Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Iodoxybenzoic Acid (IBX) in Organic Synthesis: A Septennial Review

Author(s): Ravi Varala*, Vittal Seema, Mohammed Mujahid Alam*, Narsimhaswamy Dubasi and Rama Devi Vummadi

Volume 21, Issue 5, 2024

Published on: 12 October, 2023

Page: [607 - 664] Pages: 58

DOI: 10.2174/0115701794263252230924074035

Price: $65

Abstract

This study reviews the oxidative applications of 2-iodoxybenzoic acid (IBX) in organic synthesis, focusing on C-H functionalization, hetero-hetero bond formations, ring cleavage reactions, dehydrogenation, heterocyclic ring formations, and some miscellaneous reactions in a comprehensive and critical way. It compiles the literature starting from mid-2015 to date.

Graphical Abstract

[1]
Willgerodt, C. About some aromatic iodine chlorides. J. Prakt. Chem., 1886, 33, 154-160.
[http://dx.doi.org/10.1002/prac.18860330117]
[2]
(a) Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673];
(b) Sihag, M.; Soni, R.; Rani, N.; Kinger, M.; Kumar Aneja, D. Recent synthetic applications of hypervalent iodine reagents. A review in three installments. Installment I. Org. Prep. Proced. Int., 2023, 55(1), 1-62.
[http://dx.doi.org/10.1080/00304948.2022.2113964]
[3]
(a) Richardson, R.D.; Wirth, T. Hypervalent Iodine Goes Catalytic. Angew. Chem. Int. Ed., 2006, 45(27), 4402-4404.
[http://dx.doi.org/10.1002/anie.200601817];
(b) Chipman, A. The mechanistic perspective of IV Iodoxolones. Asian J. Org. Chem., 2022, 11(1), e202100522.
[http://dx.doi.org/10.1002/ajoc.202100522]
[4]
Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine (III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem., 2018, 14, 1813-1825.
[http://dx.doi.org/10.3762/bjoc.14.154] [PMID: 30112085]
[5]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[6]
Zhdankin, V.V. Application of hypervalent iodine compounds in advanced green technologies; Resource-Efficient Technologies, 2021, pp. 1-16.
[http://dx.doi.org/10.18799/24056529/2021/1/286]
[7]
Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun. (Camb.), 2009, 2073(16), 2073-2085.
[http://dx.doi.org/10.1039/b821747e] [PMID: 19360157]
[8]
Bauer, A.; Maulide, N. Recent discoveries on the structure of iodine (III) reagents and their use in cross-nucleophile coupling. Chem. Sci. (Camb.), 2021, 12(3), 853-864.
[http://dx.doi.org/10.1039/D0SC03266B] [PMID: 34163852]
[9]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[10]
Silva, L.F., Jr; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep., 2011, 28(10), 1722-1754.
[http://dx.doi.org/10.1039/c1np00028d] [PMID: 21829843]
[11]
Zheng, Z.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci. China Chem., 2014, 57(2), 189-214.
[http://dx.doi.org/10.1007/s11426-013-5043-1]
[12]
Shetgaonkar, S.E.; Mamgain, R.; Kikushima, K.; Dohi, T.; Singh, F.V. Palladium-catalyzed organic reactions involving hypervalent iodine reagents. Molecules, 2022, 27(12), 3900.
[http://dx.doi.org/10.3390/molecules27123900] [PMID: 35745020]
[13]
Shetgaonkar, S.E.; Krishnan, M.; Singh, F.V. Hypervalent iodine reagents for oxidative rearrangements. Mini Rev. Org. Chem., 2021, 18(2), 138-158.
[http://dx.doi.org/10.2174/1570193X17999200727204349]
[14]
Zhang, B.; Li, X.; Guo, B.; Du, Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem. Commun. (Camb.), 2020, 56(91), 14119-14136.
[http://dx.doi.org/10.1039/D0CC05354F] [PMID: 33140751]
[15]
Soni, R.; Sihag, M.; Rani, N.; Kinger, M.; Aneja, D.K. Aqueous mediated reactions involving hypervalent iodine reagents. Asian J. Org. Chem., 2022, 11(9), e202200125.
[http://dx.doi.org/10.1002/ajoc.202200125]
[16]
Rani, N.; Soni, R.; Sihag, M.; Kinger, M.; Aneja, D.K. Combined approach of hypervalent iodine reagents and transition metals in organic reactions. Adv. Synth. Catal., 2022, 364(11), 1798-1848.
[http://dx.doi.org/10.1002/adsc.202200088]
[17]
Mironova, I.A.; Kirsch, S.F.; Zhdankin, V.V.; Yoshimura, A.; Yusubov, M.S. Hypervalent iodine‐mediated azidation reactions. Eur. J. Org. Chem., 2022, 2022(34), e202200754.
[http://dx.doi.org/10.1002/ejoc.202200754]
[18]
Varala, R.; Seema, V.; Dubasi, N. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis. Organics, 2022, 4(1), 1-40.
[http://dx.doi.org/10.3390/org4010001]
[19]
Stirling, A. Assessing hypervalency in iodanes. Chemistry, 2018, 24(7), 1709-1713.
[http://dx.doi.org/10.1002/chem.201705285] [PMID: 29160953]
[20]
Dohi, T.; Zhdankin, V.V.; Kumar, R.; Rimi, R.; Soni, S.; Uttam, B.; China, H. Recyclable hypervalent iodine reagents in modern organic synthesis. Synthesis, 2022, 54(12), 2731-2748.
[http://dx.doi.org/10.1055/s-0041-1737909]
[21]
Hartmann, C.; Meyer, V. Ueber Jodobenzoësäure. Ber. Dtsch. Chem. Ges., 1893, 26(2), 1727-1732.
[http://dx.doi.org/10.1002/cber.189302602109]
[22]
Loevenhart, A.S.; Grove, W.E. Studies on the pharmacological action of oxidizing substances. J. Pharmacol. Exp. Ther., 1911, 3, 101-130.
[23]
Duschek, A.; Kirsch, S.F. 2-Iodoxybenzoic acid--a simple oxidant with a dazzling array of potential applications. Angew. Chem. Int. Ed., 2011, 50(7), 1524-1552.
[http://dx.doi.org/10.1002/anie.201000873] [PMID: 21271626]
[24]
(a) Wirth, T. IBX-new reactions with an old reagent. Angew. Chem. Int. Ed., 2001, 40(15), 2812-2814.
[http://dx.doi.org/10.1002/1521-3773(20010803)40:15%3C2812::AID-ANIE2812%3E3.0.CO;2-X] [PMID: 11500874];
(b) Jalali, M.; Bissember, A.C.; Yates, B.F.; Wengryniuk, S.E.; Ariafard, A. Oxidation of electron-deficient phenols mediated by hypervalent iodine(V) reagents: Fundamental mechanistic features revealed by a density functional theory-based investigation. J. Org. Chem., 2021, 86(17), 12237-12246.
[http://dx.doi.org/10.1021/acs.joc.1c01545] [PMID: 34410728];
(c) Folkman, S.J.; Finke, R.G.; Galán-Mascarós, J.R.; Miyake, G.M. Carbon-electrode-mediated electrochemical synthesis of hypervalent iodine reagents using water as the O-atom source. ACS Sustain. Chem.& Eng., 2021, 9(31), 10453-10467.
[http://dx.doi.org/10.1021/acssuschemeng.1c01315];
(d) Tyagi, S.; McKillican, B.P.; Salvador, T.K.; Gichinga, M.G.; Eberle, W.J.; Viner, R.; Makaravage, K.J.; Johnson, T.S.; Russell, C.A.; Roy, S. Bioinspired synthesis of Pinoxaden metabolites using a site selective C-H oxidation strategy. J. Org. Chem., 2022, 87(9), 6202-6211.
[http://dx.doi.org/10.1021/acs.joc.2c00440] [PMID: 35442682];
(e) Hébert, M.; Bellavance, G.; Barriault, L. Total Synthesis of Ginkgolide C and Formal Syntheses of Ginkgolides A and B. J. Am. Chem. Soc., 2022, 144(39), 17792-17796.
[http://dx.doi.org/10.1021/jacs.2c08351] [PMID: 36150149];
(f) Kumar, K.; Joshi, P.; Rawat, D.S. (±)-Camphor sulfonic acid assisted IBX based oxidation of 1° and 2° alcohols. Tetrahedron Lett., 2021, 81, 153298.
[http://dx.doi.org/10.1016/j.tetlet.2021.153298]
[25]
Greenbaum, F.R. Am. J. Pharm., 1936, 108, 17.
[26]
(a) Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem., 1999, 64(12), 4537-4538.
[http://dx.doi.org/10.1021/jo9824596];
(b) Frigerio, M.; Santagostino, M. A mild oxidizing reagent for alcohols and 1,2-diols: o-Iodoxybenzoic acid (IBX) in DMSO. Tetrahedron Lett., 1994, 35(41), 8019-8022.
[http://dx.doi.org/10.1016/S0040-4039(00)78412-7];
(c) Uchiyama, M.; Miyamoto, K.; Okada, T.; Toyama, T.; Imamura, S. Facile preparation of 1-hydroxy-1,2-benziodoxol-3(1h)-one 1-oxide (IBX) and Dess-Martin Reagent using sodium hypochlorite under carbon dioxide. Heterocycles, 2021, 103(2), 694-698.
[http://dx.doi.org/10.3987/COM-20-S(K)66]
[27]
(a) Dess, D.B.; Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070];
(b) Dess, D.B.; Martin, J.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113(19), 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[28]
(a) Gallen, M.J.; Goumont, R.; Clark, T.; Terrier, F.; Williams, C.M. o-Iodoxybenzoic acid (IBX): pKa and proton-affinity analysis. Angew. Chem. Int. Ed., 2006, 45(18), 2929-2934.
[http://dx.doi.org/10.1002/anie.200504156] [PMID: 16566050];
(b) Dallaston, M.A.; Bettencourt, C.J.; Chow, S.; Gebhardt, J.; Spangler, J.; Johnston, M.R.; Wall, C.; Brusnahan, J.S.; Williams, C.M. Ranking oxidant sensitiveness: A guide for synthetic utility. Chemistry, 2019, 25(41), 9614-9618.
[http://dx.doi.org/10.1002/chem.201902036] [PMID: 31245899]
[29]
(a) Ozanne, A.; Pouységu, L.; Depernet, D.; François, B.; Quideau, S. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers. Org. Lett., 2003, 5(16), 2903-2906.
[http://dx.doi.org/10.1021/ol0349965] [PMID: 12889904];
(b) Bystron, T.; Horbenko, A.; Syslova, K.; Hii, K.K.M.; Hellgardt, K.; Kelsall, G. 2-Iodoxybenzoic acid synthesis by oxidation of 2-iodobenzoic acid at a boron-doped diamond anode. ChemElectroChem, 2018, 5(7), 1002-1005.
[http://dx.doi.org/10.1002/celc.201800027]
[30]
(a) Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102(7), 2523-2584.
[http://dx.doi.org/10.1021/cr010003+] [PMID: 12105935];
(b) Nicolaou, K.C.; Mathison, C.J.N.; Montagnon, T. o-Iodoxybenzoic acid (IBX) as a viable reagent in the manipulation of nitrogen and sulfur-containing substrates: Scope, generality, and mechanism of IBX-mediated amine oxidations and dithiane deprotections. J. Am. Chem. Soc., 2004, 126(16), 5192-5201.
[http://dx.doi.org/10.1021/ja0400382] [PMID: 15099102]
[31]
Kai-Yun, S. Application of 2-iodoxybenzoic acid (IBX) in organic synthesis. Youji Huaxue, 2006, 26(12), 1623-1630.
[32]
Satam, V.; Harad, A.; Rajule, R.; Pati, H. 2-Iodoxybenzoic acid (IBX): An efficient hypervalent iodine reagent. Tetrahedron, 2010, 66(39), 7659-7706.
[http://dx.doi.org/10.1016/j.tet.2010.07.014]
[33]
(a) Sharma, P.; Kaur, N.; Pareek, A.; Kishore, D. An insight in to general features of IBX (2-iodoxybenzoic acid). Sci. Revs. Chem. Commun, 2013, 3(1), 16-42.;
(b) Kaur, A.; Ariafard, A. Mechanistic investigation into phenol oxidation by IBX elucidated by DFT calculations. Org. Biomol. Chem., 2020, 18(6), 1117-1129.
[http://dx.doi.org/10.1039/C9OB02650A] [PMID: 31994575]
[34]
Nair, V.A. 2-Iodoxybenzoic acid: An oxidant for functional group transformations: (A-Review). Orient. J. Chem., 2020, 36, 792-803.
[http://dx.doi.org/10.13005/ojc/360501]
[35]
Zhang, S.; Wu, H.; Tang, E. Research and application of 2-iodoxybenzoic acid in organic synthesis. Youji Huaxue, 2021, 41(2), 490.
[http://dx.doi.org/10.6023/cjoc202007030]
[36]
Venkata Durga Nageswar, Y.; Ramesh, K.; Rakhi, K. IBX-Mediated organic transformations in heterocyclic chemistry-A decade update. Front Chem., 2022, 10, 841751.
[http://dx.doi.org/10.3389/fchem.2022.841751] [PMID: 35295969]
[37]
Alam, M.M.; Seema, V.; Dubasi, N.; Kurra, M.; Varala, R. applications of polymethylhydrosiloxane (PMHS) in organic synthesis- covering up to March 2022. Mini Rev. Org. Chem., 2023, 20(7), 708-734.
[http://dx.doi.org/10.2174/1570193X20666221021104906]
[38]
Vittal, S.; Mujahid Alam, M.; Hussien, M.; Amanullah, M.; Pisal, P.M.; Ravi, V. Applications of phenyliodine(III)diacetate in C−H functionalization and hetero‐hetero bond formations: A septennial update. ChemistrySelect, 2023, 8(1), e202204240.
[http://dx.doi.org/10.1002/slct.202204240]
[39]
Alam, M.M.; Hussien, M.; Bollikolla, H.B.; Seema, V.; Dubasi, N.; Amanullah, M.; Varala, R. Applications of phenyliodine(III) diacetate in heterocyclic ring FORMATIONS: AN UPDATE from 2015 to date. J. Heterocycl. Chem., 2023, 60(8), 1326-1355.
[http://dx.doi.org/10.1002/jhet.4627]
[40]
Alam, M.M.; Bollikolla, H.B.; Amanullah, M.; Hussein, M.; Varala, R. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions. Curr. Org. Chem., 2023, 27(2), 93-107.
[http://dx.doi.org/10.2174/1385272827666230330105241]
[41]
(a) Lv, W.X.; Zeng, Y.F.; Li, Q.; Chen, Y.; Tan, D.H.; Yang, L.; Wang, H. Oxidative difunctionalization of alkenyl MIDA boronates: A versatile platform for halogenated and trifluoromethylated α-boryl ketones. Angew. Chem. Int. Ed., 2016, 55(34), 10069-10073.
[http://dx.doi.org/10.1002/anie.201604898] [PMID: 27443890];
(b) Depernet, D.; Francüois, B. WO 02/057210 A1, PCT/FR02/00189, US 2002/0107416. Chem. Abstr., 2002, 137, 109123.
[42]
Silva, T.S.; Zeoly, L.A.; Coelho, F. catalyst-free conjugate addition of indolizines to in situ-generated oxidized Morita-Baylis-Hillman Adducts. J. Org. Chem., 2020, 85(8), 5438-5448.
[http://dx.doi.org/10.1021/acs.joc.0c00189] [PMID: 32192330]
[43]
Ambule, M.D.; Tripathi, S.; Ghoshal, A.; Srivastava, A.K. IBX-mediated oxidative addition of isocyanides to cyclic secondary amines: Total syntheses of alangiobussine and alangiobussinine. Chem. Commun. (Camb.), 2019, 55(73), 10872-10875.
[http://dx.doi.org/10.1039/C9CC05215A] [PMID: 31433406]
[44]
Patil, P.C.; Akamanchi, K.G. A new combination of cyclohexylhydrazine and IBX for oxidative generation of cyclohexyl free radical and related synthesis of parvaquone. Tetrahedron Lett., 2017, 58(19), 1883-1886.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.006]
[45]
Lu-lu, W.; Xi-yang, L.; Zhen-liang, P. New synthesis of hydroxyacetone. Chemical Reagents, 2016, 10, 1014-1016.
[http://dx.doi.org/10.13822/j.cnki.hxsj.2016.10.023]
[46]
Kotha, S.S.; Sekar, G. Metal free synthesis of α-keto amides from 2-hydroxy acetophenones through domino alcohol oxidation-oxidative amidation reaction. Tetrahedron Lett., 2015, 56(46), 6323-6326.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.053]
[47]
Dutta, S.; Kotha, S.S.; Sekar, G. Metal free one-pot synthesis of α-ketoamides from terminal alkenes. RSC Advances, 2015, 5(58), 47265-47269.
[http://dx.doi.org/10.1039/C5RA05671C]
[48]
Chandrasekar, S.; Sekar, G. An efficient synthesis of iminoquinones by a chemoselective domino ortho-hydroxylation/oxidation/imidation sequence of 2-aminoaryl ketones. Org. Biomol. Chem., 2016, 14(11), 3053-3060.
[http://dx.doi.org/10.1039/C5OB02659H] [PMID: 26891598]
[49]
Alam, M.T.; Maiti, S.; Mal, P. The mechanochemical synthesis of quinazolin-4(3 H)-ones by controlling the reactivity of IBX. Beilstein J. Org. Chem., 2018, 14, 2396-2403.
[http://dx.doi.org/10.3762/bjoc.14.216] [PMID: 30254705]
[50]
Shang, D.; Hu, R.; Bao, Q.; Chen, J.; Yu, L.; Chan, P.W.H.; Rao, W. PtI 4 -catalyzed oxidative and hydrogenative dearomative [3 + 2] cycloaddition of 1 H -indole N -tethered o -alkynylbenzaldehydes. Org. Chem. Front., 2022, 10(1), 140-149.
[http://dx.doi.org/10.1039/D2QO01520J]
[51]
Li-jun, W.; Yao-hua, L. Preparation of benzil by green oxidation of benzoin with o-iodoxybenzoic acid. Huaxue Shijie, 2016, 57(11), 723-725.
[52]
Zhen-liang., P.; Xi-yang, L. New synthesis of hydroxyacetone. Huaxue Shiji, 2016, 38(10), 1014-1016.
[http://dx.doi.org/10.13822/j.cnki.hxsj.2016.10.023]
[53]
Sakakura, A.; Pauze, M.; Namiki, A.; Funakoshi-Tago, M.; Tamura, H.; Hanaya, K.; Higashibayashi, S.; Sugai, T. Chemoenzymatic synthesis of hydroxytyrosol monoesters and their suppression effect on nitric oxide production stimulated by lipopolysaccharides. Biosci. Biotechnol. Biochem., 2019, 83(2), 185-191.
[http://dx.doi.org/10.1080/09168451.2018.1530970] [PMID: 30319060]
[54]
Bizzarri, B.M.; Pieri, C.; Botta, G.; Arabuli, L.; Mosesso, P.; Cinelli, S.; Schinoppi, A.; Saladino, R. Synthesis and antioxidant activity of DOPA peptidomimetics by a novel IBX mediated aromatic oxidative functionalization. RSC Advances, 2015, 5(74), 60354-60364.
[http://dx.doi.org/10.1039/C5RA09464J]
[55]
Bernini, R.; Crisante, F.; D’Acunzo, F.; Gentili, P.; Ussia, E. Oxidative cleavage of 1-aryl-isochroman derivatives using the Trametes villosa laccase/1-hydroxybenzotriazole system. New J. Chem., 2016, 40(4), 3314-3322.
[http://dx.doi.org/10.1039/C5NJ03133H]
[56]
Bernini, R.; Mincione, E.; Crisante, F.; Barontini, M.; Fabrizi, G. A novel use of the recyclable polymer-supported IBX: An efficient chemoselective and regioselective oxidation of phenolic compounds. The case of hydroxytyrosol derivatives. Tetrahedron Lett., 2009, 50(12), 1307-1310.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.037]
[57]
Kawashima, Y.; Ezawa, T.; Yamamura, M.; Harada, T.; Noguchi, T.; Imai, N. Convenient synthesis of (+)-cis-4-(N-adamantyl-N-methylamino)-2,3-methano-2-phenylbutan-1-ol as a candidate of anti-Alzheimer’s medicine via catalytic enantioselective Simmons-Smith reaction using l-phenylalanine-derived disulfonamide. Tetrahedron Lett., 2016, 57(6), 668-671.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.113]
[58]
Yusubov, M.S.; Soldatova, N.S.; Postnikov, P.S.; Valiev, R.R.; Yoshimura, A.; Wirth, T.; Nemykin, V.N.; Zhdankin, V.V. 2-Iodoxybenzoic acid ditriflate: The most powerful hypervalent iodine(V) oxidant. Chem. Commun. (Camb.), 2019, 55(54), 7760-7763.
[http://dx.doi.org/10.1039/C9CC04203B] [PMID: 31209449]
[59]
Bizzarri, B.; Abdalghani, I.; Botta, L.; Taddei, A.; Nisi, S.; Ferrante, M.; Passacantando, M.; Crucianelli, M.; Saladino, R. iodoxybenzoic acid supported on multi walled carbon nanotubes as biomimetic environmental friendly oxidative systems for the oxidation of alcohols to aldehydes. Nanomaterials (Basel), 2018, 8(7), 516.
[http://dx.doi.org/10.3390/nano8070516] [PMID: 29996541]
[60]
Kirsch, S.; Bredenkamp, A.; Mohr, F. Synthesis of isatins through direct oxidation of indoles with IBX-SO3K/NaI. Synthesis, 2015, 47(13), 1937-1943.
[http://dx.doi.org/10.1055/s-0034-1380517]
[61]
(a) Cuccu, F.; De Luca, L.; Delogu, F.; Colacino, E.; Solin, N.; Mocci, R.; Porcheddu, A. Mechanochemistry: New tools to navigate the uncharted territory of “Impossible” reactions. ChemSusChem, 2017, 15, e202200362.
[http://dx.doi.org/10.1002/cssc.202200362];
(b) Mishra, A.K.; Moorthy, J.N. Mechanochemical catalytic oxidations in the solid state with in situ-generated modified IBX from 3,5-di-tert-butyl-2-iodobenzoic acid (DTB-IA). Oxone. Org. Chem. Front., 2017, 4(3), 343-349.
[http://dx.doi.org/10.1039/C6QO00588H]
[62]
Bizzarri, B.M.; Botta, L.; Capecchi, E.; Celestino, I.; Checconi, P.; Palamara, A.T.; Nencioni, L.; Saladino, R. Regioselective IBX-mediated synthesis of coumarin derivatives with antioxidant and anti-influenza activities. J. Nat. Prod., 2017, 80(12), 3247-3254.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00665] [PMID: 29236486]
[63]
Farshadfar, K.; Gunawan, N.; Shiri, F.; Howard, J.K.; Vaas, A.P.J.P.; Bissember, A.C.; Yates, B.F.; Smith, J.A.; Ariafard, A. Discovery of periodinane oxy-assisted (POA) oxidation mechanism in the ibx-controlled oxidative dearomatization of pyrroles mediated by acetic acid. J. Org. Chem., 2022, 87(19), 13280-13287.
[http://dx.doi.org/10.1021/acs.joc.2c01923] [PMID: 36162101]
[64]
Zeng, B.B.; Ren, J.; Lu, L.; Xu, J.; Yu, T. Selective oxidation of 1-tetralones to 1,2-naphthoquinones with ibx and to 1,4-naphthoquinones with oxone® and 2-iodobenzoic acid. Synthesis, 2015, 47(15), 2270-2280.
[http://dx.doi.org/10.1055/s-0034-1380657]
[65]
Pulvirenti, L.; Muccilli, V.; Cardullo, N.; Spatafora, C.; Tringali, C. Chemoenzymatic synthesis and α-glucosidase inhibitory activity of dimeric neolignans inspired by magnolol. J. Nat. Prod., 2017, 80(5), 1648-1657.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00250] [PMID: 28497968]
[66]
Chandra, A.; Yadav, N.R.; Moorthy, J.N. Facile synthesis of isatins by direct oxidation of indoles and 3-iodoindoles using NIS/IBX. Tetrahedron, 2019, 75(14), 2169-2174.
[http://dx.doi.org/10.1016/j.tet.2019.02.033]
[67]
Liu, Y.; Huang, G.; Li, H.; Chen, Y. Synthesis of α, β-unsaturated ketones from natural triterpenoids and sterol by IBX mediated oxidation. Chem. Nat. Compd., 2019, 55(2), 370-372.
[http://dx.doi.org/10.1007/s10600-019-02694-8]
[68]
Mulani, S.K.; Cheng, K.C.; Mong, K.K.T. General homologation strategy for synthesis of L-Glycero- and D-Glycero-heptopyranoses. Org. Lett., 2015, 17(22), 5536-5539.
[http://dx.doi.org/10.1021/acs.orglett.5b02620] [PMID: 26558408]
[69]
Jiang, H.; Sun, T.Y.; Wang, X.; Xie, Y.; Zhang, X.; Wu, Y.D.; Schaefer, H.F., III A twist of the twist mechanism, 2-iodoxybenzoic acid (IBX)-mediated oxidation of alcohol revisited: Theory and experiment. Org. Lett., 2017, 19(24), 6502-6505.
[http://dx.doi.org/10.1021/acs.orglett.7b03167] [PMID: 29166031]
[70]
Xiao, Y.; Zhou, Q.; Fu, Z.; Yu, L.; Wang, J. Synthesis of poly(β-hydroxyketone)s with Three-component polymerization of diazocarbonyl compounds, triethylboron, and aldehydes. Macromolecules, 2022, 55(7), 2424-2432.
[http://dx.doi.org/10.1021/acs.macromol.1c02348]
[71]
Gulizhabaier, A.; Rexit, A.A. Synthesis of trihalomethyl ketones from trihalomethyl carbinols (hal = cl, br) using 2-iodoxybenzoic acid. Russ. J. Org. Chem., 2021, 57(5), 809-815.
[http://dx.doi.org/10.1134/S1070428021050079]
[72]
Liang, Y.Y.; Huang, H.; Li, Y.; Du, R.K.; Li, J.; Liu, Y.H.; Li, S.; Zhang, L. Efficient synthesis of cholic acid derivates through stereoselective C-H functionalization from hyodeoxycholic acid. Steroids, 2020, 157, 108594.
[http://dx.doi.org/10.1016/j.steroids.2020.108594] [PMID: 32068077]
[73]
Zeng, F.R.; Xu, J.; Xiong, Q.; Qin, K.X.; Xu, W.J.; Wang, Y.X.; Liu, Z.J.; Li, Z.L.; Li, Z.C. Aliphatic polyketones via cross-metathesis polymerization: Synthesis and post-polymerization modification. Polymer (Guildf.), 2019, 185, 121936.
[http://dx.doi.org/10.1016/j.polymer.2019.121936]
[74]
Parida, K.N.; Moorthy, J.N. Catalytic oxidations with ortho-substituted modified IBXs. Synlett, 2023, 34(6), 495-506.
[http://dx.doi.org/10.1055/a-1813-7319]
[75]
Ballaschk, F.; Kirsch, S.F. Oxidation of secondary alcohols using solid-supported hypervalent iodine catalysts. Green Chem., 2019, 21(21), 5896-5903.
[http://dx.doi.org/10.1039/C9GC02605C]
[76]
Yusubov, M.S.; Postnikov, P.S.; Yusubova, R.Y.; Yoshimura, A.; Jürjens, G.; Kirschning, A.; Zhdankin, V.V. 2‐Iodoxybenzoic acid tosylates: The alternative to dess-martin periodinane oxidizing reagents. Adv. Synth. Catal., 2017, 359(18), 3207-3216.
[http://dx.doi.org/10.1002/adsc.201700776]
[77]
Chandra, A.; Parida, K.N.; Moorthy, J.N. One-pot synthesis of α-bromo and α-azidoketones from olefins by catalytic oxidation with in situ-generated modified IBX as the key reaction. Tetrahedron, 2017, 73(40), 5827-5832.
[http://dx.doi.org/10.1016/j.tet.2017.08.019]
[78]
Chen, X.; Zhang, Y.; Wan, H.; Wang, W.; Zhang, S. Stereoselective organocatalytic oxidation of alcohols to enals: A homologation method to prepare polyenes. Chem. Commun. (Camb.), 2016, 52(17), 3532-3535.
[http://dx.doi.org/10.1039/C5CC10093C] [PMID: 26842715]
[79]
Adjei, B.L.; Luzzio, F.A. An oxidation study of phthalimide-derived hydroxylactams. Molecules, 2022, 27(2), 548.
[http://dx.doi.org/10.3390/molecules27020548] [PMID: 35056863]
[80]
Mokenapelli, S.; Gutam, M.; Govu, R.; Pasala, V.K.; Yerrabelly, J.R.; Chitneni, P.R. De novo consecutive chemo/regioselective IBX mediated oxidation of andrographolide and its derivatives. Synth. Commun., 2019, 49(10), 1241-1251.
[http://dx.doi.org/10.1080/00397911.2019.1587775]
[81]
Kumar, K.; Kumar, P.; Joshi, P.; Rawat, D.S. IBX-TfOH mediated oxidation of alcohols to aldehydes and ketones under mild reaction conditions. Tetrahedron Lett., 2020, 61(15), 151749.
[http://dx.doi.org/10.1016/j.tetlet.2020.151749]
[82]
Cong, H.; Chen, Q.; Geng, Q.; Tao, Z.; Yamato, T. IBX oxidation of benzenedimethanols in the presence of cucurbit [8]. Uril. Chin. J. Chem., 2015, 33(5), 545-549.
[http://dx.doi.org/10.1002/cjoc.201400886]
[83]
Sundaravelu, N.; Guha, S.; Sekar, G. Iodonium ion-catalyzed domino synthesis of Z-selective α, β-diphenylthio enones from easily accessible secondary alcohols. J. Org. Chem., 2020, 85(9), 5895-5906.
[http://dx.doi.org/10.1021/acs.joc.0c00183] [PMID: 32272834]
[84]
(a) Kuhakarn, C.; Katrun, P.; Songsichan, T.; Soorukram, D.; Pohmakotr, M.; Reutrakul, V. o-Iodoxybenzoic acid (IBX)-iodine mediated one-pot deacylative sulfonylation of 1,3-dicarbonyl compounds: A synthesis of β-carbonyl sulfones. Synthesis, 2016, 49(5), 1109-1121.
[http://dx.doi.org/10.1055/s-0036-1588900];
(b) Bolm, C.; Felder, M.; Müller, J. Optically active? -hydroxy sulfoximine/nickel complexes as catalysts for the enantioselective conjugate addition of diethylzinc to chalcones. Synlett, 1992, 5, 439-441.
[http://dx.doi.org/10.1055/s-1992-21373]
[85]
Yan, T.H.; Ananthan, B. Imination of sulfoxides mediated by IBX with Sc(OTf) 3 as catalyst. Synth. Commun., 2018, 48(8), 946-953.
[http://dx.doi.org/10.1080/00397911.2018.1431281]
[86]
Mir, M.A. synthesis of oxadiazole, imidazole, benzimidazole, cyclohexano analogues of 1,5-benzodiazepines through phenoxyl/phenylamino linkage. Curr. Organocatal., 2022, 9(4), 297-304.
[http://dx.doi.org/10.2174/2212796816666220404151254]
[87]
Singh, K.; Kaur, A.; Mithu, V.S.; Sharma, S. Metal-free organocatalytic oxidative ugi reaction promoted by hypervalent iodine. J. Org. Chem., 2017, 82(10), 5285-5293.
[http://dx.doi.org/10.1021/acs.joc.7b00594] [PMID: 28436220]
[88]
Santos, M.S.; Fernandes, D.C.; Rodrigues, M.T., Jr; Regiani, T.; Andricopulo, A.D.; Ruiz, A.L.T.G.; Vendramini-Costa, D.B.; de Carvalho, J.E.; Eberlin, M.N.; Coelho, F. Diastereoselective synthesis of biologically active cyclopenta[b]indoles. J. Org. Chem., 2016, 81(15), 6626-6639.
[http://dx.doi.org/10.1021/acs.joc.6b01270] [PMID: 27403650]
[89]
Kumari, A.; Gholap, S.P.; Fernandes, R.A. Tandem IBX‐promoted primary alcohol oxidation/opening of intermediate β,γ‐diolcarbonate aldehydes to (e)‐γ‐hydroxy‐α,β‐enals. Chem. Asian J., 2019, 14(13), 2278-2290.
[http://dx.doi.org/10.1002/asia.201900421] [PMID: 31062934]
[90]
Verma, N.; Kumar, S.; Ahmed, N. LiBr/β-CD/IBX/H 2 O-DMSO: A new approach for one-pot biomimetic regioselective ring opening of chalcone epoxides to bromohydrins and conversion to 1,2,3-triketones. Synth. Commun., 2017, 47(11), 1110-1120.
[http://dx.doi.org/10.1080/00397911.2017.1315537]
[91]
Song, X.; Wang, Z.; Chang, J.; Li, T.; Cui, C.; Zhang, Y. 2-Iodoxybenzoic acid-dimethyl sulfoxide (IBX-DMSO)-promoted oxidative aromatization of spiro[2.5]octa-4,7-dien-6-one. Synlett, 2022, 33(15), 1546-1550.
[http://dx.doi.org/10.1055/a-1863-8862]
[92]
Makra, Z.; Bényei, A.; Puskás, L.G.; Kanizsai, I. One‐pot access towards 4,5‐disubstituted 2‐amino‐1 H‐imidazoles starting from mannich substrates and their transformation utilities. Eur. J. Org. Chem., 2020, 2020(46), 7184-7196.
[http://dx.doi.org/10.1002/ejoc.202001253]
[93]
Zhang, Z.; Zheng, D.; Wan, Y.; Zhang, G.; Bi, J.; Liu, Q.; Liu, T.; Shi, L. Selective cleavage of inert aryl C-N bonds in N-aryl amides. J. Org. Chem., 2018, 83(3), 1369-1376.
[http://dx.doi.org/10.1021/acs.joc.7b02880] [PMID: 29302966]
[94]
Zhang, Z.; Li, X.; Song, M.; Wan, Y.; Zheng, D.; Zhang, G.; Chen, G. Selective removal of aminoquinoline auxiliary by IBX oxidation. J. Org. Chem., 2019, 84(20), 12792-12799.
[http://dx.doi.org/10.1021/acs.joc.9b01362] [PMID: 31244157]
[95]
Zhu, L.; Zhang, L.; Luo, S. Catalytic desymmetrizing dehydrogenation of 4-substituted cyclohexanones through enamine oxidation. Angew. Chem. Int. Ed., 2018, 57(8), 2253-2258.
[http://dx.doi.org/10.1002/anie.201713327] [PMID: 29323448]
[96]
Safa, K.D.; Allahvirdinesbat, M.; Namazi, H. Synthesis of novel organosilicon compounds possessing highly substituted imidazole core catalyzed by antimony trioxide. Mol. Divers., 2015, 19(1), 29-41.
[http://dx.doi.org/10.1007/s11030-014-9551-5] [PMID: 25234540]
[97]
Hati, S.; Sen, S. Cerium chloride catalyzed, 2-iodoxybenzoic acid mediated oxidative dehydrogenation of multiple heterocycles at room temperature. Eur. J. Org. Chem., 2017, 2017(9), 1277-1280.
[http://dx.doi.org/10.1002/ejoc.201601419]
[98]
de Graaff, C.; Bensch, L.; van Lint, M.J.; Ruijter, E.; Orru, R.V.A. IBX-mediated oxidation of unactivated cyclic amines: Application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions. Org. Biomol. Chem., 2015, 13(40), 10108-10112.
[http://dx.doi.org/10.1039/C5OB01519G] [PMID: 26368318]
[99]
Desai, V.G.; Desai, S.R. IBX-mediated, efficient, metal-free approach towards synthesis of flavones. Curr. Org. Synth., 2018, 14(8)
[http://dx.doi.org/10.2174/1570179414666170619081722]
[100]
Gao, P.; Chen, H.J.; Bai, Z.J.; Zhao, M.N.; Yang, D.; Wang, J.; Wang, N.; Du, L.; Guan, Z.H. IBX-promoted oxidative cyclization of N-hydroxyalkyl enamines: A metal-free approach toward 2,3-disubstituted pyrroles and pyridines. J. Org. Chem., 2020, 85(12), 7939-7951.
[http://dx.doi.org/10.1021/acs.joc.0c00625] [PMID: 32441101]
[101]
Sen, S.; Hati, S. Synthesis of quinazolines and dihydroquinazolines: o-iodoxybenzoic acid mediated tandem reaction of o-aminobenzylamine with aldehydes. Synthesis, 2016, 48(9), 1389-1398.
[http://dx.doi.org/10.1055/s-0035-1560416]
[102]
Chandra, A.; Jana, K.; Moorthy, J.N. One-pot synthesis of 4-carboalkoxy-substituted benzo[h]coumarins from α- and β-naphthols and their excited-state properties. ACS Omega, 2020, 5(1), 207-218.
[http://dx.doi.org/10.1021/acsomega.9b02489] [PMID: 31956767]
[103]
Park, S.W.; Choi, H.; Lee, J.; Lee, Y.J.; Ku, J.M.; Lee, S.Y.; Nam, T. IBX-mediated synthesis of indazolone via oxidative N-N bond formation and unexpected formation of quinazolin-4-one: In situ generation of formaldehyde from dimethoxyethane. Arch. Pharm. Res., 2016, 39(3), 302-309.
[http://dx.doi.org/10.1007/s12272-016-0706-z] [PMID: 26780246]
[104]
Zhang, Z.; Song, X.; Li, G.; Li, X.; Zheng, D.; Zhao, X.; Miao, H.; Zhang, G.; Liu, L. Synthesis of polycyclic spiro-fused indolines via IBX-mediated cascade cyclization. Chin. Chem. Lett., 2021, 32(4), 1423-1426.
[http://dx.doi.org/10.1016/j.cclet.2020.11.001]
[105]
Qian, X.; Xiong, P.; Xu, H.C. Modular synthesis of functionalized 4-quinolones via a radical cyclization cascade reaction. Huaxue Xuebao, 2019, 77(9), 879.
[http://dx.doi.org/10.6023/A19050193]
[106]
Williams, D.R.; Bawel, S.A.; Haddadpour, N.; Maier, S. IBX oxidations for the synthesis of substituted 2H-pyrans. Heterocycles, 2021, 103, 707.
[http://dx.doi.org/10.3987/COM-20-S(K)69]
[107]
Antony P, M.; Balaji, G.L.; Iniyavan, P.; Ila, H. reaction of 1,3-bis(het)arylmonothio-1,3-diketones with sodium azide: Regioselective synthesis of 3,5-bis(het)arylisoxazoles via intramolecular N-O bond formation. J. Org. Chem., 2020, 85(23), 15422-15436.
[http://dx.doi.org/10.1021/acs.joc.0c02216] [PMID: 33186045]
[108]
Choudhary, S.; Singh, A.; Yadav, J.; Mir, N.A.; Anthal, S.; Kant, R.; Kumar, I. A simple route to tetracyclic oxazepine-fused pyrroles via metal-free [3+2] annulation between dibenzo[ b, f][1,4]oxazepines and aqueous succinaldehyde. New J. Chem., 2019, 43(2), 953-962.
[http://dx.doi.org/10.1039/C8NJ04861D]
[109]
Choudhary, S.; Pawar, A.P.; Yadav, J.; Sharma, D.K.; Kant, R.; Kumar, I. One-pot synthesis of chiral tetracyclic dibenzo[b,f][1,4]oxazepine-fused 1,2-dihydropyridines (DHPs) under metal-free conditions. J. Org. Chem., 2018, 83(16), 9231-9239.
[http://dx.doi.org/10.1021/acs.joc.8b01232] [PMID: 29906390]
[110]
Singh, A.; Mir, N.A.; Choudhary, S.; Singh, D.; Sharma, P.; Kant, R.; Kumar, I. One-pot sequential multicomponent reaction between in situ generated aldimines and succinaldehyde: Facile synthesis of substituted pyrrole-3-carbaldehydes and applications towards medicinally important fused heterocycles. RSC Advances, 2018, 8(28), 15448-15458.
[http://dx.doi.org/10.1039/C8RA01637B] [PMID: 35539447]
[111]
Reddy, L.M.; Reddy, V.V.; Putta, C.S.; Satteyyanaidu, V.; Reddy, C.K.; Subba Reddy, B.V. Domino oxidative cyclization for the one-pot synthesis of pyrrolo[1, 2-a]quinoxaline derivatives. ChemistrySelect, 2018, 3(34), 9881-9884.
[http://dx.doi.org/10.1002/slct.201800960]
[112]
Ramaraju, P.; Mir, N.A.; Singh, D.; Sharma, P.; Kant, R.; Kumar, I. An unprecedented pseudo-[3+2] annulation between n-(4-methoxyphenyl)aldimines and aqueous glutaraldehyde: Direct synthesis of pyrrole-2,4-dialdehydes. Eur. J. Org. Chem., 2017, 2017(24), 3461-3465.
[http://dx.doi.org/10.1002/ejoc.201700500]
[113]
Liu, Y.; Guo, X.; Tang, D.; Wang, J.; Wu, P.; Han, J.; Chen, B. Synthesis of 1,2,4-triazine compounds via two distinct one-pot domino protocols. Chin. J. Chem., 2017, 35(8), 1222-1226.
[http://dx.doi.org/10.1002/cjoc.201600922]
[114]
Zhu, T.; Xiang, J. Trifluoroacetic acid-mediated nucleophilic substitution/smiles rearrangement cascade reaction: An alternative approach to constructing pyrrole-fused dihydropteridines. Chem. Heterocycl. Compd., 2016, 52(10), 831-835.
[http://dx.doi.org/10.1007/s10593-016-1973-9]
[115]
Mishra, A.K.; Moorthy, J.N. o-Iodoxybenzoic acid-initiated one-pot synthesis of 4-arylthio-1,2-naphthoquinones, 4-arylthio-1,2-diacetoxynaphthalenes, and 5-arylthio-5-aminobenzo[a]phenazines. J. Org. Chem., 2016, 81(15), 6472-6480.
[http://dx.doi.org/10.1021/acs.joc.6b01105] [PMID: 27409144]
[116]
Sangvikar, M.R.; Phadnaik, G.M.; Bhosle, M.R.; Mane, D.V.; Mane, R.A. A convenient synthetic protocol for the synthesis of 2,3-disubstituted 1,4-benzothiazines. Rasayan J. Chem., 2016, 9, 686-691.
[117]
Wang, Y.; Cheng, X.; Zhan, Z.; Ma, X.; Nie, R.; Hai, L.; Wu, Y. IBX-promoted domino reaction of α-hydroxy amides: A facile one-pot synthesis of isatins. RSC Advances, 2016, 6(4), 2870-2874.
[http://dx.doi.org/10.1039/C5RA25036F]
[118]
Ramaraju, P.; Mir, N.A.; Singh, D.; Gupta, V.K.; Kant, R.; Kumar, I. Enantioselective synthesis of N-PMP-1,2-dihydropyridines via formal [4 + 2] cycloaddition between aqueous glutaraldehyde and imines. Org. Lett., 2015, 17(22), 5582-5585.
[http://dx.doi.org/10.1021/acs.orglett.5b02744] [PMID: 26516787]
[119]
Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. Iodine-mediated C-H functionalization of sp, sp2, and sp3 carbon: A unified multisubstrate domino approach for Isatin synthesis. J. Org. Chem., 2015, 80(10), 5167-5175.
[http://dx.doi.org/10.1021/acs.joc.5b00581] [PMID: 25906247]
[120]
An, Q.; Shen, J.; Liu, D.; Liu, Y.; Zhang, W. Construction of chiral-fused tricyclic γ-lactams via a trans-perhydroindolic acid-catalyzed asymmetric domino reaction. Org. Lett., 2017, 19(11), 2925-2928.
[http://dx.doi.org/10.1021/acs.orglett.7b01160] [PMID: 28497973]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy