Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond

Author(s): Jenny Valentina Garmendia, Claudia Valentina De Sanctis, Viswanath Das, Narendran Annadurai, Marián Hajduch and Juan Bautista De Sanctis*

Volume 22, Issue 6, 2024

Published on: 17 October, 2023

Page: [1080 - 1109] Pages: 30

DOI: 10.2174/1570159X22666231017141636

Price: $65

conference banner
Abstract

Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.

Graphical Abstract

[1]
Price, D.L.; Sisodia, S.S.; Borchelt, D.R. Genetic neurodegenerative diseases: the human illness and transgenic models. Science, 1998, 282(5391), 1079-1083.
[http://dx.doi.org/10.1126/science.282.5391.1079] [PMID: 9804539]
[2]
MacDonald, M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[3]
Akçimen, F.; Lopez, E.R.; Landers, J.E.; Nath, A.; Chiò, A.; Chia, R.; Traynor, B.J. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies. Nat. Rev. Genet., 2023, 24(9), 642-658.
[http://dx.doi.org/10.1038/s41576-023-00592-y] [PMID: 37024676]
[4]
Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple sclerosis: Inflammatory and neuroglial aspects. Curr. Issues Mol. Biol., 2023, 45(2), 1443-1470.
[http://dx.doi.org/10.3390/cimb45020094] [PMID: 36826039]
[5]
Klotz, L.; Antel, J.; Kuhlmann, T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol., 2023, 19(5), 305-320.
[http://dx.doi.org/10.1038/s41582-023-00801-6] [PMID: 37059811]
[6]
Balcerac, A.; Louapre, C. Genetics and familial distribution of multiple sclerosis: A review. Rev. Neurol., 2022, 178(6), 512-520.
[http://dx.doi.org/10.1016/j.neurol.2021.11.009] [PMID: 35148907]
[7]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[8]
Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[9]
Aborode, A.T.; Pustake, M.; Awuah, W.A.; Alwerdani, M.; Shah, P.; Yarlagadda, R.; Ahmad, S.; Silva, C.I.F.; Chandra, A.; Nansubuga, E.P.; Abdul-Rahman, T.; Mehta, A.; Ali, O.; Amaka, S.O.; Zuñiga, Y.M.H.; Shkodina, A.D.; Inya, O.C.; Shen, B.; Alexiou, A. Targeting oxidative stress mechanisms to treat Alzheimer’s and Parkinson’s disease: A critical review. Oxid. Med. Cell. Longev., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/7934442] [PMID: 35958022]
[10]
Gorlé, N.; Van Cauwenberghe, C.; Libert, C.; Vandenbroucke, R.E. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm. Genome, 2016, 27(7-8), 407-420.
[http://dx.doi.org/10.1007/s00335-016-9637-8] [PMID: 27143113]
[11]
Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget, 2018, 9(19), 15132-15143.
[http://dx.doi.org/10.18632/oncotarget.23738] [PMID: 29599933]
[12]
Sumirtanurdin, R.; Thalib, A.Y.; Cantona, K.; Abdulah, R. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: An update. Clin. Interv. Aging, 2019, 14, 631-642.
[http://dx.doi.org/10.2147/CIA.S200109] [PMID: 30992661]
[13]
Sarnowski, C.; Ghanbari, M.; Bis, J.C.; Logue, M.; Fornage, M.; Mishra, A.; Ahmad, S.; Beiser, A.S.; Boerwinkle, E.; Bouteloup, V.; Chouraki, V.; Cupples, L.A.; Damotte, V.; DeCarli, C.S.; DeStefano, A.L.; Djoussé, L.; Fohner, A.E.; Franz, C.E.; Kautz, T.F.; Lambert, J.C.; Lyons, M.J.; Mosley, T.H.; Mukamal, K.J.; Pase, M.P.; Portilla Fernandez, E.C.; Rissman, R.A.; Satizabal, C.L.; Vasan, R.S.; Yaqub, A.; Debette, S.; Dufouil, C.; Launer, L.J.; Kremen, W.S.; Longstreth, W.T.; Ikram, M.A.; Seshadri, S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun. Biol., 2022, 5(1), 336.
[http://dx.doi.org/10.1038/s42003-022-03287-y] [PMID: 35396452]
[14]
Su, F.; Bai, F.; Zhang, Z. Inflammatory cytokines and Alzheimer’s disease: A review from the perspective of genetic polymorphisms. Neurosci. Bull., 2016, 32(5), 469-480.
[http://dx.doi.org/10.1007/s12264-016-0055-4] [PMID: 27568024]
[15]
Ulhaq, Z.S.; Garcia, C.P. Inflammation-related gene polymorphisms associated with Parkinson’s disease: An updated meta-analysis. Egypt. J. Med. Hum. Genet., 2020, 21(1), 14.
[http://dx.doi.org/10.1186/s43042-020-00056-6]
[16]
Li, X.; Zhang, D.F.; Bi, R.; Tan, L.W.; Chen, X.; Xu, M.; Yao, Y.G. Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimer’s disease. Alzheimers Res. Ther., 2023, 15(1), 17.
[http://dx.doi.org/10.1186/s13195-022-01159-5] [PMID: 36670424]
[17]
Pedersen, C.C.; Lange, J.; Førland, M.G.G.; Macleod, A.D.; Alves, G.; Maple-Grødem, J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson’s disease. NPJ Parkinsons Dis., 2021, 7(1), 54.
[http://dx.doi.org/10.1038/s41531-021-00196-5] [PMID: 34210990]
[18]
Hollenbach, J.A.; Norman, P.J.; Creary, L.E.; Damotte, V.; Montero-Martin, G.; Caillier, S.; Anderson, K.M.; Misra, M.K.; Nemat-Gorgani, N.; Osoegawa, K.; Santaniello, A.; Renschen, A.; Marin, W.M.; Dandekar, R.; Parham, P.; Tanner, C.M.; Hauser, S.L.; Fernandez-Viña, M.; Oksenberg, J.R. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc. Natl. Acad. Sci., 2019, 116(15), 7419-7424.
[http://dx.doi.org/10.1073/pnas.1821778116] [PMID: 30910980]
[19]
Yu, E.; Ambati, A.; Andersen, M.S.; Krohn, L.; Estiar, M.A.; Saini, P.; Senkevich, K.; Sosero, Y.L.; Sreelatha, A.A.K.; Ruskey, J.A.; Asayesh, F.; Spiegelman, D.; Toft, M.; Viken, M.K.; Sharma, M.; Blauwendraat, C.; Pihlstrøm, L.; Mignot, E.; Gan-Or, Z. Fine mapping of the HLA locus in Parkinson’s disease in Europeans. NPJ Parkinsons Dis., 2021, 7(1), 84.
[http://dx.doi.org/10.1038/s41531-021-00231-5] [PMID: 34548497]
[20]
Harms, A.S.; Ferreira, S.A.; Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol., 2021, 141(4), 527-545.
[http://dx.doi.org/10.1007/s00401-021-02268-5] [PMID: 33555429]
[21]
Yi, M.; Li, J.; Jian, S.; Li, B.; Huang, Z.; Shu, L.; Zhang, Y. Quantitative and causal analysis for inflammatory genes and the risk of Parkinson’s disease. Front. Immunol., 2023, 14, 1119315.
[http://dx.doi.org/10.3389/fimmu.2023.1119315] [PMID: 36926335]
[22]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[23]
Labzin, L.I.; Heneka, M.T.; Latz, E. Innate immunity and neurodegeneration. Annu. Rev. Med., 2018, 69(1), 437-449.
[http://dx.doi.org/10.1146/annurev-med-050715-104343] [PMID: 29106805]
[24]
Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47.
[http://dx.doi.org/10.1111/cns.13569] [PMID: 33381913]
[25]
Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; Krizbai, I.A. Heterogeneity of the blood-brain barrier. Tissue Barriers, 2016, 4(1), e1143544.
[http://dx.doi.org/10.1080/21688370.2016.1143544] [PMID: 27141424]
[26]
Mayne, K.; White, J.A.; McMurran, C.E.; Rivera, F.J.; de la Fuente, A.G. Aging and neurodegenerative disease: Is the adaptive immune system a friend or foe? Front. Aging Neurosci., 2020, 12, 572090.
[http://dx.doi.org/10.3389/fnagi.2020.572090] [PMID: 33173502]
[27]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[28]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[29]
Fathi, M.; Vakili, K.; Yaghoobpoor, S.; Qadirifard, M.S.; Kosari, M.; Naghsh, N.; Asgari taei, A.; Klegeris, A.; Dehghani, M.; Bahrami, A.; Taheri, H.; Mohamadkhani, A.; Hajibeygi, R.; Rezaei Tavirani, M.; Sayehmiri, F. Pre-clinical studies identifying molecular pathways of neuroinflammation in Parkinson’s disease: A systematic review. Front. Aging Neurosci., 2022, 14, 855776.
[http://dx.doi.org/10.3389/fnagi.2022.855776] [PMID: 35912090]
[30]
Gorecki, A.M.; Anyaegbu, C.C.; Anderton, R.S. TLR2 and TLR4 in Parkinson’s disease pathogenesis: The environment takes a toll on the gut. Transl. Neurodegener., 2021, 10(1), 47.
[http://dx.doi.org/10.1186/s40035-021-00271-0] [PMID: 34814947]
[31]
Bellucci, A.; Bubacco, L.; Longhena, F.; Parrella, E.; Faustini, G.; Porrini, V.; Bono, F.; Missale, C.; Pizzi, M. Nuclear Factor-κB dysregulation and α-synuclein pathology: Critical interplay in the pathogenesis of Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 68.
[http://dx.doi.org/10.3389/fnagi.2020.00068] [PMID: 32265684]
[32]
Juranek, J.; Mukherjee, K.; Kordas, B.; Załęcki, M.; Korytko, A.; Zglejc-Waszak, K.; Szuszkiewicz, J.; Banach, M. Role of RAGE in the pathogenesis of neurological disorders. Neurosci. Bull., 2022, 38(10), 1248-1262.
[http://dx.doi.org/10.1007/s12264-022-00878-x] [PMID: 35729453]
[33]
Spulber, S.; Bartfai, T.; Schultzberg, M. IL-1/IL-1ra balance in the brain revisited: Evidence from transgenic mouse models. Brain Behav. Immun., 2009, 23(5), 573-579.
[http://dx.doi.org/10.1016/j.bbi.2009.02.015] [PMID: 19258032]
[34]
Bai, H.; Zhang, Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol., 2021, 12, 701282.
[http://dx.doi.org/10.3389/fimmu.2021.701282] [PMID: 34381452]
[35]
Martin-Ruiz, C.; Williams-Gray, C.H.; Yarnall, A.J.; Boucher, J.J.; Lawson, R.A.; Wijeyekoon, R.S.; Barker, R.A.; Kolenda, C.; Parker, C.; Burn, D.J.; Von Zglinicki, T.; Saretzki, G. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: The ICICLE-PD Study. J. Parkinsons Dis., 2020, 10(1), 193-206.
[http://dx.doi.org/10.3233/JPD-191724] [PMID: 31868677]
[36]
Lara, P.C.; Macías-Verde, D.; Burgos-Burgos, J. Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients. Aging Dis., 2020, 11(4), 756-762.
[http://dx.doi.org/10.14336/AD.2020.0601] [PMID: 32765942]
[37]
Stout-Delgado, H.W.; Vaughan, S.E.; Shirali, A.C.; Jaramillo, R.J.; Harrod, K.S. Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J. Immunol., 2012, 188(6), 2815-2824.
[http://dx.doi.org/10.4049/jimmunol.1103051] [PMID: 22327078]
[38]
Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural Transm. Suppl., 2000, (60), 277-290.
[http://dx.doi.org/10.1007/978-3-7091-6301-6_19] [PMID: 11205147]
[39]
Zhang, P.; Shao, X.Y.; Qi, G.J.; Chen, Q.; Bu, L.L.; Chen, L.J.; Shi, J.; Ming, J.; Tian, B. Cdk5-dependent activation of neuronal inflammasomes in Parkinson’s disease. Mov. Disord., 2016, 31(3), 366-376.
[http://dx.doi.org/10.1002/mds.26488] [PMID: 26853432]
[40]
Kitazawa, M.; Cheng, D.; Tsukamoto, M.R.; Koike, M.A.; Wes, P.D.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol., 2011, 187(12), 6539-6549.
[http://dx.doi.org/10.4049/jimmunol.1100620] [PMID: 22095718]
[41]
Wang, W.; Nguyen, L.T.T.; Burlak, C.; Chegini, F.; Guo, F.; Chataway, T.; Ju, S.; Fisher, O.S.; Miller, D.W.; Datta, D.; Wu, F.; Wu, C.X.; Landeru, A.; Wells, J.A.; Cookson, M.R.; Boxer, M.B.; Thomas, C.J.; Gai, W.P.; Ringe, D.; Petsko, G.A.; Hoang, Q.Q. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl. Acad. Sci., 2016, 113(34), 9587-9592.
[http://dx.doi.org/10.1073/pnas.1610099113] [PMID: 27482083]
[42]
Hurelbrink, C.B.; Armstrong, R.J.E.; Luheshi, L.M.; Dunnett, S.B.; Rosser, A.E.; Barker, R.A. Death of dopaminergic neurons in vitro and in nigral grafts: Reevaluating the role of caspase activation. Exp. Neurol., 2001, 171(1), 46-58.
[http://dx.doi.org/10.1006/exnr.2001.7749] [PMID: 11520120]
[43]
Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci., 2018, 19(6), 1689.
[http://dx.doi.org/10.3390/ijms19061689] [PMID: 29882798]
[44]
Howe, A.M.; Burke, S.; O’Reilly, M.E.; McGillicuddy, F.C.; Costello, D.A. Palmitic acid and oleic acid differently modulate tlr2-mediated inflammatory responses in microglia and macrophages. Mol. Neurobiol., 2022, 59(4), 2348-2362.
[http://dx.doi.org/10.1007/s12035-022-02756-z] [PMID: 35079937]
[45]
Minoretti, P.; Gazzaruso, C.; Vito, C.D.; Emanuele, E.; Bianchi, M.; Coen, E.; Reino, M.; Geroldi, D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett., 2006, 391(3), 147-149.
[http://dx.doi.org/10.1016/j.neulet.2005.08.047] [PMID: 16157451]
[46]
Okun, E.; Griffioen, K.J.; Lathia, J.D.; Tang, S.C.; Mattson, M.P.; Arumugam, T.V. Toll-like receptors in neurodegeneration. Brain Res. Brain Res. Rev., 2009, 59(2), 278-292.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.001] [PMID: 18822314]
[47]
Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 2017, 46(6), 957-967.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[48]
Labib, D.; Wang, Z.; Prakash, P.; Zimmer, M.; Smith, M.D.; Frazel, P.W.; Barbar, L.; Sapar, M.L.; Calabresi, P.A.; Peng, J.; Liddelow, S.A.; Fossati, V. Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Front. Mol. Neurosci., 2022, 15, 870085.
[http://dx.doi.org/10.3389/fnmol.2022.870085] [PMID: 35592112]
[49]
Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Hill, J.; Dua, P.; Lukiw, W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol., 2014, 50(1), 97-106.
[http://dx.doi.org/10.1007/s12035-013-8595-3] [PMID: 24293102]
[50]
Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-κB) signalling in neurodegenerative diseases: A mechanistic approach. Curr. Neuropharmacol., 2020, 18(10), 918-935.
[http://dx.doi.org/10.2174/1570159X18666200207120949] [PMID: 32031074]
[51]
Dou, F.; Chu, X.; Zhang, B.; Liang, L.; Lu, G.; Ding, J.; Chen, S. EriB targeted inhibition of microglia activity attenuates MPP+ induced DA neuron injury through the NF-κB signaling pathway. Mol. Brain, 2018, 11(1), 75.
[http://dx.doi.org/10.1186/s13041-018-0418-z] [PMID: 30563578]
[52]
Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules, 2022, 27(10), 3194.
[http://dx.doi.org/10.3390/molecules27103194] [PMID: 35630670]
[53]
Huang, Y.; Erdmann, N.; Peng, H.; Zhao, Y.; Zheng, J. The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol., 2005, 2(2), 113-122.
[PMID: 16191417]
[54]
Uberti, D.; Cantarella, G.; Facchetti, F.; Cafici, A.; Grasso, G.; Bernardini, R.; Memo, M. TRAIL is expressed in the brain cells of Alzheimer’s disease patients. Neuroreport, 2004, 15(4), 579-581.
[55]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[56]
Tarkowski, E.; Liljeroth, A.M.; Nilsson, Å.; Minthon, L.; Blennow, K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2001, 12(5), 314-317.
[http://dx.doi.org/10.1159/000051276] [PMID: 11455132]
[57]
He, P.; Zhong, Z.; Lindholm, K.; Berning, L.; Lee, W.; Lemere, C.; Staufenbiel, M.; Li, R.; Shen, Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol., 2007, 178(5), 829-841.
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[58]
Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[59]
Nutma, E.; van Gent, D.; Amor, S.; Peferoen, L.A.N. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells, 2020, 9(3), 600.
[http://dx.doi.org/10.3390/cells9030600] [PMID: 32138223]
[60]
Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524.
[http://dx.doi.org/10.1002/JLB.3MR0118-003R] [PMID: 29389023]
[61]
Tan, Z.S.; Beiser, A.S.; Vasan, R.S.; Roubenoff, R.; Dinarello, C.A.; Harris, T.B.; Benjamin, E.J.; Au, R.; Kiel, D.P.; Wolf, P.A.; Seshadri, S. Inflammatory markers and the risk of Alzheimer disease: The Framingham Study. Neurology, 2007, 68(22), 1902-1908.
[http://dx.doi.org/10.1212/01.wnl.0000263217.36439.da] [PMID: 17536046]
[62]
Burré, J.; Sharma, M.; Südhof, T.C. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. Perspect. Med., 2018, 8(3), a024091.
[http://dx.doi.org/10.1101/cshperspect.a024091] [PMID: 28108534]
[63]
Nakanishi, H. Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural Regen. Res., 2020, 15(1), 25-29.
[http://dx.doi.org/10.4103/1673-5374.264444] [PMID: 31535638]
[64]
Kim, C.; Ho, D.H.; Suk, J.E.; You, S.; Michael, S.; Kang, J.; Joong Lee, S.; Masliah, E.; Hwang, D.; Lee, H.J.; Lee, S.J. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun., 2013, 4(1), 1562.
[http://dx.doi.org/10.1038/ncomms2534] [PMID: 23463005]
[65]
Xie, Y.X.; Naseri, N.N.; Fels, J.; Kharel, P.; Na, Y.; Lane, D.; Burré, J.; Sharma, M. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun., 2022, 13(1), 4918.
[http://dx.doi.org/10.1038/s41467-022-32625-1] [PMID: 35995799]
[66]
Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci., 2013, 14(1), 38-48.
[http://dx.doi.org/10.1038/nrn3406] [PMID: 23254192]
[67]
Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron, 2013, 79(6), 1044-1066.
[http://dx.doi.org/10.1016/j.neuron.2013.09.004] [PMID: 24050397]
[68]
Soraci, L.; Gambuzza, M.E.; Biscetti, L.; Laganà, P.; Lo Russo, C.; Buda, A.; Barresi, G.; Corsonello, A.; Lattanzio, F.; Lorello, G.; Filippelli, G.; Marino, S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: Mechanisms and therapeutic implications. J. Neurol., 2023, 270(3), 1346-1360.
[http://dx.doi.org/10.1007/s00415-022-11491-3] [PMID: 36460875]
[69]
Volpicelli-Daley, L.; Brundin, P. Prion-like propagation of pathology in Parkinson disease. Handb. Clin. Neurol., 2018, 153, 321-335.
[http://dx.doi.org/10.1016/B978-0-444-63945-5.00017-9] [PMID: 29887143]
[70]
Noguchi-Shinohara, M.; Ono, K. The mechanisms of the roles of α-synuclein, amyloid-β, and tau protein in the lewy body diseases: pathogenesis, early detection, and therapeutics. Int. J. Mol. Sci., 2023, 24(12), 10215.
[http://dx.doi.org/10.3390/ijms241210215] [PMID: 37373401]
[71]
Schrag, A. Psychiatric aspects of Parkinson’s disease. J. Neurol., 2004, 251(7), 795-804.
[http://dx.doi.org/10.1007/s00415-004-0483-3] [PMID: 15258780]
[72]
Subramanian, A.; Tamilanban, T.; Alsayari, A.; Ramachawolran, G.; Wong, L.S.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Chinni, S.V.; Izzati Mat Rani, N.N.; Suryadevara, N.; Wahab, S. Trilateral association of autophagy, mTOR and Alzheimer’s disease: Potential pathway in the development for Alzheimer’s disease therapy. Front. Pharmacol., 2022, 13, 1094351.
[http://dx.doi.org/10.3389/fphar.2022.1094351] [PMID: 36618946]
[73]
Kostiuchenko, O.; Lushnikova, I.; Kowalczyk, M.; Skibo, G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA Adv., 2022, 2, 100066.
[http://dx.doi.org/10.1016/j.bbadva.2022.100066] [PMID: 37082603]
[74]
Blagov, A.V.; Grechko, A.V.; Nikiforov, N.G.; Borisov, E.E.; Sadykhov, N.K.; Orekhov, A.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(13), 6954.
[http://dx.doi.org/10.3390/ijms23136954] [PMID: 35805958]
[75]
Ikeda-Matsuo, Y.; Miyata, H.; Mizoguchi, T.; Ohama, E.; Naito, Y.; Uematsu, S.; Akira, S.; Sasaki, Y.; Tanabe, M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease. Neurobiol. Dis., 2019, 124, 81-92.
[http://dx.doi.org/10.1016/j.nbd.2018.11.004] [PMID: 30423474]
[76]
Mi, Y.; Qi, G.; Vitali, F.; Shang, Y.; Raikes, A.C.; Wang, T.; Jin, Y.; Brinton, R.D.; Gu, H.; Yin, F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab., 2023, 5(3), 445-465.
[http://dx.doi.org/10.1038/s42255-023-00756-4] [PMID: 36959514]
[77]
Kulminski, A.M.; Jain-Washburn, E.; Loiko, E.; Loika, Y.; Feng, F.; Culminskaya, I. Associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising APOE-TOMM40-APOC1 variants with Alzheimer’s disease biomarkers. Aging, 2022, 14(24), 9782-9804.
[http://dx.doi.org/10.18632/aging.204384] [PMID: 36399096]
[78]
Mu, G.; Ren, C.; Zhang, Y.; Lu, B.; Feng, J.; Wu, D.; Xu, X.; Ou, C. Amelioration of central neurodegeneration by docosahexaenoic acid in trigeminal neuralgia rats through the regulation of central neuroinflammation. Int. Immunopharmacol., 2023, 114, 109544.
[http://dx.doi.org/10.1016/j.intimp.2022.109544] [PMID: 36527885]
[79]
Xie, A.; Ensink, E.; Li, P.; Gordevičius, J.; Marshall, L.L.; George, S.; Pospisilik, J.A.; Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Rudi, K.; Paulin, L.; Tansey, M.G.; Auvinen, P.; Brundin, P.; Brundin, L.; Labrie, V.; Scheperjans, F. Bacterial butyrate in parkinson’s disease is linked to epigenetic changes and depressive symptoms. Mov. Disord., 2022, 37(8), 1644-1653.
[http://dx.doi.org/10.1002/mds.29128] [PMID: 35723531]
[80]
Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to ad pathology. Front. Immunol., 2022, 12, 794519.
[http://dx.doi.org/10.3389/fimmu.2021.794519] [PMID: 35173707]
[81]
Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258.
[http://dx.doi.org/10.1038/s41598-023-31730-5] [PMID: 37002253]
[82]
Lang, Y.; Chu, F.; Shen, D.; Zhang, W.; Zheng, C.; Zhu, J.; Cui, L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: A systematic review. Mediators Inflamm., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/1549549] [PMID: 29849483]
[83]
Miao, J.; Ma, H.; Yang, Y.; Liao, Y.; Lin, C.; Zheng, J.; Yu, M.; Lan, J. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci., 2023, 15, 1201982.
[http://dx.doi.org/10.3389/fnagi.2023.1201982] [PMID: 37396657]
[84]
Wes, P.D.; Holtman, I.R.; Boddeke, E.W.G.M.; Möller, T.; Eggen, B.J.L. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64(2), 197-213.
[http://dx.doi.org/10.1002/glia.22866] [PMID: 26040959]
[85]
Holtman, I.R.; Raj, D.D.; Miller, J.A.; Schaafsma, W.; Yin, Z.; Brouwer, N.; Wes, P.D.; Möller, T.; Orre, M.; Kamphuis, W.; Hol, E.M.; Boddeke, E.W.G.M.; Eggen, B.J.L. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: A co-expression meta-analysis. Acta Neuropathol. Commun., 2015, 3(1), 31.
[http://dx.doi.org/10.1186/s40478-015-0203-5] [PMID: 26001565]
[86]
Pan, J.; Ma, N.; Yu, B.; Zhang, W.; Wan, J. Transcriptomic profiling of microglia and astrocytes throughout aging. J. Neuroinflammation, 2020, 17(1), 97.
[http://dx.doi.org/10.1186/s12974-020-01774-9] [PMID: 32238175]
[87]
Spurrier, J.; Nicholson, L.; Fang, X.T.; Stoner, A.J.; Toyonaga, T.; Holden, D.; Siegert, T.R.; Laird, W.; Allnutt, M.A.; Chiasseu, M.; Brody, A.H.; Takahashi, H.; Nies, S.H.; Cañamás, A.P.; Sadasivam, P.; Lee, S.; Li, S.; Zhang, L.; Huang, Y.H.; Carson, R.E.; Cai, Z.; Strittmatter, S.M. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci. Transl. Med., 2022, 14(647), eabi8593.
[http://dx.doi.org/10.1126/scitranslmed.abi8593] [PMID: 35648810]
[88]
Balog, B.M.; Sonti, A.; Zigmond, R.E. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog. Neurobiol., 2023, 228, 102488.
[http://dx.doi.org/10.1016/j.pneurobio.2023.102488] [PMID: 37355220]
[89]
Aries, M.L.; Hensley-McBain, T. Neutrophils as a potential therapeutic target in Alzheimer’s disease. Front. Immunol., 2023, 14, 1123149.
[http://dx.doi.org/10.3389/fimmu.2023.1123149] [PMID: 36936930]
[90]
Harcha, P.A.; Garcés, P.; Arredondo, C.; Fernández, G.; Sáez, J.C.; van Zundert, B. Mast cell and astrocyte hemichannels and their role in alzheimer’s disease, ALS, and harmful stress conditions. Int. J. Mol. Sci., 2021, 22(4), 1924.
[http://dx.doi.org/10.3390/ijms22041924] [PMID: 33672031]
[91]
Wang, S.; van de Pavert, S.A. Innate lymphoid cells in the central nervous system. Front. Immunol., 2022, 13, 837250.
[http://dx.doi.org/10.3389/fimmu.2022.837250] [PMID: 35185929]
[92]
Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells, 2022, 11(6), 1017.
[http://dx.doi.org/10.3390/cells11061017] [PMID: 35326467]
[93]
Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol., 2019, 105(6), 1319-1329.
[http://dx.doi.org/10.1002/JLB.MR0718-269R] [PMID: 31107565]
[94]
Menees, K.B.; Lee, J.K. New insights and implications of natural killer cells in parkinson’s disease. J. Parkinsons Dis., 2022, 12(s1), S83-S92.
[http://dx.doi.org/10.3233/JPD-223212] [PMID: 35570499]
[95]
Zhang, L.; Zhang, Y.; Fan, D. Pathological role of natural killer cells in parkinson’s disease: A systematic review. Front. Aging Neurosci., 2022, 14, 890816.
[http://dx.doi.org/10.3389/fnagi.2022.890816] [PMID: 35663564]
[96]
Muñiz-Castrillo, S.; Vogrig, A.; Honnorat, J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto Immun. Highlights, 2020, 11(1), 2.
[http://dx.doi.org/10.1186/s13317-019-0124-6] [PMID: 32127039]
[97]
Boon, B.D.C.; Hoozemans, J.J.M.; Lopuhaä, B.; Eigenhuis, K.N.; Scheltens, P.; Kamphorst, W.; Rozemuller, A.J.M.; Bouwman, F.H. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 170.
[http://dx.doi.org/10.1186/s12974-018-1180-y] [PMID: 29843759]
[98]
Wang, Z.T.; Chen, S.D.; Xu, W.; Chen, K.L.; Wang, H.F.; Tan, C.C.; Cui, M.; Dong, Q.; Tan, L.; Yu, J.T. Genome-wide association study identifies CD1A associated with rate of increase in plasma neurofilament light in non-demented elders. Aging, 2019, 11(13), 4521-4535.
[http://dx.doi.org/10.18632/aging.102066] [PMID: 31295725]
[99]
Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol., 2020, 11, 598.
[http://dx.doi.org/10.3389/fphys.2020.00598] [PMID: 32581851]
[100]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Alsayegh, A.A.; Almohmadi, N.H.; Saad, H.M.; Batiha, G.E.S. Pros and cons for statins use and risk of Parkinson’s disease: An updated perspective. Pharmacol. Res. Perspect., 2023, 11(2), e01063.
[http://dx.doi.org/10.1002/prp2.1063] [PMID: 36811160]
[101]
Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam, A.C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[102]
Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain, 2021, 144(7), 2047-2059.
[http://dx.doi.org/10.1093/brain/awab103] [PMID: 33704423]
[103]
Iba, M.; Kim, C.; Sallin, M.; Kwon, S.; Verma, A.; Overk, C.; Rissman, R.A.; Sen, R.; Sen, J.M.; Masliah, E. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J. Neuroinflammation, 2020, 17(1), 214.
[http://dx.doi.org/10.1186/s12974-020-01888-0] [PMID: 32680537]
[104]
Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12.
[http://dx.doi.org/10.1016/j.neures.2013.10.004] [PMID: 24144733]
[105]
Carrasco, E.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Desdín-Micó, G.; Aranda, J.F.; Mittelbrunn, M. The role of T cells in age-related diseases. Nat. Rev. Immunol., 2022, 22(2), 97-111.
[http://dx.doi.org/10.1038/s41577-021-00557-4] [PMID: 34099898]
[106]
Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; McBride, A.; Pluvinage, J.; Elahi, F.; Tam, G.K.Y.; Kim, Y.; Greicius, M.; Wagner, A.D.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Wyss-Coray, T. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020, 577(7790), 399-404.
[http://dx.doi.org/10.1038/s41586-019-1895-7] [PMID: 31915375]
[107]
Mietelska-Porowska, A.; Wojda, U. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: Potential pools of new biomarkers. J. Immunol. Res., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/4626540] [PMID: 28293644]
[108]
Rezai-Zadeh, K.; Gate, D.; Town, T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J. Neuroimmune Pharmacol., 2009, 4(4), 462-475.
[http://dx.doi.org/10.1007/s11481-009-9166-2] [PMID: 19669892]
[109]
Dai, L.; Shen, Y. Insights into Tcell dysfunction in Alzheimer’s disease. Aging Cell, 2021, 20(12), e13511.
[http://dx.doi.org/10.1111/acel.13511] [PMID: 34725916]
[110]
Machhi, J.; Yeapuri, P.; Lu, Y.; Foster, E.; Chikhale, R.; Herskovitz, J.; Namminga, K.L.; Olson, K.E.; Abdelmoaty, M.M.; Gao, J.; Quadros, R.M.; Kiyota, T.; Jingjing, L.; Kevadiya, B.D.; Wang, X.; Liu, Y.; Poluektova, L.Y.; Gurumurthy, C.B.; Mosley, R.L.; Gendelman, H.E. CD4+ effector T cells accelerate Alzheimer’s disease in mice. J. Neuroinflammation, 2021, 18(1), 272.
[http://dx.doi.org/10.1186/s12974-021-02308-7] [PMID: 34798897]
[111]
Monsonego, A.; Zota, V.; Karni, A.; Krieger, J.I.; Bar-Or, A.; Bitan, G.; Budson, A.E.; Sperling, R.; Selkoe, D.J.; Weiner, H.L. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest., 2003, 112(3), 415-422.
[http://dx.doi.org/10.1172/JCI200318104] [PMID: 12897209]
[112]
Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; Sturchio, A.; Mauri, M.; Bono, G.; Marino, F.; Cosentino, M. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflammation, 2018, 15(1), 205.
[http://dx.doi.org/10.1186/s12974-018-1248-8] [PMID: 30001736]
[113]
Saunders, J.A.H.; Estes, K.A.; Kosloski, L.M.; Allen, H.E.; Dempsey, K.M.; Torres-Russotto, D.R.; Meza, J.L.; Santamaria, P.M.; Bertoni, J.M.; Murman, D.L.; Ali, H.H.; Standaert, D.G.; Mosley, R.L.; Gendelman, H.E. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J. Neuroimmune Pharmacol., 2012, 7(4), 927-938.
[http://dx.doi.org/10.1007/s11481-012-9402-z] [PMID: 23054369]
[114]
Xu, Y.; Li, Y.; Wang, C.; Han, T.; Liu, H.; Sun, L.; Hong, J.; Hashimoto, M.; Wei, J. The reciprocal interactions between microglia and T cells in Parkinson’s disease: A double-edged sword. J. Neuroinflammation, 2023, 20(1), 33.
[http://dx.doi.org/10.1186/s12974-023-02723-y] [PMID: 36774485]
[115]
Vacinova, G.; Vejražkova, D.; Rusina, R.; Holmerová, I.; Vaňková, H.; Jarolímová, E.; Včelák, J.; Bendlová, B.; Vaňková, M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer’s disease. Neural Regen. Res., 2021, 16(4), 796-800.
[http://dx.doi.org/10.4103/1673-5374.295340] [PMID: 33063745]
[116]
Schwartz, M.; Baruch, K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J. Autoimmun., 2014, 54, 8-14.
[http://dx.doi.org/10.1016/j.jaut.2014.08.002]
[117]
Chen, X.; Firulyova, M.; Manis, M.; Herz, J.; Smirnov, I.; Aladyeva, E.; Wang, C.; Bao, X.; Finn, M.B.; Hu, H.; Shchukina, I.; Kim, M.W.; Yuede, C.M.; Kipnis, J.; Artyomov, M.N.; Ulrich, J.D.; Holtzman, D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615(7953), 668-677.
[http://dx.doi.org/10.1038/s41586-023-05788-0] [PMID: 36890231]
[118]
Subbarayan, M.S.; Hudson, C.; Moss, L.D.; Nash, K.R.; Bickford, P.C. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinson’s disease. J. Neuroinflammation, 2020, 17(1), 242.
[http://dx.doi.org/10.1186/s12974-020-01911-4] [PMID: 32799878]
[119]
Cai, H.Y.; Fu, X.X.; Jiang, H.; Han, S. Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson’s disease. NPJ Parkinsons Dis., 2021, 7(1), 91.
[http://dx.doi.org/10.1038/s41531-021-00233-3] [PMID: 34625569]
[120]
Liu, Y.; Sorce, S.; Nuvolone, M.; Domange, J.; Aguzzi, A. Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Sci. Rep., 2018, 8(1), 14600.
[http://dx.doi.org/10.1038/s41598-018-32712-8] [PMID: 30279468]
[121]
Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Mo, M.; Liu, H.; Peng, G.; Zhu, X.; Xu, P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J. Neuroinflammation, 2019, 16(1), 270.
[http://dx.doi.org/10.1186/s12974-019-1654-6] [PMID: 31847878]
[122]
García-Martín, E.; Pastor, P.; Gómez-Tabales, J.; Alonso-Navarro, H.; Alvarez, I.; Buongiorno, M.; Cerezo-Arias, M.O.; Aguilar, M.; Agúndez, J.A.G.; Jiménez-Jiménez, F.J. Association between LAG3/CD4 gene variants and risk of Parkinson’s disease. Eur. J. Clin. Invest., 2022, 52(11), e13847.
[http://dx.doi.org/10.1111/eci.13847] [PMID: 36224715]
[123]
Cui, S.; Du, J.J.; Liu, S.H.; Meng, J.; Lin, Y.Q.; Li, G.; He, Y.X.; Zhang, P.C.; Chen, S.; Wang, G. Serum soluble lymphocyte activation gene3 as a diagnostic biomarker in Parkinson’s disease: A pilot multicenter study. Mov. Disord., 2019, 34(1), 138-141.
[http://dx.doi.org/10.1002/mds.27569] [PMID: 30485547]
[124]
Roy, A.; Choudhury, S.; Banerjee, R.; Basu, P.; Kumar, H. Soluble LAG-3 and Toll-interacting protein: Novel upstream neuro-inflammatory markers in Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 91, 121-123.
[http://dx.doi.org/10.1016/j.parkreldis.2021.09.019] [PMID: 34601340]
[125]
Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Calvo, M.G.; Nemni, R.; Clerici, M. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(3), 927-938.
[http://dx.doi.org/10.3233/JAD-2010-091696] [PMID: 20634592]
[126]
Olson, K.E.; Mosley, R.L.; Gendelman, H.E. The potential for treg-enhancing therapies in nervous system pathologies. Clin. Exp. Immunol., 2022, uxac084.
[PMID: 36041453]
[127]
Beers, D.R.; Zhao, W.; Wang, J.; Zhang, X.; Wen, S.; Neal, D.; Thonhoff, J.R.; Alsuliman, A.S.; Shpall, E.J.; Rezvani, K.; Appel, S.H. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight, 2017, 2(5), e89530.
[http://dx.doi.org/10.1172/jci.insight.89530] [PMID: 28289705]
[128]
Schröder, J.B.; Pawlowski, M.; Meyer zu Hörste, G.; Gross, C.C.; Wiendl, H.; Meuth, S.G.; Ruck, T.; Warnecke, T. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front. Neurol., 2018, 9, 1081.
[http://dx.doi.org/10.3389/fneur.2018.01081] [PMID: 30619041]
[129]
Stym-Popper, G.; Matta, K.; Chaigneau, T.; Rupra, R.; Demetriou, A.; Fouquet, S.; Dansokho, C.; Toly-Ndour, C.; Dorothée, G. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. J. Neuroinflammation, 2023, 20(1), 64.
[http://dx.doi.org/10.1186/s12974-023-02702-3] [PMID: 36890536]
[130]
Ciccocioppo, F.; Lanuti, P.; Pierdomenico, L.; Simeone, P.; Bologna, G.; Ercolino, E.; Buttari, F.; Fantozzi, R.; Thomas, A.; Onofrj, M.; Centonze, D.; Miscia, S.; Marchisio, M. The characterization of regulatory t-cell profiles in Alzheimer’s disease and multiple sclerosis. Sci. Rep., 2019, 9(1), 8788.
[http://dx.doi.org/10.1038/s41598-019-45433-3]
[131]
Baruch, K.; Rosenzweig, N.; Kertser, A.; Deczkowska, A.; Sharif, A.M.; Spinrad, A.; Tsitsou-Kampeli, A.; Sarel, A.; Cahalon, L.; Schwartz, M. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun., 2015, 6(1), 7967.
[http://dx.doi.org/10.1038/ncomms8967] [PMID: 26284939]
[132]
Novakova Martinkova, J.; Ferretti, M.T.; Ferrari, A.; Lerch, O.; Matuskova, V.; Secnik, J.; Hort, J. Longitudinal progression of choroid plexus enlargement is associated with female sex, cognitive decline and ApoE E4 homozygote status. Front. Psychiatry, 2023, 14, 1039239.
[http://dx.doi.org/10.3389/fpsyt.2023.1039239] [PMID: 36970283]
[133]
Yang, H.; Park, S.Y.; Baek, H.; Lee, C.; Chung, G.; Liu, X.; Lee, J.H.; Kim, B.; Kwon, M.; Choi, H.; Kim, H.J.; Kim, J.Y.; Kim, Y.; Lee, Y.S.; Lee, G.; Kim, S.K.; Kim, J.S.; Chang, Y.T.; Jung, W.S.; Kim, K.H.; Bae, H. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimer’s disease. Theranostics, 2022, 12(18), 7668-7680.
[http://dx.doi.org/10.7150/thno.75965] [PMID: 36451854]
[134]
Moore, J.R.; Hubler, S.L.; Nelson, C.D.; Nashold, F.E.; Spanier, J.A.; Hayes, C.E. 1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4+ T cell DNA methylation and Helios+Foxp3+ T regulatory cells to reverse autoimmune neurodegenerative disease. J. Neuroimmunol., 2018, 324, 100-114.
[http://dx.doi.org/10.1016/j.jneuroim.2018.09.008] [PMID: 30267995]
[135]
Janjusevic, M.; Gagno, G.; Fluca, A.L.; Padoan, L.; Beltrami, A.P.; Sinagra, G.; Moretti, R.; Aleksova, A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci., 2022, 289, 120193.
[http://dx.doi.org/10.1016/j.lfs.2021.120193] [PMID: 34864062]
[136]
Shi, Y.; Wei, B.; Li, L.; Wang, B.; Sun, M. Th17 cells and inflammation in neurological disorders: Possible mechanisms of action. Front. Immunol., 2022, 13, 932152.
[http://dx.doi.org/10.3389/fimmu.2022.932152] [PMID: 35935951]
[137]
Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell, 2019, 24(6), 1006.
[http://dx.doi.org/10.1016/j.stem.2019.04.019] [PMID: 31173705]
[138]
Li, J. Zhao, J.; Chen, L.; Gao, H.; Zhang, J.; Wang, D.; Zou, Y.; Qin, Q.; Qu, Y.; Li, J.; Xiong, Y.; Min, Z.; Yan, M.; Mao, Z.; Xue, Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson’s disease. Brain Behav. Immun., 2023, 108, 32-44.
[http://dx.doi.org/10.1016/j.bbi.2022.10.023] [PMID: 36343753]
[139]
Mohammadi, S., V.; Ravari, A.; Mirzaei, T.; Zare-Bidaki, M.; Asadikaram, G.; Arababadi, M.K. IL-17A and IL-23: Plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol. Invest., 2018, 47(8), 812-822.
[http://dx.doi.org/10.1080/08820139.2018.1504300] [PMID: 30081688]
[140]
Biragyn, A.; Aliseychik, M.; Rogaev, E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin. Immunopathol., 2017, 39(3), 283-294.
[http://dx.doi.org/10.1007/s00281-016-0615-8] [PMID: 28083646]
[141]
Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745.
[http://dx.doi.org/10.1038/s41583-019-0233-2] [PMID: 31712781]
[142]
Orr, C.F.; Rowe, D.B.; Mizuno, Y.; Mori, H.; Halliday, G.M. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain, 2005, 128(11), 2665-2674.
[http://dx.doi.org/10.1093/brain/awh625] [PMID: 16219675]
[143]
Du, Y.; Dodel, R.; Hampel, H.; Buerger, K.; Lin, S.; Eastwood, B.; Bales, K.; Gao, F.; Moeller, H.J.; Oertel, W.; Farlow, M.; Paul, S. Reduced levels of amyloid -peptide antibody in Alzheimer disease. Neurology, 2001, 57(5), 801-805.
[http://dx.doi.org/10.1212/WNL.57.5.801] [PMID: 11552007]
[144]
Hyman, B.T.; Smith, C.; Buldyrev, I.; Whelan, C.; Brown, H.; Tang, M.X.; Mayeux, R. Autoantibodies to amyloid-? and Alzheimer’s disease. Ann. Neurol., 2001, 49(6), 808-810.
[http://dx.doi.org/10.1002/ana.1061] [PMID: 11409436]
[145]
Weksler, M.E.; Relkin, N.; Turkenich, R.; LaRusse, S.; Zhou, L.; Szabo, P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol., 2002, 37(7), 943-948.
[http://dx.doi.org/10.1016/S0531-5565(02)00029-3] [PMID: 12086704]
[146]
DeMarshall, C.A.; Viviano, J.; Emrani, S.; Thayasivam, U.; Godsey, G.A.; Sarkar, A.; Belinka, B.; Libon, D.J.; Nagele, R.G. Early detection of alzheimer’s disease-related pathology using a multi-disease diagnostic platform employing autoantibodies as blood-based biomarkers. J. Alzheimers Dis., 2023, 92(3), 1077-1091.
[http://dx.doi.org/10.3233/JAD-221091] [PMID: 36847005]
[147]
Carvey, P.M.; McRae, A.; Lint, T.F.; Ptak, L.R.; Lo, E.S.; Goetz, C.G.; Klawans, H.L. The potential use of a dopamine neuron antibody and a striatal-derived neurotrophic factor as diagnostic markers in Parkinson’s disease., Neurology, 1991, 41 (5, Supplement 2)(2), 53-58.
[http://dx.doi.org/10.1212/WNL.41.5_Suppl_2.53] [PMID: 2041594]
[148]
Chen, S.; Le, W.D.; Xie, W.J.; Alexianu, M.E.; Engelhardt, J.I.; Siklós, L.; Appel, S.H. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch. Neurol., 1998, 55(8), 1075-1080.
[http://dx.doi.org/10.1001/archneur.55.8.1075] [PMID: 9708957]
[149]
Le, W.D.; Rowe, D.B.; Jankovic, J.; Xie, W.; Appel, S.H. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch. Neurol., 1999, 56(2), 194-200.
[http://dx.doi.org/10.1001/archneur.56.2.194] [PMID: 10025424]
[150]
Papachroni, K.K.; Ninkina, N.; Papapanagiotou, A.; Hadjigeorgiou, G.M.; Xiromerisiou, G.; Papadimitriou, A.; Kalofoutis, A.; Buchman, V.L. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J. Neurochem., 2007, 101(3), 749-756.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04365.x] [PMID: 17448146]
[151]
Shalash, A.; Salama, M.; Makar, M.; Roushdy, T.; Elrassas, H.H.; Mohamed, W.; El-Balkimy, M.; Abou, D.M. Elevated serum α-synuclein autoantibodies in patients with Parkinson’s disease relative to Alzheimer’s disease and controls. Front. Neurol., 2017, 8, 720.
[http://dx.doi.org/10.3389/fneur.2017.00720] [PMID: 29312137]
[152]
Besong-Agbo, D.; Wolf, E.; Jessen, F.; Oechsner, M.; Hametner, E.; Poewe, W.; Reindl, M.; Oertel, W.H.; Noelker, C.; Bacher, M.; Dodel, R. Naturally occurring -synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology, 2013, 80(2), 169-175.
[http://dx.doi.org/10.1212/WNL.0b013e31827b90d1] [PMID: 23255825]
[153]
Horvath, I.; Iashchishyn, I.A.; Forsgren, L.; Morozova-Roche, L.A. Immunochemical detection of α-synuclein autoantibodies in Parkinson’s disease: Correlation between plasma and cerebrospinal fluid levels. ACS Chem. Neurosci., 2017, 8(6), 1170-1176.
[http://dx.doi.org/10.1021/acschemneuro.7b00063] [PMID: 28263550]
[154]
Akhtar, R.S.; Licata, J.P.; Luk, K.C.; Shaw, L.M.; Trojanowski, J.Q.; Lee, V.M.Y. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J. Neurochem., 2018, 145(6), 489-503.
[http://dx.doi.org/10.1111/jnc.14330] [PMID: 29500813]
[155]
Double, K.L.; Rowe, D.B.; Carew-Jones, F.M.; Hayes, M.; Chan, D.K.Y.; Blackie, J.; Corbett, A.; Joffe, R.; Fung, V.S.; Morris, J.; Riederer, P.; Gerlach, M.; Halliday, G.M. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp. Neurol., 2009, 217(2), 297-301.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.002] [PMID: 19289120]
[156]
Zappia, M.; Crescibene, L.; Bosco, D.; Arabia, G.; Nicoletti, G.; Bagalà, A.; Bastone, L.; Napoli, I.D.; Caracciolo, M.; Bonavita, S.; Di Costanzo, A.; Gambardella, A.; Quattrone, A. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol. Scand., 2002, 106(1), 54-57.
[http://dx.doi.org/10.1034/j.1600-0404.2002.01240.x] [PMID: 12067330]
[157]
De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev., 2016, 15(10), 1005-1011.
[http://dx.doi.org/10.1016/j.autrev.2016.07.022] [PMID: 27497913]
[158]
Benkler, M.; Agmon-Levin, N.; Hassin-Baer, S.; Cohen, O.S.; Ortega-Hernandez, O.D.; Levy, A.; Moscavitch, S.D.; Szyper-Kravitz, M.; Damianovich, M.; Blank, M.; Chapman, J.; Shoenfeld, Y. Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clin. Rev. Allergy Immunol., 2012, 42(2), 164-171.
[http://dx.doi.org/10.1007/s12016-010-8242-y] [PMID: 21234712]
[159]
Papuć, E.; Rejdak, K. Anti-MAG autoantibodies are increased in Parkinson’s disease but not in atypical parkinsonism. J. Neural Transm., 2017, 124(2), 209-216.
[http://dx.doi.org/10.1007/s00702-016-1632-4] [PMID: 27766424]
[160]
Honorat, J.A.; McKeon, A. Autoimmune movement disorders: A clinical and laboratory approach. Curr. Neurol. Neurosci. Rep., 2017, 17(1), 4.
[http://dx.doi.org/10.1007/s11910-017-0709-2] [PMID: 28120141]
[161]
Caggiu, E.; Paulus, K.; Arru, G.; Piredda, R.; Sechi, G.P.; Sechi, L.A. Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinson’s disease, a triggering role in the disease? J. Neuroimmunol., 2016, 291, 110-114.
[http://dx.doi.org/10.1016/j.jneuroim.2016.01.007] [PMID: 26857504]
[162]
Cebrián, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; Zecca, L.; Loike, J.D.; Sulzer, D. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun., 2014, 5(1), 3633.
[http://dx.doi.org/10.1038/ncomms4633] [PMID: 24736453]
[163]
Jiang, T.; Li, G.; Xu, J.; Gao, S.; Chen, X. The challenge of the pathogenesis of parkinson’s disease: Is autoimmunity the culprit? Front. Immunol., 2018, 9, 2047.
[http://dx.doi.org/10.3389/fimmu.2018.02047] [PMID: 30319601]
[164]
Oberländer, U.; Pletinckx, K.; Döhler, A.; Müller, N.; Lutz, M.B.; Arzberger, T.; Riederer, P.; Gerlach, M.; Koutsilieri, E.; Scheller, C. Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci., 2011, 12(1), 116.
[http://dx.doi.org/10.1186/1471-2202-12-116] [PMID: 22085464]
[165]
Koutsilieri, E.; Lutz, M.B.; Scheller, C. Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J. Neural Transm., 2013, 120(1), 75-81.
[http://dx.doi.org/10.1007/s00702-012-0842-7] [PMID: 22699458]
[166]
Depboylu, C.; Schäfer, M.K.H.; Arias-Carrión, O.; Oertel, W.H.; Weihe, E.; Höglinger, G.U. Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J. Neuropathol. Exp. Neurol., 2011, 70(2), 125-132.
[http://dx.doi.org/10.1097/NEN.0b013e31820805b9] [PMID: 21343881]
[167]
Alberici, A.; Cristillo, V.; Gazzina, S.; Benussi, A.; Padovani, A.; Borroni, B. Autoimmunity and frontotemporal dementia. Curr. Alzheimer Res., 2018, 15(7), 602-609.
[http://dx.doi.org/10.2174/1567205015666180119104825] [PMID: 29357796]
[168]
Palese, F.; Bonomi, E.; Nuzzo, T.; Benussi, A.; Mellone, M.; Zianni, E.; Cisani, F.; Casamassa, A.; Alberici, A.; Scheggia, D.; Padovani, A.; Marcello, E.; Di Luca, M.; Pittaluga, A.; Usiello, A.; Borroni, B.; Gardoni, F. Anti-GluA3 antibodies in frontotemporal dementia: Effects on glutamatergic neurotransmission and synaptic failure. Neurobiol. Aging, 2020, 86, 143-155.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.015] [PMID: 31784278]
[169]
Arshad, F.; Varghese, F.; Paplikar, A.; Gangadhar, Y.; Ramakrishnan, S.; Chaudhuri, J.R.; Mahadevan, A.; Alladi, S. Role of autoantibodies in neurodegenerative dementia: An emerging association. Dement. Geriatr. Cogn. Disord., 2021, 50(2), 153-160.
[http://dx.doi.org/10.1159/000517238] [PMID: 34237731]
[170]
Maftei, M.; Thurm, F.; Schnack, C.; Tumani, H.; Otto, M.; Elbert, T.; Kolassa, I.T.; Przybylski, M.; Manea, M.; von Arnim, C.A.F. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer’s disease patients. PLoS One, 2013, 8(7), e68996.
[http://dx.doi.org/10.1371/journal.pone.0068996] [PMID: 23874844]
[171]
Bartos, A.; Fialová, L.; Švarcová, J. Lower serum antibodies against tau protein and heavy neurofilament in alzheimer’s disease. J. Alzheimers Dis., 2018, 64(3), 751-760.
[http://dx.doi.org/10.3233/JAD-180039] [PMID: 29966192]
[172]
Koval, L.; Lykhmus, O.; Kalashnyk, O.; Bachinskaya, N.; Kravtsova, G.; Soldatkina, M.; Zouridakis, M.; Stergiou, C.; Tzartos, S.; Tsetlin, V.; Komisarenko, S.; Skok, M. The presence and origin of autoantibodies against α4 and α7 nicotinic acetylcholine receptors in the human blood: Possible relevance to Alzheimer’s pathology. J. Alzheimers Dis., 2011, 25(4), 747-761.
[http://dx.doi.org/10.3233/JAD-2011-101845] [PMID: 21593571]
[173]
Davydova, T.V.; Mikovskaya, O.I.; Fomina, V.G.; Voskresenskaya, N.I.; Doronina, O.A. Induction of immune complexes and autoantibodies to serotonin and dopamine in patients with Alzheimer’s disease. Bull. Exp. Biol. Med., 2002, 134(1), 23-25.
[http://dx.doi.org/10.1023/A:1020692218416] [PMID: 12459860]
[174]
Davydova, T.V.; Voskresenskaya, N.I.; Gorbatov, V.Y.; Fomina, V.G.; Doronina, O.A.; Maksunova, I.V. Production of autoantibodies to glutamate during Alzheimer’s dementia. Bull. Exp. Biol. Med., 2009, 147(4), 405-407.
[http://dx.doi.org/10.1007/s10517-009-0530-2] [PMID: 19704934]
[175]
Busse, S.; Brix, B.; Kunschmann, R.; Bogerts, B.; Stoecker, W.; Busse, M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci. Res., 2014, 85, 58-64.
[http://dx.doi.org/10.1016/j.neures.2014.06.002] [PMID: 24973618]
[176]
Gruden, M.A.; Davidova, T.B.; Mališauskas, M.; Sewell, R.D.E.; Voskresenskaya, N.I.; Wilhelm, K.; Elistratova, E.I.; Sherstnev, V.V.; Morozova-Roche, L.A. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: Autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J. Neuroimmunol., 2007, 186(1-2), 181-192.
[http://dx.doi.org/10.1016/j.jneuroim.2007.03.023] [PMID: 17477976]
[177]
Mecocci, P.; Parnetti, L.; Donato, R.; Santucci, C.; Santucci, A.; Cadini, D.; Foà, E.; Cecchetti, R.; Senin, U. Serum autoantibodies against glial fibrillary acidic protein in brain aging and senile dementias. Brain Behav. Immun., 1992, 6(3), 286-292.
[http://dx.doi.org/10.1016/0889-1591(92)90049-T] [PMID: 1392102]
[178]
McRae, A.; Dahlström, A.; Polinsky, R.; Ling, E.A. Cerebrospinal fluid microglial antibodies: Potential diagnostic markers for immune mechanisms in Alzheimer’s disease. Behav. Brain Res., 1993, 57(2), 225-234.
[http://dx.doi.org/10.1016/0166-4328(93)90139-H] [PMID: 8117427]
[179]
Kingsley, B.S.; Gaskin, F.; Fu, S.M. Human antibodies to neurofibrillary tangles and astrocytes in Alzheimer’s disease. J. Neuroimmunol., 1988, 19(1-2), 89-99.
[http://dx.doi.org/10.1016/0165-5728(88)90038-0] [PMID: 3260906]
[180]
Kankaanpää, J.; Turunen, S.P.; Moilanen, V.; Hörkkö, S.; Remes, A.M. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer’s disease. Neurobiol. Dis., 2009, 33(3), 467-472.
[http://dx.doi.org/10.1016/j.nbd.2008.12.001] [PMID: 19130885]
[181]
Vojdani, A.; Vojdani, E. Amyloid-Beta 1-42 cross-reactive antibody prevalent in human sera may contribute to intraneuronal deposition of A-Beta-P-42. Int. J. Alzheimers Dis., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/1672568] [PMID: 30034864]
[182]
Mruthinti, S.; Schade, R.; Harrell, D.; Gulati, N.; Swamy-Mruthinti, S.; Lee, G.; Buccafusco, J. Autoimmunity in Alzheimer’s disease as evidenced by plasma immunoreactivity against RAGE and Abeta42: Complication of diabetes. Curr. Alzheimer Res., 2006, 3(3), 229-235.
[http://dx.doi.org/10.2174/156720506777632899] [PMID: 16842100]
[183]
Giil, L.M.; Kristoffersen, E.K.; Vedeler, C.A.; Aarsland, D.; Nordrehaug, J.E.; Winblad, B.; Cedazo-Minguez, A.; Lund, A.; Reksten, T.R. Autoantibodies toward the angiotensin 2 Type 1 receptor: A novel autoantibody in alzheimer’s disease. J. Alzheimers Dis., 2015, 47(2), 523-529.
[http://dx.doi.org/10.3233/JAD-150053] [PMID: 26401573]
[184]
Colasanti, T.; Barbati, C.; Rosano, G.; Malorni, W.; Ortona, E. Autoantibodies in patients with Alzheimer’s disease: Pathogenetic role and potential use as biomarkers of disease progression. Autoimmun. Rev., 2010, 9(12), 807-811.
[http://dx.doi.org/10.1016/j.autrev.2010.07.008] [PMID: 20656067]
[185]
Ariga, T.; Jarvis, W.D.; Yu, R.K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res., 1998, 39(1), 1-16.
[http://dx.doi.org/10.1016/S0022-2275(20)34198-5] [PMID: 9469581]
[186]
Jianming, W.; Ling, L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res., 2016, 30(5), 361-372.
[http://dx.doi.org/10.7555/JBR.30.20150131] [PMID: 27476881]
[187]
Vacirca, D.; Delunardo, F.; Matarrese, P.; Colasanti, T.; Margutti, P.; Siracusano, A.; Pontecorvo, S.; Capozzi, A.; Sorice, M.; Francia, A.; Malorni, W.; Ortona, E. Autoantibodies to the adenosine triphosphate synthase play a pathogenetic role in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(4), 753-766.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.013] [PMID: 20594618]
[188]
Berry, A.; Vacirca, D.; Capoccia, S.; Bellisario, V.; Malorni, W.; Ortona, E.; Cirulli, F. Anti-ATP synthase autoantibodies induce neuronal death by apoptosis and impair cognitive performance in C57BL/6J mice. J. Alzheimers Dis., 2012, 33(2), 317-321.
[http://dx.doi.org/10.3233/JAD-2012-121312] [PMID: 22954670]
[189]
Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; He, Q.; Kong, J.N.; Bieberich, E. The 5XFAD mouse model of Alzheimer’s disease exhibits an age-dependent increase in anti-ceramide IgG and exogenous administration of ceramide further increases anti-ceramide titers and amyloid plaque burden. J. Alzheimers Dis., 2015, 46(1), 55-61.
[http://dx.doi.org/10.3233/JAD-150088] [PMID: 25720409]
[190]
Li, X.; Sundquist, J.; Sundquist, K. Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: A nationwide epidemiological study from Sweden. Neurodegener. Dis., 2012, 10(1-4), 277-284.
[http://dx.doi.org/10.1159/000333222] [PMID: 22205172]
[191]
Li, X.; Sundquist, J.; Zöller, B.; Sundquist, K. Dementia and Alzheimer’s disease risks in patients with autoimmune disorders. Geriatr. Gerontol. Int., 2018, 18(9), 1350-1355.
[http://dx.doi.org/10.1111/ggi.13488] [PMID: 30044040]
[192]
Cho, Y.Y.; Kim, B.; Shin, D.W.; Youn, J.; Mok, J.O.; Kim, C.H.; Kim, S.W.; Chung, J.H.; Han, K.; Kim, T.H. Graves’ disease and the risk of Parkinson’s disease: A Korean population-based study. Brain Commun., 2022, 4(1), fcac014.
[http://dx.doi.org/10.1093/braincomms/fcac014] [PMID: 35187486]
[193]
Bonuccelli, U.; D’Avino, C.; Caraccio, N.; Del Guerra, P.; Casolaro, A.; Pavese, N.; Del Dotto, P.; Monzani, F. Thyroid function and autoimmunity in Parkinson’s disease: A study of 101 patients. Parkinsonism Relat. Disord., 1999, 5(1-2), 49-53.
[http://dx.doi.org/10.1016/S1353-8020(99)00010-3] [PMID: 18591119]
[194]
Charoenngam, N.; Rittiphairoj, T.; Ponvilawan, B.; Prasongdee, K. Thyroid dysfunction and risk of Parkinson’s disease: A systematic review and meta-analysis. Front. Endocrinol., 2022, 13, 863281.
[http://dx.doi.org/10.3389/fendo.2022.863281] [PMID: 35600588]
[195]
Yeung, C.H.C.; Au Yeung, S.L.; Schooling, C.M. Association of autoimmune diseases with Alzheimer’s disease: A mendelian randomization study. J. Psychiatr. Res., 2022, 155, 550-558.
[http://dx.doi.org/10.1016/j.jpsychires.2022.09.052] [PMID: 36198219]
[196]
Ungprasert, P.; Wijarnpreecha, K.; Thongprayoon, C. Rheumatoid arthritis and the risk of dementia: A systematic review and meta-analysis. Neurol. India, 2016, 64(1), 56-61.
[http://dx.doi.org/10.4103/0028-3886.173623] [PMID: 26754993]
[197]
McDowell, B.; Marr, C.; Holmes, C.; Edwards, C.J.; Cardwell, C.; McHenry, M.; Meenagh, G.; McGuinness, B. Prevalence of cognitive impairment in patients with rheumatoid arthritis: A cross sectional study. BMC Psychiatry, 2022, 22(1), 777.
[http://dx.doi.org/10.1186/s12888-022-04417-w] [PMID: 36494656]
[198]
Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673.
[http://dx.doi.org/10.1038/s41577-022-00684-6] [PMID: 35246670]
[199]
Li, D.; Hong, X.; Chen, T. Association between rheumatoid arthritis and risk of Parkinson’s disease: A meta-analysis and systematic review. Front. Neurol., 2022, 13, 885179.
[http://dx.doi.org/10.3389/fneur.2022.885179] [PMID: 35645965]
[200]
Li, M.; Wan, J.; Xu, Z.; Tang, B. The association between Parkinson’s disease and autoimmune diseases: A systematic review and meta-analysis. Front. Immunol., 2023, 14, 1103053.
[http://dx.doi.org/10.3389/fimmu.2023.1103053] [PMID: 36761731]
[201]
Policicchio, S.; Ahmad, A.N.; Powell, J.F.; Proitsi, P. Rheumatoid arthritis and risk for Alzheimer’s disease: A systematic review and meta-analysis and a Mendelian Randomization study. Sci. Rep., 2017, 7(1), 12861.
[http://dx.doi.org/10.1038/s41598-017-13168-8] [PMID: 28993680]
[202]
Cooper, J.; Pastorello, Y.; Slevin, M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front. Immunol., 2023, 14, 1087571.
[http://dx.doi.org/10.3389/fimmu.2023.1087571] [PMID: 36776896]
[203]
Karabay, E.A.; Çerman, A.A.; Altunay, İ.K. Evaluation of comorbidities in patients with autoimmune bullous diseases: A retrospective study. Sisli Etfal Hastan Tip Bul., 2018, 52(4), 302-306.
[PMID: 32774095]
[204]
Yeh, F.C.; Chen, H.C.; Chou, Y.C.; Lin, C.L.; Kao, C.H.; Lo, H.Y.; Liu, F.C.; Yang, T.Y. Positive association of Parkinson’s disease with ankylosing spondylitis: A nationwide population-based study. J. Transl. Med., 2020, 18(1), 455.
[http://dx.doi.org/10.1186/s12967-020-02629-w] [PMID: 33256841]
[205]
Rønnow Sand, J.; Troelsen, F.S.; Horváth-Puhó, E.; Henderson, V.W.; Sørensen, H.T.; Erichsen, R. Risk of dementia in patients with inflammatory bowel disease: A Danish population-based study. Aliment. Pharmacol. Ther., 2022, 56(5), 831-843.
[http://dx.doi.org/10.1111/apt.17119] [PMID: 35781292]
[206]
Zhang, B.; Wang, H.E.; Bai, Y.M.; Tsai, S.J.; Su, T.P.; Chen, T.J.; Wang, Y.P.; Chen, M.H. Inflammatory bowel disease is associated with higher dementia risk: A nationwide longitudinal study. Gut, 2021, 70(1), 85-91.
[http://dx.doi.org/10.1136/gutjnl-2020-320789] [PMID: 32576641]
[207]
Szandruk-Bender, M.; Wiatrak, B.; Szeląg, A. The risk of developing Alzheimer’s disease and Parkinson’s disease in patients with inflammatory bowel disease: A meta-analysis. J. Clin. Med., 2022, 11(13), 3704.
[http://dx.doi.org/10.3390/jcm11133704] [PMID: 35806985]
[208]
Aggarwal, M.; Alkhayyat, M.; Abou Saleh, M.; Sarmini, M.T.; Singh, A.; Garg, R.; Garg, P.; Mansoor, E.; Padival, R.; Cohen, B.L. Alzheimer disease occurs more frequently in patients with inflammatory bowel disease. J. Clin. Gastroenterol., 2023, 57(5), 501-507.
[http://dx.doi.org/10.1097/MCG.0000000000001714] [PMID: 35470286]
[209]
Cui, G.; Li, S.; Ye, H.; Yang, Y.; Huang, Q.; Chu, Y.; Shi, Z.; Zhang, X. Are neurodegenerative diseases associated with an increased risk of inflammatory bowel disease? A two-sample Mendelian randomization study. Front. Immunol., 2022, 13, 956005.
[http://dx.doi.org/10.3389/fimmu.2022.956005] [PMID: 36159838]
[210]
Li, H.; Wen, Z. Effects of ulcerative colitis and Crohn’s disease on neurodegenerative diseases: A Mendelian randomization study. Front. Genet., 2022, 13, 846005.
[http://dx.doi.org/10.3389/fgene.2022.846005] [PMID: 36046231]
[211]
Freuer, D.; Meisinger, C. Association between inflammatory bowel disease and Parkinson’s disease: A Mendelian randomization study. NPJ Parkinsons Dis., 2022, 8(1), 55.
[http://dx.doi.org/10.1038/s41531-022-00318-7] [PMID: 35534507]
[212]
Huang, J.; Su, B.; Karhunen, V.; Gill, D.; Zuber, V.; Ahola-Olli, A.; Palaniswamy, S.; Auvinen, J.; Herzig, K.H.; Keinänen-Kiukaanniemi, S.; Salmi, M.; Jalkanen, S.; Lehtimäki, T.; Salomaa, V.; Raitakari, O.T.; Matthews, P.M.; Elliott, P.; Tsilidis, K.K.; Jarvelin, M.; Tzoulaki, I.; Dehghan, A. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease. Neurology, 2023, 100(6), e568-e581.
[http://dx.doi.org/10.1212/WNL.0000000000201489] [PMID: 36384659]
[213]
Liu, F.C.; Huang, W.Y.; Lin, T.Y.; Shen, C.H.; Chou, Y.C.; Lin, C.L.; Lin, K.T.; Kao, C.H. Inverse association of Parkinson disease with systemic lupus erythematosus. Medicine, 2015, 94(46), e2097.
[http://dx.doi.org/10.1097/MD.0000000000002097] [PMID: 26579824]
[214]
Wang, Y.C.; Lin, M.S.; Huang, A.P.H.; Wu, C.C.; Kung, W.M. Association between systemic rheumatic diseases and dementia risk: A meta-analysis. Front. Immunol., 2022, 13, 1054246.
[http://dx.doi.org/10.3389/fimmu.2022.1054246] [PMID: 36439141]
[215]
Jin, T.; Huang, W.; Cao, F.; Yu, X.; Guo, S.; Ying, Z.; Xu, C. Causal association between systemic lupus erythematosus and the risk of dementia: A Mendelian randomization study. Front. Immunol., 2022, 13, 1063110.
[http://dx.doi.org/10.3389/fimmu.2022.1063110] [PMID: 36569847]
[216]
Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064.
[http://dx.doi.org/10.1001/archneur.60.8.1059] [PMID: 12925360]
[217]
Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol., 2005, 58(6), 963-967.
[http://dx.doi.org/10.1002/ana.20682] [PMID: 16240369]
[218]
Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002.
[http://dx.doi.org/10.1212/WNL.0b013e3181d5a4a3] [PMID: 20308684]
[219]
Gao, X.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Use of ibuprofen and risk of Parkinson disease. Neurology, 2011, 76(10), 863-869.
[http://dx.doi.org/10.1212/WNL.0b013e31820f2d79] [PMID: 21368281]
[220]
Powers, K.M.; Kay, D.M.; Factor, S.A.; Zabetian, C.P.; Higgins, D.S.; Samii, A.; Nutt, J.G.; Griffith, A.; Leis, B.; Roberts, J.W.; Martinez, E.D.; Montimurro, J.S.; Checkoway, H.; Payami, H. Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov. Disord., 2008, 23(1), 88-95.
[http://dx.doi.org/10.1002/mds.21782] [PMID: 17987647]
[221]
San Luciano, M.; Tanner, C.M.; Meng, C.; Marras, C.; Goldman, S.M.; Lang, A.E.; Tolosa, E.; Schüle, B.; Langston, J.W.; Brice, A.; Corvol, J.C.; Goldwurm, S.; Klein, C.; Brockman, S.; Berg, D.; Brockmann, K.; Ferreira, J.J.; Tazir, M.; Mellick, G.D.; Sue, C.M.; Hasegawa, K.; Tan, E.K.; Bressman, S.; Saunders-Pullman, R.; Saunders-Pullman, R.; Raymond, D.; Deik, A.; Barrett, M.J.; Cabassa, J.; Groves, M.; Hunt, A.L.; Lubarr, N.; Miravite, J.; Palmese, C.; Sachdev, R.; Sarva, H.; Severt, L.; Shanker, V.; Swan, M.C.; Soto-Valencia, J.; Johannes, B.; Ortega, R.; Ozelius, L.; Bressman, S.; Alcalay, R.N.; Tang, M-X.; Santana, H.M.; Roos, E.; Orbe-Reilly, M.; Fahn, S.; Cote, L.; Waters, C.; Mazzoni, P.; Ford, B.; Louis, E.; Levy, O.; Rosado, L.; Ruiz, D.; Dorovski, T.; Clark, L.; Marder, K.S.; Corvol, J-C.; Cormier, F.; Bonnet, A-M.; Welter, M-L.; Mesnage, V.; Vidailhet, M.; Roze, E.; Lacomblez, L.; Grabli, D.; Mart i Masso, J.F.; Martinez, J.R.; Mondragon, R.E.; Alustiza, A.E.; Pagola, A.G.; Pont-Sunyer, C.; Rolan, D.V.; Fernandez-Santiago, R.; Quintana, M.; Fernandez, M.; Maragall, L.; Hentati, F.; Farrer, M.; Duda, J.; Read, M.; Middleton, L.; Gibson, R.; Trinh, J.; Sassi, S.B.; Zouari, M.; Rimamouri,; Farhat, E.; Nabli, F.; Aasly, J.; Warø, B.J.; Andersen, S.; Bertoni, J.; Carter, J.; Elmer, L.; Jimenez, N.G.; Martin, W.; Pahwa, R.; Lyons, K.; Reich, S.; Rodnitzky, R.; Ramos, C.S.; Wojcieszek, J.; Mirelman, A.; Gurevich, T.; Shira, A.B.; Weisz, M.G.; Yasinovsky, K.; Zalis, M.; Thaler, A.; Orr-Urtreger, A.; Giladi, N.; Mountain, J.; Mestre, T.; Visanji, N.; Ghate, T.; Singerman, J.; Al Dakheel, A.; Connolly, B.S.; Gasser, T.; Brockmann, K.; Conley, E.D.; Mullins, M.E.; Northover, C.; Facheris, M.; Fiske, B.; Urkowiz, A. Nonsteroidal anti-inflammatory use and LRRK2 Parkinson’s disease penetrance. Mov. Disord., 2020, 35(10), 1755-1764.
[http://dx.doi.org/10.1002/mds.28189] [PMID: 32662532]
[222]
Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine, 2018, 97(37), e12172.
[http://dx.doi.org/10.1097/MD.0000000000012172] [PMID: 30212946]
[223]
Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602.
[http://dx.doi.org/10.1371/journal.pone.0256602] [PMID: 34492069]
[224]
Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: A nested case/control analysis. CNS Drugs, 2016, 30(11), 1111-1120.
[http://dx.doi.org/10.1007/s40263-016-0374-z] [PMID: 27470609]
[225]
Zhou, M.; Xu, R.; Kaelber, D.C.; Gurney, M.E. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS One, 2020, 15(3), e0229819.
[http://dx.doi.org/10.1371/journal.pone.0229819] [PMID: 32203525]
[226]
Zheng, C.; Fillmore, N.R.; Ramos-Cejudo, J.; Brophy, M.; Osorio, R.; Gurney, M.E.; Qiu, W.Q.; Au, R.; Perry, G.; Dubreuil, M.; Chen, S.G.; Qi, X.; Davis, P.B.; Do, N.; Xu, R. Potential long-term effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimers Dement., 2022, 18(6), 1248-1259.
[http://dx.doi.org/10.1002/alz.12465] [PMID: 34569707]
[227]
Newby, D.; Prieto-Alhambra, D.; Duarte-Salles, T.; Ansell, D.; Pedersen, L.; van der Lei, J.; Mosseveld, M.; Rijnbeek, P.; James, G.; Alexander, M.; Egger, P.; Podhorna, J.; Stewart, R.; Perera, G.; Avillach, P.; Grosdidier, S.; Lovestone, S.; Nevado-Holgado, A.J. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: A multi-national multi-database case-control study. Alzheimers Res. Ther., 2020, 12(1), 38.
[http://dx.doi.org/10.1186/s13195-020-00606-5] [PMID: 32252806]
[228]
Watad, A.; McGonagle, D.; Anis, S.; Carmeli, R.; Cohen, A.D.; Tsur, A.M.; Ben-Shabat, N.; Luigi Bragazzi, N.; Lidar, M.; Amital, H. TNF inhibitors have a protective role in the risk of dementia in patients with ankylosing spondylitis: Results from a nationwide study. Pharmacol. Res., 2022, 182, 106325.
[http://dx.doi.org/10.1016/j.phrs.2022.106325] [PMID: 35752359]
[229]
Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Anti–tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol., 2018, 75(8), 939-946.
[http://dx.doi.org/10.1001/jamaneurol.2018.0605] [PMID: 29710331]
[230]
Kern, D.M.; Lovestone, S.; Cepeda, M.S. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer’s disease. Alzheimers Dement., 2021, 7(1), e12163.
[http://dx.doi.org/10.1002/trc2.12163]
[231]
Desai, R.J.; Varma, V.R.; Gerhard, T.; Segal, J.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Schneeweiss, S.; Thambisetty, M. Comparative risk of Alzheimer disease and related dementia among Medicare beneficiaries with Rheumatoid Arthritis treated with targeted disease/modifying antirheumatic agents. JAMA Netw. Open, 2022, 5(4), e226567.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.6567] [PMID: 35394510]
[232]
Fardet, L.; Nazareth, I.; Petersen, I. Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimer’s disease: A population-based cohort study. Ann. Rheum. Dis., 2019, 78(2) , 279.2-282.
[http://dx.doi.org/10.1136/annrheumdis-2018-214016] [PMID: 30185414]
[233]
Lai, S.W.; Kuo, Y.H.; Liao, K.F. Chronic hydroxychloroquine exposure and the risk of Alzheimer’s disease. Ann. Rheum. Dis., 2021, 80(7), e105.
[http://dx.doi.org/10.1136/annrheumdis-2019-216173] [PMID: 31434638]
[234]
Varma, V.R.; Desai, R.J.; Navakkode, S.; Wong, L.W.; Anerillas, C.; Loeffler, T.; Schilcher, I.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Gerhard, T.; Segal, J.B.; Schneeweiss, S.; Gorospe, M.; Sajikumar, S.; Thambisetty, M. Hydroxychloroquine lowers Alzheimer’s disease and related dementias risk and rescues molecular phenotypes related to Alzheimer’s disease. Mol. Psychiatry, 2023, 28(3), 1312-1326.
[http://dx.doi.org/10.1038/s41380-022-01912-0] [PMID: 36577843]
[235]
Mathieu, S.; Couderc, M.; Pereira, B.; Dubost, J.J.; Malochet-Guinamand, S.; Tournadre, A.; Soubrier, M.; Moisset, X. Prevalence of migraine and neuropathic pain in rheumatic diseases. J. Clin. Med., 2020, 9(6), 1890.
[http://dx.doi.org/10.3390/jcm9061890] [PMID: 32560321]
[236]
Wu, L.; Xu, Q.; Zhou, M.; Chen, Y.; Jiang, C.; Jiang, Y.; Lin, Y.; He, Q.; Zhao, L.; Dong, Y.; Liu, J.; Chen, W. Plasma miR-153 and miR-223 levels as potential biomarkers in Parkinson’s disease. Front. Neurosci., 2022, 16, 865139.
[http://dx.doi.org/10.3389/fnins.2022.865139] [PMID: 35655754]
[237]
Li, D.; Yang, H.; Ma, J.; Luo, S.; Chen, S.; Gu, Q. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson’s disease by targeting Nlrp3. Hum. Cell, 2018, 31(2), 106-115.
[http://dx.doi.org/10.1007/s13577-017-0187-5] [PMID: 29274035]
[238]
Taglialatela, G.; Rastellini, C.; Cicalese, L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J. Alzheimers Dis., 2015, 47(2), 329-333.
[http://dx.doi.org/10.3233/JAD-150065] [PMID: 26401556]
[239]
Bukhbinder, A.S.; Ling, Y.; Hasan, O.; Jiang, X.; Kim, Y.; Phelps, K.N.; Schmandt, R.E.; Amran, A.; Coburn, R.; Ramesh, S.; Xiao, Q.; Schulz, P.E. Risk of Alzheimer’s disease following influenza vaccination: A claims-based cohort study using propensity score matching. J. Alzheimers Dis., 2022, 88(3), 1061-1074.
[http://dx.doi.org/10.3233/JAD-220361] [PMID: 35723106]
[240]
Klinger, D.; Hill, B.L.; Barda, N.; Halperin, E.; Gofrit, O.N.; Greenblatt, C.L.; Rappoport, N.; Linial, M.; Bercovier, H. Bladder cancer immunotherapy by BCG is associated with a significantly reduced risk of Alzheimer’s disease and Parkinson’s disease. Vaccines,, 2021, 9(5), 491.
[http://dx.doi.org/10.3390/vaccines9050491] [PMID: 34064775]
[241]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.S. Long-term use of metformin and Alzheimer’s disease: Beneficial or detrimental effects. Inflammopharmacology, 2023, 31(3), 1107-1115.
[http://dx.doi.org/10.1007/s10787-023-01163-7] [PMID: 36849855]
[242]
McGeer, P.L.; Rogers, J.; McGeer, E.G. Inflammation, anti-inflammatory agents and Alzheimer disease: The last 12 years. J. Alzheimers Dis., 2006, 9(s3)(Suppl.), 271-276.
[http://dx.doi.org/10.3233/JAD-2006-9S330] [PMID: 16914866]
[243]
Launer, L.J. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: dissecting the epidemiological evidence. Drugs, 2003, 63(8), 731-739.
[http://dx.doi.org/10.2165/00003495-200363080-00001] [PMID: 12662122]
[244]
Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[245]
Annadurai, N.; De Sanctis, J.B.; Hajdúch, M.; Das, V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer’s disease and other tauopathies. Exp. Neurol., 2021, 343, 113756.
[http://dx.doi.org/10.1016/j.expneurol.2021.113756] [PMID: 33989658]
[246]
Annadurai, N.; Malina, L.; Malohlava, J.; Hajdúch, M.; Das, V. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie, 2022, 200, 79-86.
[http://dx.doi.org/10.1016/j.biochi.2022.05.013] [PMID: 35623497]
[247]
Annadurai, N.; Malina, L.; Salmona, M.; Diomede, L.; Bastone, A.; Cagnotto, A.; Romeo, M.; Šrejber, M.; Berka, K.; Otyepka, M.; Hajdúch, M.; Das, V. Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS J., 2022, 289(7), 1929-1949.
[http://dx.doi.org/10.1111/febs.16270] [PMID: 34743390]
[248]
Annadurai, N.; Hrubý, J.; Kubíčková, A.; Malina, L.; Hajdúch, M.; Das, V. Time- and dose-dependent seeding tendency of exogenous tau R2 and R3 aggregates in cells. Biochem. Biophys. Res. Commun., 2023, 653, 102-105.
[http://dx.doi.org/10.1016/j.bbrc.2023.02.057] [PMID: 36863211]
[249]
Ferretti, M.T.; Allard, S.; Partridge, V.; Ducatenzeiler, A.; Cuello, A.C. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J. Neuroinflammation, 2012, 9(1), 62.
[http://dx.doi.org/10.1186/1742-2094-9-62] [PMID: 22472085]
[250]
Parashos, S.A.; Luo, S.; Biglan, K.M.; Bodis-Wollner, I.; He, B.; Liang, G.S.; Ross, G.W.; Tilley, B.C.; Shulman, L.M. Measuring disease progression in early Parkinson disease. JAMA Neurol., 2014, 71(6), 710-716.
[http://dx.doi.org/10.1001/jamaneurol.2014.391] [PMID: 24711047]
[251]
Nassar, N.N.; Al-Shorbagy, M.Y.; Arab, H.H.; Abdallah, D.M. Saxagliptin: A novel antiparkinsonian approach. Neuropharmacology, 2015, 89, 308-317.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.007] [PMID: 25446674]
[252]
Chen, S.; Zhou, M.; Sun, J.; Guo, A.; Fernando, R.L.; Chen, Y.; Peng, P.; Zhao, G.; Deng, Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology, 2019, 157, 107668.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107668] [PMID: 31199957]
[253]
Yu, H.; Sun, T.; He, X.; Wang, Z.; Zhao, K.; An, J.; Wen, L.; Li, J.Y.; Li, W.; Feng, J. Association between Parkinson’s disease and diabetes mellitus: From epidemiology, pathophysiology and prevention to treatment. Aging Dis., 2022, 13(6), 1591-1605.
[http://dx.doi.org/10.14336/AD.2022.0325] [PMID: 36465171]
[254]
Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics, 2008, 5(3), 481-489.
[http://dx.doi.org/10.1016/j.nurt.2008.05.003] [PMID: 18625459]
[255]
Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; Kahn, S.E.; Keeling, M.L.; Craft, S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry, 2005, 13(11), 950-958.
[http://dx.doi.org/10.1176/appi.ajgp.13.11.950] [PMID: 16286438]
[256]
Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 2006, 6(4), 246-254.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[257]
Alhowail, A.; Alsikhan, R.; Alsaud, M.; Aldubayan, M.; Rabbani, S.I. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: A review of literature. Drug Des. Devel. Ther., 2022, 16, 2919-2931.
[http://dx.doi.org/10.2147/DDDT.S367229] [PMID: 36068789]
[258]
Zhou, Y.; Chen, Y.; Xu, C.; Zhang, H.; Lin, C. TLR4 targeting as a promising therapeutic strategy for Alzheimer disease treatment. Front. Neurosci., 2020, 14, 602508.
[http://dx.doi.org/10.3389/fnins.2020.602508] [PMID: 33390886]
[259]
Cui, W.; Sun, C.; Ma, Y.; Wang, S.; Wang, X.; Zhang, Y. Inhibition of TLR4 Induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer’s disease. Front. Neurosci., 2020, 14, 444.
[http://dx.doi.org/10.3389/fnins.2020.00444] [PMID: 32508567]
[260]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NFκB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590.
[http://dx.doi.org/10.1111/cns.13086] [PMID: 30676698]
[261]
Shi, S.; Liang, D.; Chen, Y.; Xie, Y.; Wang, Y.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 reduces β-amyloid-induced TNF-α IL-1β NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer’s disease. Eur. J. Immunol., 2016, 46(3), 665-676.
[http://dx.doi.org/10.1002/eji.201545855] [PMID: 26643273]
[262]
Kim, C.; Spencer, B.; Rockenstein, E.; Yamakado, H.; Mante, M.; Adame, A.; Fields, J.A.; Masliah, D.; Iba, M.; Lee, H.J.; Rissman, R.A.; Lee, S.J.; Masliah, E. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol. Neurodegener., 2018, 13(1), 43.
[http://dx.doi.org/10.1186/s13024-018-0276-2] [PMID: 30092810]
[263]
Lee, H.; Jeon, S.G.; Kim, J.; Kang, R.J.; Kim, S.M.; Han, K.M.; Park, H.; Kim, K.; Sung, Y.M.; Nam, H.Y.; Koh, Y.H.; Song, M.; Suk, K.; Hoe, H.S. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer’s disease. Aging Cell, 2021, 20(3), e13332.
[http://dx.doi.org/10.1111/acel.13332] [PMID: 33709472]
[264]
He, P.; Cheng, X.; Staufenbiel, M.; Li, R.; Shen, Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer’s disease. PLoS One, 2013, 8(2), e55091.
[http://dx.doi.org/10.1371/journal.pone.0055091] [PMID: 23405115]
[265]
Decourt, B.; Drumm-Gurnee, D.; Wilson, J.; Jacobson, S.; Belden, C.; Sirrel, S.; Ahmadi, M.; Shill, H.; Powell, J.; Walker, A.; Gonzales, A.; Macias, M.; Sabbagh, M.N. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide for Alzheimer’s disease: Results from a double-blind, placebo-controlled trial. Curr. Alzheimer Res., 2017, 14(4), 403-411.
[http://dx.doi.org/10.2174/1567205014666170117141330] [PMID: 28124585]
[266]
Decourt, B.; Wilson, J.; Ritter, A.; Dardis, C.; DiFilippo, F.; Zhuang, X.; Cordes, D.; Lee, G.; Fulkerson, N.; St Rose, T.; Hartley, K.; Sabbagh, M. MCLENA-1: A phase ii clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer’s disease. Open Access J. Clin. Trials, 2020, 12, 1-13.
[http://dx.doi.org/10.2147/OAJCT.S221914] [PMID: 32123490]
[267]
Palmas, M.F.; Ena, A.; Burgaletto, C.; Casu, M.A.; Cantarella, G.; Carboni, E.; Etzi, M.; De Simone, A.; Fusco, G.; Cardia, M.C.; Lai, F.; Picci, L.; Tweedie, D.; Scerba, M.T.; Coroneo, V.; Bernardini, R.; Greig, N.H.; Pisanu, A.; Carta, A.R. Repurposing pomalidomide as a neuroprotective drug: Efficacy in an alpha-synuclein-based model of parkinson’s disease. Neurotherapeutics, 2022, 19(1), 305-324.
[http://dx.doi.org/10.1007/s13311-022-01182-2] [PMID: 35072912]
[268]
Singh, S.; Ganguly, U.; Pal, S.; Chandan, G.; Thakur, R.; Saini, R.V.; Chakrabarti, S.S.; Agrawal, B.K.; Chakrabarti, S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson’s disease. Eur. J. Pharmacol., 2022, 929, 175129.
[http://dx.doi.org/10.1016/j.ejphar.2022.175129] [PMID: 35777442]
[269]
Van der Perren, A.; Macchi, F.; Toelen, J.; Carlon, M.S.; Maris, M.; de Loor, H.; Kuypers, D.R.J.; Gijsbers, R.; Van den Haute, C.; Debyser, Z.; Baekelandt, V. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol. Aging, 2015, 36(3), 1559-1568.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.01.014] [PMID: 25660193]
[270]
Köylü, A.; Altunkaynak, B.Z.; Delibaş, B. Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turk. J. Med. Sci., 2021, 51(4), 2159-2166.
[http://dx.doi.org/10.3906/sag-2008-291] [PMID: 33754647]
[271]
Kumar, A.; Singh, N. Calcineurin inhibition and protein kinase a activation limits cognitive dysfunction and histopathological damage in a model of dementia of the Alzheimer’s type. Curr. Neurovasc. Res., 2018, 15(3), 234-245.
[http://dx.doi.org/10.2174/1567202615666180813125125] [PMID: 30101704]
[272]
Lai, W.D.; Wang, S.; You, W.T.; Chen, S.J.; Wen, J.J.; Yuan, C.R.; Zheng, M.J.; Jin, Y.; Yu, J.; Wen, C.P. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front. Cell Dev. Biol., 2022, 10, 1041006.
[http://dx.doi.org/10.3389/fcell.2022.1041006] [PMID: 36619869]
[273]
Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(4), 273-278.
[PMID: 29181493]
[274]
Prins, N.D.; Harrison, J.E.; Chu, H.M.; Blackburn, K.; Alam, J.J.; Scheltens, P. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 106.
[http://dx.doi.org/10.1186/s13195-021-00843-2] [PMID: 34044875]
[275]
Rothhammer, V.; Kenison, J.E.; Li, Z.; Tjon, E.; Takenaka, M.C.; Chao, C.C.; Alves de Lima, K.; Borucki, D.M.; Kaye, J.; Quintana, F.J. Aryl hydrocarbon receptor activation in astrocytes by laquinimod ameliorates autoimmune inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(2), e946.
[http://dx.doi.org/10.1212/NXI.0000000000000946] [PMID: 33408169]
[276]
Srivastava, S.; Rajopadhye, R.; Dey, M.; Singh, R.K. Inhibition of MK2 kinase as a potential therapeutic target to control neuroinflammation in Alzheimer’s disease. Expert Opin. Ther. Targets, 2021, 25(4), 243-247.
[http://dx.doi.org/10.1080/14728222.2021.1924151] [PMID: 33909536]
[277]
Roy, S.M.; Minasov, G.; Arancio, O.; Chico, L.W.; Van Eldik, L.J.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. A selective and brain penetrant p38αMAPK inhibitor candidate for neurologic and neuropsychiatric disorders that attenuates neuroinflammation and cognitive dysfunction. J. Med. Chem., 2019, 62(11), 5298-5311.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00058] [PMID: 30978288]
[278]
Martínez, G.; Mijares, M.R.; De Sanctis, J.B. Effects of flavonoids and its derivatives on immune cell responses. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 84-104.
[http://dx.doi.org/10.2174/1872213X13666190426164124] [PMID: 31814545]
[279]
Ping, Z.; Xiaomu, W.; Xufang, X.; Liang, S. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients. Neurol. Sci., 2019, 40(1), 113-120.
[http://dx.doi.org/10.1007/s10072-018-3592-y] [PMID: 30315378]
[280]
Cui, B.; Guo, X.; You, Y.; Fu, R. Farrerol attenuates MPP+induced inflammatory response by TLR4 signaling in a microglia cell line. Phytother. Res., 2019, 33(4), 1134-1141.
[http://dx.doi.org/10.1002/ptr.6307] [PMID: 30734970]
[281]
Yang, Y.L.; Cheng, X.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int. J. Mol. Sci., 2019, 20(3), 491.
[http://dx.doi.org/10.3390/ijms20030491] [PMID: 30678325]
[282]
Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis., 2020, 140, 104814.
[http://dx.doi.org/10.1016/j.nbd.2020.104814] [PMID: 32087283]
[283]
Haddadi, R.; Nayebi, A.M.; Eyvari, B.S. RETRACTED: Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed. Pharmacother., 2018, 104, 127-136.
[http://dx.doi.org/10.1016/j.biopha.2018.05.020] [PMID: 29772432]
[284]
Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinson’s disease. Front. Aging Neurosci., 2022, 14, 957705.
[http://dx.doi.org/10.3389/fnagi.2022.957705] [PMID: 36313019]
[285]
Yang, Y.; Guo, L.; Wang, J.; Li, W.; Zhou, X.; Zhang, C.; Han, C. Arglabin regulates microglia polarization to relieve neuroinflammation in Alzheimer’s disease. J. Biochem. Mol. Toxicol., 2022, 36(6), e23045.
[http://dx.doi.org/10.1002/jbt.23045] [PMID: 35289014]
[286]
Tong, B.C.K.; Huang, A.S.; Wu, A.J.; Iyaswamy, A.; Ho, O.K.Y.; Kong, A.H.Y.; Sreenivasmurthy, S.G.; Zhu, Z.; Su, C.; Liu, J.; Song, J.; Li, M.; Cheung, K.H. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J. Biomed. Sci., 2022, 29(1), 85.
[http://dx.doi.org/10.1186/s12929-022-00871-6] [PMID: 36273169]
[287]
Velagapudi, R.; Aderogba, M.; Olajide, O.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(12), 3311-3319.
[http://dx.doi.org/10.1016/j.bbagen.2014.08.008] [PMID: 25152356]
[288]
Wu, Q.; Naeem, A.; Zou, J.; Yu, C.; Wang, Y.; Chen, J.; Ping, Y. Isolation of phenolic compounds from raspberry based on molecular imprinting techniques and investigation of their anti-alzheimer’s disease properties. Molecules, 2022, 27(20), 6893.
[http://dx.doi.org/10.3390/molecules27206893] [PMID: 36296486]
[289]
Rezai-Zadeh, K.; Ehrhart, J.; Bai, Y.; Sanberg, P.R.; Bickford, P.; Tan, J.; Shytle, R.D. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J. Neuroinflammation, 2008, 5(1), 41.
[http://dx.doi.org/10.1186/1742-2094-5-41] [PMID: 18817573]
[290]
Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J. Alzheimers Dis., 2011, 24(1), 85-100.
[http://dx.doi.org/10.3233/JAD-2010-101593] [PMID: 21297270]
[291]
Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813.
[http://dx.doi.org/10.1016/j.intimp.2013.09.009] [PMID: 24076371]
[292]
Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol., 2012, 27(2), 177-186.
[http://dx.doi.org/10.1002/hup.1263] [PMID: 22389082]
[293]
Olajide, O.A.; Sarker, S.D. Alzheimer’s disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology, 2020, 28(6), 1439-1455.
[http://dx.doi.org/10.1007/s10787-020-00751-1] [PMID: 32930914]
[294]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[295]
Porro, C.; Cianciulli, A.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in bv-2 microglial cells. Biology,, 2019, 8(3), 51.
[http://dx.doi.org/10.3390/biology8030051] [PMID: 31252572]
[296]
Sorrenti, V.; Contarini, G.; Sut, S.; Dall’Acqua, S.; Confortin, F.; Pagetta, A.; Giusti, P.; Zusso, M. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front. Pharmacol., 2018, 9, 183.
[http://dx.doi.org/10.3389/fphar.2018.00183] [PMID: 29556196]
[297]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]
[298]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[299]
Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29(5), 642-651.
[http://dx.doi.org/10.1177/0269881114552744] [PMID: 25277322]
[300]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[301]
Khare, P.; Datusalia, A.K.; Sharma, S.S. Parthenolide, an NF-κB Inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. Neuromol. Med., 2017, 19(1), 101-112.
[http://dx.doi.org/10.1007/s12017-016-8434-6] [PMID: 27553015]
[302]
Qiang, W.; Cai, W.; Yang, Q.; Yang, L.; Dai, Y.; Zhao, Z.; Yin, J.; Li, Y.; Li, Q.; Wang, Y.; Weng, X.; Zhang, D.; Chen, Y.; Zhu, X.; Artemisinin, B.; Artemisinin, B. Improves learning and memory impairment in AD dementia mice by suppressing neuroinflammation. Neuroscience, 2018, 395, 1-12.
[http://dx.doi.org/10.1016/j.neuroscience.2018.10.041] [PMID: 30399421]
[303]
Zhou, J.M.; Gu, S.S.; Mei, W.H.; Zhou, J.; Wang, Z.Z.; Xiao, W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones, 2016, 21(6), 1037-1053.
[http://dx.doi.org/10.1007/s12192-016-0728-y] [PMID: 27562518]
[304]
de Oliveira, M.R. The dietary components carnosic acid and carnosol as neuroprotective agents: A Mechanistic View. Mol. Neurobiol., 2016, 53(9), 6155-6168.
[http://dx.doi.org/10.1007/s12035-015-9519-1] [PMID: 26553346]
[305]
Velagapudi, R.; Kumar, A.; Bhatia, H.S.; El-Bakoush, A.; Lepiarz, I.; Fiebich, B.L.; Olajide, O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol., 2017, 48, 17-29.
[http://dx.doi.org/10.1016/j.intimp.2017.04.018] [PMID: 28458100]
[306]
Yang, W.; Qiu, X.; Wu, Q.; Chang, F.; Zhou, T.; Zhou, M.; Pei, J. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases. (Review). Exp. Ther. Med., 2023, 25(5), 235.
[http://dx.doi.org/10.3892/etm.2023.11934] [PMID: 37114174]
[307]
Fu, M.; Liang, X.; Zhang, X.; Yang, M.; Ye, Q.; Qi, Y.; Liu, H.; Zhang, X. Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutr. Neurosci., 2023, 26(5), 445-455.
[http://dx.doi.org/10.1080/1028415X.2022.2055376] [PMID: 35385370]
[308]
Lin, C.H.; Chou, C.C.; Lee, Y.H.; Hung, C.C. Curcumin facilitates aryl hydrocarbon receptor activation to ameliorate inflammatory astrogliosis. Molecules, 2022, 27(8), 2507.
[http://dx.doi.org/10.3390/molecules27082507] [PMID: 35458704]
[309]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[310]
Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; Wang, K.C.; Pace, A.; Fujita, K.P.; Armstrong, R.; Wingerchuk, D.M. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med., 2019, 381(7), 614-625.
[http://dx.doi.org/10.1056/NEJMoa1900866] [PMID: 31050279]
[311]
Lamers, C.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Compstatins: The dawn of clinical C3-targeted complement inhibition. Trends Pharmacol. Sci., 2022, 43(8), 629-640.
[http://dx.doi.org/10.1016/j.tips.2022.01.004] [PMID: 35090732]
[312]
Lansita, J.A.; Mease, K.M.; Qiu, H.; Yednock, T.; Sankaranarayanan, S.; Kramer, S. Nonclinical development of ANX005: A humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol., 2017, 36(6), 449-462.
[http://dx.doi.org/10.1177/1091581817740873] [PMID: 29202623]
[313]
Qi, Y.; Klyubin, I.; Cuello, A.C.; Rowan, M.J. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol. Dis., 2018, 114, 24-30.
[http://dx.doi.org/10.1016/j.nbd.2018.02.016] [PMID: 29477641]
[314]
Ben-Menachem-Zidon, O.; Ben-Menahem, Y.; Ben-Hur, T.; Yirmiya, R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology, 2014, 39(2), 401-414.
[http://dx.doi.org/10.1038/npp.2013.208] [PMID: 23954849]
[315]
Cavanagh, C.; Tse, Y.C.; Nguyen, H.B.; Krantic, S.; Breitner, J.C.S.; Quirion, R.; Wong, T.P. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol. Aging, 2016, 47, 41-49.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.009] [PMID: 27552480]
[316]
Cavanagh, C.; Wong, T.P. Preventing synaptic deficits in Alzheimer’s disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep., 2018, 4, 18-21.
[http://dx.doi.org/10.1016/j.ibror.2018.01.003] [PMID: 30135948]
[317]
Li, Y.; Fan, H.; Ni, M.; Zhang, W.; Fang, F.; Sun, J.; Lyu, P.; Ma, P. Etanercept reduces neuron injury and neuroinflammation via inactivating c-Jun N-terminal kinase and nuclear factor-κB Pathways in Alzheimer’s disease: An in vitro and in vivo investigation. Neuroscience, 2022, 484, 140-150.
[http://dx.doi.org/10.1016/j.neuroscience.2021.11.001] [PMID: 35058089]
[318]
Tobinick, E.; Gross, H.; Weinberger, A.; Cohen, H. TNF-alpha modulation for treatment of Alzheimer’s disease: A 6-month pilot study. MedGenMed, 2006, 8(2), 25.
[PMID: 16926764]
[319]
Tobinick, E.L.; Gross, H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol., 2008, 8, 27.
[http://dx.doi.org/10.1186/1471-2377-8-27]
[320]
Butchart, J.; Brook, L.; Hopkins, V.; Teeling, J.; Püntener, U.; Culliford, D.; Sharples, R.; Sharif, S.; McFarlane, B.; Raybould, R.; Thomas, R.; Passmore, P.; Perry, V.H.; Holmes, C. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology, 2015, 84(21), 2161-2168.
[http://dx.doi.org/10.1212/WNL.0000000000001617] [PMID: 25934853]
[321]
Tufan, A.N.; Holmes, C.; Tufan, F. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialAuthor Response. Neurology, 2015, 85(23) , 2083.2-2084.
[http://dx.doi.org/10.1212/01.wnl.0000475736.75775.25] [PMID: 26644053]
[322]
Torres-Acosta, N.; O’Keefe, J.H.; O’Keefe, E.L.; Isaacson, R.; Small, G. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J. Alzheimers Dis., 2020, 78(2), 619-626.
[http://dx.doi.org/10.3233/JAD-200711] [PMID: 33016914]
[323]
vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819.
[http://dx.doi.org/10.1038/nm.2965] [PMID: 23178247]
[324]
Pedrini, S.; Gupta, V.B.; Hone, E.; Doecke, J.; O’Bryant, S.; James, I.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; Masters, C.L.; Martins, R.N.; Savage, G.; Wilson, B.; Bourgeat, P.; Fripp, J.; Gibson, S.; Leroux, H.; McBride, S.; Salvado, O.; Fenech, M.; Francois, M.; Barnes, M.; Baker, J.; Barnham, K.; Bellingham, S.; Bomke, J.; Pejoska, S.B.; Buckley, R.; Cheng, L.; Collins, S.; Cooke, I.; Cyarto, E.; Darby, D.; Dore, V.; El-Sheikh, D.; Faux, N.; Fowler, C.; Harrington, K.; Hill, A.; Horne, M.; Jones, G.; Kamer, A.; Killeen, N.; Korrel, H.; Lamb, F.; Lautenschlager, N.; Lennon, K.; Li, Q-X.; Lim, Y.Y.; Louey, A.; Macaulay, L.; Mackintosh, L.; Maruff, P.; Mcilroy, A.; Nigro, J.; Perez, K.; Pertile, K.; Restrepo, C.; Cardoso, B.R.; Rembach, A.; Roberts, B.; Robertson, J.; Rumble, R.; Ryan, T.; Sach, J.; Silbert, B.; Thai, C.; Trounson, B.; Volitakis, I.; Vovos, M.; Ward, L.; Watt, A.; Williams, R.; Woodward, M.; Yates, P.; Ugarte, F.Y.; Zhang, P.; Bird, S.; Brown, B.; Burnham, S.; Chatterjee, P.; Cox, K.; Fernandez, S.; Fernando, B.; Gardener, S.; Laws, S.; Lim, F.; Lim, L.; Tegg, M.; Lucas, K.; Martins, G.; Porter, T.; Rainey-Smith, S.; Rodrigues, M.; Shen, K.K.; Sohrabi, H.; Taddei, K.; Taddei, T.; Tan, S.; Verdile, G.; Weinborn, M.; Farrow, M.; Frost, S.; Hanson, D.; Hor, M.; Kanagasingam, Y.; Leifert, W.; Lockett, L.; Riley, M.; Saunders, I.; Thomas, P. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci. Rep., 2017, 7(1), 14057.
[http://dx.doi.org/10.1038/s41598-017-14020-9] [PMID: 29070909]
[325]
Eede, P.; Obst, J.; Benke, E.; Yvon-Durocher, G.; Richard, B.C.; Gimber, N.; Schmoranzer, J.; Böddrich, A.; Wanker, E.E.; Prokop, S.; Heppner, F.L. Interleukin-/23 deficiency differentially affects pathology in male and female Alzheimer’s disease-like mice. EMBO Rep., 2020, 21(3), e48530.
[http://dx.doi.org/10.15252/embr.201948530] [PMID: 32003148]
[326]
Porro, C.; Cianciulli, A.; Panaro, M.A. The Regulatory Role of IL-10 in neurodegenerative diseases. Biomolecules, 2020, 10(7), 1017.
[http://dx.doi.org/10.3390/biom10071017] [PMID: 32659950]
[327]
Fei, Z.; Pan, B.; Pei, R.; Chen, Z.; Du, X.; Cao, H.; Li, C. Efficacy and safety of blood derivatives therapy in Alzheimer’s disease: A systematic review and meta-analysis. Syst. Rev., 2022, 11(1), 256.
[http://dx.doi.org/10.1186/s13643-022-02115-y] [PMID: 36443888]
[328]
Rinne, J.O.; Brooks, D.J.; Rossor, M.N.; Fox, N.C.; Bullock, R.; Klunk, W.E.; Mathis, C.A.; Blennow, K.; Barakos, J.; Okello, A.A. de LIano, S.R.M.; Liu, E.; Koller, M.; Gregg, K.M.; Schenk, D.; Black, R.; Grundman, M. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol., 2010, 9(4), 363-372.
[http://dx.doi.org/10.1016/S1474-4422(10)70043-0] [PMID: 20189881]
[329]
Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; Lobello, K.; Li, D.; McRae, T.; Lucas, P.; Evans, I.; Booth, K.; Luscan, G.; Wyman, B.T.; Hua, L.; Yang, L.; Brashear, H.R.; Black, R.S. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 2016, 8(1), 18.
[http://dx.doi.org/10.1186/s13195-016-0189-7] [PMID: 27176461]
[330]
Delnomdedieu, M.; Duvvuri, S.; Li, D.J.; Atassi, N.; Lu, M.; Brashear, H.R.; Liu, E.; Ness, S.; Kupiec, J.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 12.
[http://dx.doi.org/10.1186/s13195-016-0177-y] [PMID: 26925577]
[331]
Salloway, S.; Sperling, R.; Brashear, H.R. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N. Engl. J. Med., 2014, 370(15), 1460.
[PMID: 24724181]
[332]
SallowayS.SperlingR.FoxN.C.BlennowK.KlunkW.RaskindM.SabbaghM.HonigL.S.PorsteinssonA.P.FerrisS.ReichertM.KetterN.NejadnikB.GuenzlerV.MiloslavskyM.WangD.LuY.LullJ.TudorI.C.LiuE.GrundmanM.YuenE.BlackR.BrashearH.R.Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 322-333.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[333]
Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to alzheimer’s disease. N. Engl. J. Med., 2018, 378(4), 321-330.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[334]
Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; Hassenstab, J.; Benzinger, T.L.S.; Gordon, B.A.; Fagan, A.M.; Coalier, K.A.; Cruchaga, C.; Goate, A.A.; Perrin, R.J.; Xiong, C.; Li, Y.; Morris, J.C.; Snider, B.J.; Mummery, C.; Surti, G.M.; Hannequin, D.; Wallon, D.; Berman, S.B.; Lah, J.J.; Jimenez-Velazquez, I.Z.; Roberson, E.D.; van Dyck, C.H.; Honig, L.S.; Sánchez-Valle, R.; Brooks, W.S.; Gauthier, S.; Galasko, D.R.; Masters, C.L.; Brosch, J.R.; Hsiung, G.Y.R.; Jayadev, S.; Formaglio, M.; Masellis, M.; Clarnette, R.; Pariente, J.; Dubois, B.; Pasquier, F.; Jack, C.R., Jr; Koeppe, R.; Snyder, P.J.; Aisen, P.S.; Thomas, R.G.; Berry, S.M.; Wendelberger, B.A.; Andersen, S.W.; Holdridge, K.C.; Mintun, M.A.; Yaari, R.; Sims, J.R.; Baudler, M.; Delmar, P.; Doody, R.S.; Fontoura, P.; Giacobino, C.; Kerchner, G.A.; Bateman, R.J.; Formaglio, M.; Mills, S.L.; Pariente, J.; van Dyck, C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med., 2021, 27(7), 1187-1196.
[http://dx.doi.org/10.1038/s41591-021-01369-8] [PMID: 34155411]
[335]
Geerts, H.; Walker, M.; Rose, R.; Bergeler, S.; van der Graaf, P.H.; Schuck, E.; Koyama, A.; Yasuda, S.; Hussein, Z.; Reyderman, L.; Swanson, C.; Cabal, A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer’s disease. CPT Pharmacometrics Syst. Pharmacol., 2023, 12(4), 444-461.
[http://dx.doi.org/10.1002/psp4.12912] [PMID: 36632701]
[336]
Hettmann, T.; Gillies, S.D.; Kleinschmidt, M.; Piechotta, A.; Makioka, K.; Lemere, C.A.; Schilling, S.; Rahfeld, J.U.; Lues, I. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer’s disease with reduced complement activation. Sci. Rep., 2020, 10(1), 3294.
[http://dx.doi.org/10.1038/s41598-020-60319-5] [PMID: 32094456]
[337]
Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med., 2021, 384(18), 1691-1704.
[http://dx.doi.org/10.1056/NEJMoa2100708] [PMID: 33720637]
[338]
Lowe, S.L.; Duggan Evans, C.; Shcherbinin, S.; Cheng, Y.J.; Willis, B.A.; Gueorguieva, I.; Lo, A.C.; Fleisher, A.S.; Dage, J.L.; Ardayfio, P.; Aguiar, G.; Ishibai, M.; Takaichi, G.; Chua, L.; Mullins, G.; Sims, J.R. Donanemab (LY3002813) Phase 1b study in alzheimer’s disease: Rapid and sustained reduction of brain amyloid measured by florbetapir F18 Imaging. J. Prev. Alzheimers Dis., 2021, 8(4), 414-424.
[PMID: 34585215]
[339]
Gueorguieva, I.; Willis, B.A.; Chua, L.; Chow, K.; Ernest, C.S.; Shcherbinin, S.; Ardayfio, P.; Mullins, G.R.; Sims, J.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimer’s disease. Clin. Pharmacol. Ther., 2023, 113(6), 1258-1267.
[http://dx.doi.org/10.1002/cpt.2875] [PMID: 36805552]
[340]
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[341]
Doroszkiewicz, J.; Mroczko, B. New possibilities in the therapeutic approach to Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(16), 8902.
[http://dx.doi.org/10.3390/ijms23168902] [PMID: 36012193]
[342]
Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, aducanumab, and gantenerumab: Binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for alzheimer’s disease. Neurotherapeutics, 2023, 20(1), 195-206.
[http://dx.doi.org/10.1007/s13311-022-01308-6] [PMID: 36253511]
[343]
Brandt, N.J.; Wheeler, C.; Courtin, S.O. Navigating disease-modifying treatments for Alzheimer’s disease: Focusing on medications in phase 3 clinical trials. J. Gerontol. Nurs., 2023, 49(1), 6-10.
[http://dx.doi.org/10.3928/00989134-20221205-02] [PMID: 36594914]
[344]
Yuksel, J.M.; Noviasky, J.; Britton, S. Aducanumab for Alzheimer’s disease: Summarized data from emerge, engage, and prime studies. Sr. Care Pharm., 2022, 37(8), 329-334.
[http://dx.doi.org/10.4140/TCP.n.2022.329] [PMID: 35879846]
[345]
Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; Reyderman, L.; Berry, D.A.; Berry, S.; Gordon, R.; Kramer, L.D.; Cummings, J.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther., 2021, 13(1), 80.
[http://dx.doi.org/10.1186/s13195-021-00813-8] [PMID: 33865446]
[346]
Rafii, M.S.; Sperling, R.A.; Donohue, M.C.; Zhou, J.; Roberts, C.; Irizarry, M.C.; Dhadda, S.; Sethuraman, G.; Kramer, L.D.; Swanson, C.J.; Li, D.; Krause, S.; Rissman, R.A.; Walter, S.; Raman, R.; Johnson, K.A.; Aisen, P.S. The AHEAD 3-45 Study: Design of a prevention trial for Alzheimer’s disease. Alzheimers Dement., 2023, 19(4), 1227-1233.
[http://dx.doi.org/10.1002/alz.12748] [PMID: 35971310]
[347]
Knopman, D.S. Lecanemab reduces brain amyloid-β and delays cognitive worsening. Cell Rep. Med., 2023, 4(3), 100982.
[http://dx.doi.org/10.1016/j.xcrm.2023.100982] [PMID: 36948153]
[348]
Piller, C. Report on trial death stokes Alzheimer’s drug fears. Science, 2023, 380(6641), 122-123.
[http://dx.doi.org/10.1126/science.adi2242] [PMID: 37053319]
[349]
Asuni, A.A.; Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci., 2007, 27(34), 9115-9129.
[http://dx.doi.org/10.1523/JNEUROSCI.2361-07.2007] [PMID: 17715348]
[350]
Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem., 2011, 118(4), 658-667.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07337.x] [PMID: 21644996]
[351]
Yanamandra, K.; Patel, T.K.; Jiang, H.; Schindler, S.; Ulrich, J.D.; Boxer, A.L.; Miller, B.L.; Kerwin, D.R.; Gallardo, G.; Stewart, F.; Finn, M.B.; Cairns, N.J.; Verghese, P.B.; Fogelman, I.; West, T.; Braunstein, J.; Robinson, G.; Keyser, J.; Roh, J.; Knapik, S.S.; Hu, Y.; Holtzman, D.M.; Holtzman, D.M. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci. Transl. Med., 2017, 9(386), eaal2029.
[http://dx.doi.org/10.1126/scitranslmed.aal2029] [PMID: 28424326]
[352]
Li, L.; Miao, J.; Jiang, Y.; Dai, C.L.; Iqbal, K.; Liu, F.; Chu, D. Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Exp. Neurol., 2023, 362, 114337.
[http://dx.doi.org/10.1016/j.expneurol.2023.114337] [PMID: 36717015]
[353]
Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134.
[http://dx.doi.org/10.1016/S1474-4422(16)30331-3] [PMID: 27955995]
[354]
Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an active immunotherapy for Alzheimer’s disease and non alzheimer tauopathies: An overview of preclinical and clinical development. J. Prev. Alzheimers Dis., 2019, 6(1), 63-69.
[PMID: 30569088]
[355]
Hovakimyan, A.; Zagorski, K.; Chailyan, G.; Antonyan, T.; Melikyan, L.; Petrushina, I.; Batt, D.G.; King, O.; Ghazaryan, M.; Donthi, A.; Foose, C.; Petrovsky, N.; Cribbs, D.H.; Agadjanyan, M.G.; Ghochikyan, A. Immunogenicity of MultiTEP platform technology-based Tau vaccine in non-human primates. NPJ Vaccines, 2022, 7(1), 117.
[http://dx.doi.org/10.1038/s41541-022-00544-3] [PMID: 36224191]
[356]
Pagano, G.; Boess, F.G.; Taylor, K.I.; Ricci, B.; Mollenhauer, B.; Poewe, W.; Boulay, A.; Anzures-Cabrera, J.; Vogt, A.; Marchesi, M.; Post, A.; Nikolcheva, T.; Kinney, G.G.; Zago, W.M.; Ness, D.K.; Svoboda, H.; Britschgi, M.; Ostrowitzki, S.; Simuni, T.; Marek, K.; Koller, M.; Sevigny, J.; Doody, R.; Fontoura, P.; Umbricht, D.; Bonni, A. A Phase II study to evaluate the safety and efficacy of prasinezumab in early parkinson’s disease (PASADENA): Rationale, design, and baseline data. Front. Neurol., 2021, 12, 705407.
[http://dx.doi.org/10.3389/fneur.2021.705407] [PMID: 34659081]
[357]
Pagano, G.; Taylor, K.I.; Anzures-Cabrera, J.; Marchesi, M.; Simuni, T.; Marek, K.; Postuma, R.B.; Pavese, N.; Stocchi, F.; Azulay, J.P.; Mollenhauer, B.; López-Manzanares, L.; Russell, D.S.; Boyd, J.T.; Nicholas, A.P.; Luquin, M.R.; Hauser, R.A.; Gasser, T.; Poewe, W.; Ricci, B.; Boulay, A.; Vogt, A.; Boess, F.G.; Dukart, J.; D’Urso, G.; Finch, R.; Zanigni, S.; Monnet, A.; Pross, N.; Hahn, A.; Svoboda, H.; Britschgi, M.; Lipsmeier, F.; Volkova-Volkmar, E.; Lindemann, M.; Dziadek, S.; Holiga, Š.; Rukina, D.; Kustermann, T.; Kerchner, G.A.; Fontoura, P.; Umbricht, D.; Doody, R.; Nikolcheva, T.; Bonni, A. Trial of prasinezumab in early-stage parkinson’s disease. N. Engl. J. Med., 2022, 387(5), 421-432.
[http://dx.doi.org/10.1056/NEJMoa2202867] [PMID: 35921451]
[358]
Kuchimanchi, M.; Monine, M.; Kandadi, M.K.; Woodward, C.; Penner, N.; Phase, I.I. Phase II dose selection for alpha synuclein–targeting antibody cinpanemab (BIIB054) based on target protein binding levels in the brain. CPT Pharmacometrics Syst. Pharmacol., 2020, 9(9), 515-522.
[http://dx.doi.org/10.1002/psp4.12538] [PMID: 32613752]
[359]
Lang, A.E.; Siderowf, A.D.; Macklin, E.A.; Poewe, W.; Brooks, D.J.; Fernandez, H.H.; Rascol, O.; Giladi, N.; Stocchi, F.; Tanner, C.M.; Postuma, R.B.; Simon, D.K.; Tolosa, E.; Mollenhauer, B.; Cedarbaum, J.M.; Fraser, K.; Xiao, J.; Evans, K.C.; Graham, D.L.; Sapir, I.; Inra, J.; Hutchison, R.M.; Yang, M.; Fox, T.; Budd Haeberlein, S.; Dam, T. Trial of cinpanemab in early parkinson’s disease. N. Engl. J. Med., 2022, 387(5), 408-420.
[http://dx.doi.org/10.1056/NEJMoa2203395] [PMID: 35921450]
[360]
Schofield, D.J.; Irving, L.; Calo, L.; Bogstedt, A.; Rees, G.; Nuccitelli, A.; Narwal, R.; Petrone, M.; Roberts, J.; Brown, L.; Cusdin, F.; Dosanjh, B.; Lloyd, C.; Dobson, C.; Gurrell, I.; Fraser, G.; McFarlane, M.; Rockenstein, E.; Spencer, B.; Masliah, E.; Spillantini, M.G.; Tan, K.; Billinton, A.; Vaughan, T.; Chessell, I.; Perkinton, M.S.; Perkinton, M.S. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol. Dis., 2019, 132, 104582.
[http://dx.doi.org/10.1016/j.nbd.2019.104582] [PMID: 31445162]
[361]
Fjord-Larsen, L.; Thougaard, A.; Wegener, K.M.; Christiansen, J.; Larsen, F.; Schrøder-Hansen, L.M.; Kaarde, M.; Ditlevsen, D.K. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs, 2021, 13(1), 1994690.
[http://dx.doi.org/10.1080/19420862.2021.1994690] [PMID: 34709986]
[362]
Kallab, M.; Herrera-Vaquero, M.; Johannesson, M.; Eriksson, F.; Sigvardson, J.; Poewe, W.; Wenning, G.K.; Nordström, E.; Stefanova, N. Region-specific effects of immunotherapy with antibodies targeting α-synuclein in a transgenic model of synucleinopathy. Front. Neurosci., 2018, 12, 452.
[http://dx.doi.org/10.3389/fnins.2018.00452] [PMID: 30022929]
[363]
Nordström, E.; Eriksson, F.; Sigvardson, J.; Johannesson, M.; Kasrayan, A.; Jones-Kostalla, M.; Appelkvist, P.; Söderberg, L.; Nygren, P.; Blom, M.; Rachalski, A.; Nordenankar, K.; Zachrisson, O.; Amandius, E.; Osswald, G.; Moge, M.; Ingelsson, M.; Bergström, J.; Lannfelt, L.; Möller, C.; Giorgetti, M.; Fälting, J. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse models of Parkinson’s disease. Neurobiol. Dis., 2021, 161, 105543.
[http://dx.doi.org/10.1016/j.nbd.2021.105543] [PMID: 34737044]
[364]
Gibbs, E.; Zhao, B.; Roman, A.; Plotkin, S.S.; Peng, X.; Hsueh, S.C.C.; Aina, A.; Wang, J.; Shyu, C.; Yip, C.K.; Nam, S.E.; Kaplan, J.M.; Cashman, N.R. Rational generation of monoclonal antibodies selective for pathogenic forms of alpha-synuclein. Biomedicines, 2022, 10(9), 2168.
[http://dx.doi.org/10.3390/biomedicines10092168] [PMID: 36140270]
[365]
Valiukas, Z.; Ephraim, R.; Tangalakis, K.; Davidson, M.; Apostolopoulos, V.; Feehan, J. Immunotherapies for Alzheimer’s disease: A review. Vaccines, 2022, 10(9), 1527.
[http://dx.doi.org/10.3390/vaccines10091527] [PMID: 36146605]
[366]
Knecht, L.; Folke, J.; Dodel, R.; Ross, J.A.; Albus, A. Alpha-synuclein immunization strategies for synucleinopathies in clinical studies: A biological perspective. Neurotherapeutics, 2022, 19(5), 1489-1502.
[http://dx.doi.org/10.1007/s13311-022-01288-7] [PMID: 36083395]
[367]
Meissner, W.G.; Traon, A.P.L.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; Sabatini, U.; Vergnet, S.; Volc, D.; Poewe, W.; Schneeberger, A.; Staffler, G.; Rascol, O.; Anheim, M.; Castrioto, A.; Derkinderen, P.; Drapier, S.; Eusebio, A.; Grabli, D.; Marques, A.; Moreau, C.; Moro, E.; Tranchant, C. A Phase 1 Randomized Trial of Specific Active α-SYNUCLEIN Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord., 2020, 35(11), 1957-1965.
[http://dx.doi.org/10.1002/mds.28218] [PMID: 32882100]
[368]
Yu, H.J.; Thijssen, E.; van Brummelen, E.; van der Plas, J.L.; Radanovic, I.; Moerland, M.; Hsieh, E.; Groeneveld, G.J.; Dodart, J.C. A randomized first-in-human study with UB-312, a UBITh® α-synuclein peptide vaccine. Mov. Disord., 2022, 37(7), 1416-1424.
[http://dx.doi.org/10.1002/mds.29016] [PMID: 35426173]
[369]
Nimmo, J.T.; Smith, H.; Wang, C.Y.; Teeling, J.L.; Nicoll, J.A.R.; Verma, A.; Dodart, J-C.; Liu, Z.; Lin, F.; Carare, R.O. Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol., 2022, 143(1), 55-73.
[http://dx.doi.org/10.1007/s00401-021-02381-5] [PMID: 34741635]
[370]
Schmidhuber, S.; Scheiblhofer, S.; Weiss, R.; Cserepes, M.; Tóvári, J.; Gadermaier, G.; Bezard, E.; De Giorgi, F.; Ichas, F.; Strunk, D.; Mandler, M. A Novel C-type lectin receptor-targeted α-synuclein-based parkinson vaccine induces potent immune responses and therapeutic efficacy in mice. Vaccines, 2022, 10(9), 1432.
[http://dx.doi.org/10.3390/vaccines10091432] [PMID: 36146508]
[371]
Chen, Z.; Yang, Y.; Yang, X.; Zhou, C.; Li, F.; Lei, P.; Zhong, L.; Jin, X.; Peng, G. Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol. Sci., 2013, 34(9), 1559-1570.
[http://dx.doi.org/10.1007/s10072-012-1284-6] [PMID: 23354599]
[372]
Petrushina, I.; Hovakimyan, A.; Harahap-Carrillo, I.S.; Davtyan, H.; Antonyan, T.; Chailyan, G.; Kazarian, K.; Antonenko, M.; Jullienne, A.; Hamer, M.M.; Obenaus, A.; King, O.; Zagorski, K.; Blurton-Jones, M.; Cribbs, D.H.; Lander, H.; Ghochikyan, A.; Agadjanyan, M.G. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol. Dis., 2020, 139, 104823.
[http://dx.doi.org/10.1016/j.nbd.2020.104823] [PMID: 32119976]
[373]
Kim, C.; Hovakimyan, A.; Zagorski, K.; Antonyan, T.; Petrushina, I.; Davtyan, H.; Chailyan, G.; Hasselmann, J.; Iba, M.; Adame, A.; Rockenstein, E.; Szabo, M.; Blurton-Jones, M.; Cribbs, D.H.; Ghochikyan, A.; Masliah, E.; Agadjanyan, M.G. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: Prelude for IND enabling studies. NPJ Vaccines, 2022, 7(1), 1.
[http://dx.doi.org/10.1038/s41541-021-00424-2] [PMID: 35013319]
[374]
Masliah, E.; Rockenstein, E.; Mante, M.; Crews, L.; Spencer, B.; Adame, A.; Patrick, C.; Trejo, M.; Ubhi, K.; Rohn, T.T.; Mueller-Steiner, S.; Seubert, P.; Barbour, R.; McConlogue, L.; Buttini, M.; Games, D.; Schenk, D. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One, 2011, 6(4), e19338.
[http://dx.doi.org/10.1371/journal.pone.0019338] [PMID: 21559417]
[375]
Nimmo, J.T.; Verma, A.; Dodart, J.C.; Wang, C.Y.; Savistchenko, J.; Melki, R.; Carare, R.O.; Nicoll, J.A.R. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: Potential development for immunotherapy. Alzheimers Res. Ther., 2020, 12(1), 159.
[http://dx.doi.org/10.1186/s13195-020-00727-x] [PMID: 33256825]
[376]
Games, D.; Valera, E.; Spencer, B.; Rockenstein, E.; Mante, M.; Adame, A.; Patrick, C.; Ubhi, K.; Nuber, S.; Sacayon, P.; Zago, W.; Seubert, P.; Barbour, R.; Schenk, D.; Masliah, E. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J. Neurosci., 2014, 34(28), 9441-9454.
[http://dx.doi.org/10.1523/JNEUROSCI.5314-13.2014] [PMID: 25009275]
[377]
Wang, S.; Yu, Y.; Geng, S.; Wang, D.; Zhang, L.; Xie, X.; Wu, B.; Li, C.; Xu, H.; Li, X.; Hu, Y.; Zhang, L.; Kaether, C.; Wang, B. A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimer’s disease model. Alzheimers Res. Ther., 2014, 6(3), 26.
[http://dx.doi.org/10.1186/alzrt256] [PMID: 24987466]
[378]
Xiao, B.; Tan, E.K. Immunotherapy trials in parkinson’s disease: Challenges. J. Transl. Med., 2023, 21(1), 178.
[http://dx.doi.org/10.1186/s12967-023-04012-x] [PMID: 36879300]
[379]
Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain, 2019, 142(7), 2113-2126.
[http://dx.doi.org/10.1093/brain/awz142] [PMID: 31157360]
[380]
Chu, W.T.; Hall, J.; Gurrala, A.; Becsey, A.; Raman, S.; Okun, M.S.; Flores, C.T.; Giasson, B.I.; Vaillancourt, D.E.; Vedam-Mai, V. Evaluation of an adoptive cellular therapy-based vaccine in a transgenic mouse model of α-synucleinopathy. ACS Chem. Neurosci., 2023, 14(2), 235-245.
[http://dx.doi.org/10.1021/acschemneuro.2c00539] [PMID: 36571847]
[381]
Olson, K.E.; Namminga, K.L.; Schwab, A.D.; Thurston, M.J.; Lu, Y.; Woods, A.; Lei, L.; Shen, W.; Wang, F.; Joseph, S.B.; Gendelman, H.E.; Mosley, R.L. Neuroprotective activities of long-acting granulocyte–macrophage colony-stimulating factor (mpdm608) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice. Neurotherapeutics, 2020, 17(4), 1861-1877.
[http://dx.doi.org/10.1007/s13311-020-00877-8] [PMID: 32638217]
[382]
Olson, K.E.; Namminga, K.L.; Lu, Y.; Schwab, A.D.; Thurston, M.J.; Abdelmoaty, M.M.; Kumar, V.; Wojtkiewicz, M.; Obaro, H.; Santamaria, P.; Mosley, R.L.; Gendelman, H.E. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine, 2021, 67, 103380.
[http://dx.doi.org/10.1016/j.ebiom.2021.103380] [PMID: 34000620]
[383]
Gendelman, H.E.; Zhang, Y.; Santamaria, P.; Olson, K.E.; Schutt, C.R.; Bhatti, D.; Shetty, B.L.D.; Lu, Y.; Estes, K.A.; Standaert, D.G.; Heinrichs-Graham, E.; Larson, L.; Meza, J.L.; Follett, M.; Forsberg, E.; Siuzdak, G.; Wilson, T.W.; Peterson, C.; Mosley, R.L. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinsons Dis., 2017, 3(1), 10.
[http://dx.doi.org/10.1038/s41531-017-0013-5] [PMID: 28649610]
[384]
Rohrer, L.; Yunce, M.; Montine, T.J.; Shan, H. Plasma exchange in Alzheimer’s disease. Transfus. Med. Rev., 2023, 37(1), 10-15.
[385]
Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Paricio, M.; Lorites, J.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; Kiprov, D.; Lima, J.; Grifols, C.; Torres, M.; Costa, M.; Bozzo, J.; Szczepiorkowski, Z.M.; Hendrix, S.; Páez, A. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study. Alzheimers Dement., 2020, 16(10), 1412-1425.
[http://dx.doi.org/10.1002/alz.12137] [PMID: 32715623]
[386]
Singh, S.; Kumar, K.; Panda, M.; Srivastava, A.; Mishra, A.; Prajapati, V.K. High-throughput virtual screening of small-molecule inhibitors targeting immune cell checkpoints to discover new immunotherapeutics for human diseases. Mol. Divers., 2023, 27(2), 729-751.
[http://dx.doi.org/10.1007/s11030-022-10452-2] [PMID: 35633442]
[387]
Liu, Y.; Meng, Y.; Zhou, C.; Yan, J.; Guo, C.; Dong, W. Activation of the IL-17/TRAF6/NF-κB pathway is implicated in Aβ-induced neurotoxicity. BMC Neurosci., 2023, 24(1), 14.
[http://dx.doi.org/10.1186/s12868-023-00782-8] [PMID: 36823558]
[388]
Badr, M.; McFleder, R.L.; Wu, J.; Knorr, S.; Koprich, J.B.; Hünig, T.; Brotchie, J.M.; Volkmann, J.; Lutz, M.B.; Ip, C.W. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson’s disease mice. J. Neuroinflammation, 2022, 19(1), 319.
[http://dx.doi.org/10.1186/s12974-022-02685-7] [PMID: 36587195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy