://dx.doi.org/10.1149/2.016112jes]
[75]
Huang, X.; Tan, L.; Zhang, L.; Li, C.; Wei, Z. Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chem. Eng. J., 2020, 382, 123006.
[http://dx.doi.org/10.1016/j.cej.2019.123006]
[76]
Atobe, M.; Sasahira, M.; Nonaka, T. Ultrasonic effects on electroorganic processes. Ultrason. Sonochem., 2000, 7(3), 103-107.
[http://dx.doi.org/10.1016/S1350-4177(99)00044-9] [PMID: 10909727]
[77]
Li, B.Y.; Huang, W.F.; Yang, M.C. Electrodimerization of acrylonitrile with a rotating rod electrode. J. Taiwan Inst. Chem. Eng., 2020, 115, 13-19.
[http://dx.doi.org/10.1016/j.jtice.2020.09.029]
[78]
Huang, W.F.; Yang, M.C. Electrosynthesis of adiponitrile with a rotating cylindrical electrode. Ind. Eng. Chem. Res., 2021, 60(36), 13180-13190.
[http://dx.doi.org/10.1021/acs.iecr.1c02100]
[79]
Mohamadighader, N.; Nematollahi, D.; Saraei, M. A comprehensive study on electrochemical oxidation of phenothiazine in water-acetonitrile mixture: Electrosynthesis of phenothiazine dimers. Electrochim. Acta, 2022, 425, 140706.
[http://dx.doi.org/10.1016/j.electacta.2022.140706]
[80]
van Genabeek, B.; Lamers, B.A.G.; Hawker, C.J.; Meijer, E.W.; Gutekunst, W.R.; Schmidt, B.V.K.J. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. J. Polym. Sci., 2021, 59(5), 373-403.
[http://dx.doi.org/10.1002/pol.20200862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy