Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Modelling of Resveratrol Derivatives with SIRT1 for the Stimulation of Deacetylase Activity

Author(s): Mozhdeh Zamani, Pooneh Mokarram*, Mehdi Jamshidi, Morvarid Siri and Hadi Ghasemi*

Volume 20, Issue 6, 2024

Published on: 12 October, 2023

Page: [943 - 954] Pages: 12

DOI: 10.2174/0115734099258321231003161602

Price: $65

conference banner
Abstract

Background: Resveratrol is a polyphenol that is found in plants and has been proposed to have a potential therapeutic effect through the activation of SIRT1, which is a crucial member of the mammalian NAD+ -dependent deacetylases. However, how its activity is enhanced toward specific substrates by resveratrol derivatives has not been studied. This study aimed to evaluate the types of interaction of resveratrol and its derivatives with SIRT1 as the target protein, as well as to find out the best ligand with the strangest interaction with SIRT1.

Materials and Methods: In this study, we employed the extensive molecular docking analysis using AutoDock Vina to comparatively evaluate the interactions of resveratrol derivatives (22 molecules from the ZINC database) as ligands with SIRT1 (PDB ID: 5BTR) as a receptor. The ChemDraw and Chem3D tools were used to prepare 3D structures of all ligands and energetically minimize them by the MM2 force field.

Results: The molecular docking and visualizations showed that conformational change in resveratrol derivatives significantly influenced the parameter for docking results. Several types of interactions, including conventional hydrogen bonds, carbon-hydrogen bonds, Pi-donor hydrogen bonds, and Pi-Alkyl, were found via docking analysis of resveratrol derivatives and SIRT1 receptors. The possible activation effect of resveratrol 4'-(6-galloylglucoside) with ZINC ID: ZINC230079516 with higher binding energy score (-46.8608 kJ/mol) to the catalytic domain (CD) of SIRT1 was achieved at the maximum value for SIRT1, as compared to resveratrol and its other derivatives.

Conclusion: Finally, resveratrol 4'-(6-galloylglucoside), as a derivative for resveratrol, has stably interacted with the CD of SIRT1 and might be a potential effective activator for SIRT1.

Graphical Abstract

[1]
Ertan-Bolelli, T.; Bolelli, K. In silico design of novel sirtuin 1 enzyme activators for the treatment of age-related diseases and life span. Curr. Computeraided Drug Des., 2021, 17(3), 412-420.
[http://dx.doi.org/10.2174/1573409916666200422074441] [PMID: 32321406]
[2]
Ng, F.; Tang, B.L. Sirtuins’ modulation of autophagy. J. Cell. Physiol., 2013, 228(12), 2262-2270.
[http://dx.doi.org/10.1002/jcp.24399] [PMID: 23696314]
[3]
Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells, 2014, 32(5), 1183-1194.
[http://dx.doi.org/10.1002/stem.1641] [PMID: 24449278]
[4]
Wu, S.; Wei, Y.; Li, J.; Bai, Y.; Yin, P.; Wang, S. SIRT5 represses neurotrophic pathways and Aβ production in Alzheimer’s disease by targeting autophagy. ACS Chem. Neurosci., 2021, 12(23), 4428-4437.
[http://dx.doi.org/10.1021/acschemneuro.1c00468] [PMID: 34788008]
[5]
Saha, S.; Panigrahi, D.P.; Patil, S.; Bhutia, S.K. Autophagy in health and disease: A comprehensive review. Biomed. Pharmacother., 2018, 104, 485-495.
[http://dx.doi.org/10.1016/j.biopha.2018.05.007] [PMID: 29800913]
[6]
Yang, Y.; Klionsky, D.J. Autophagy and disease: Unanswered questions. Cell Death Differ., 2020, 27(3), 858-871.
[http://dx.doi.org/10.1038/s41418-019-0480-9] [PMID: 31900427]
[7]
Ryter, S.W.; Bhatia, D.; Choi, M.E. Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid. Redox Signal., 2019, 30(1), 138-159.
[http://dx.doi.org/10.1089/ars.2018.7518] [PMID: 29463101]
[8]
Hou, X.; Rooklin, D.; Fang, H.; Zhang, Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci. Rep., 2016, 6(1), 38186.
[http://dx.doi.org/10.1038/srep38186] [PMID: 27901083]
[9]
Salminen, A.; Kaarniranta, K. SIRT1: Regulation of longevity via autophagy. Cell. Signal., 2009, 21(9), 1356-1360.
[http://dx.doi.org/10.1016/j.cellsig.2009.02.014] [PMID: 19249351]
[10]
Tıraş, Z.Ş.E.; Okur, H.H.; Günay, Z.; Yıldırım, H.K. Different approaches to enhance resveratrol content in wine. Ciênc. Téc. Vitiviníc., 2022, 37(1), 13-28.
[11]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[12]
Morselli, E.; Galluzzi, L.; Kepp, O.; Criollo, A.; Maiuri, M.C.; Tavernarakis, N.; Madeo, F.; Kroemer, G. Autophagy mediates pharmacological lifespan extension by spermidineand resveratrol. Aging (Albany NY), 2009, 1(12), 961-970.
[http://dx.doi.org/10.18632/aging.100110] [PMID: 20157579]
[13]
Wang, J.; Li, J.; Cao, N.; Li, Z.; Han, J.; Li, L. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. OncoTargets Ther., 2018, 11, 7777-7786.
[http://dx.doi.org/10.2147/OTT.S159095] [PMID: 30464525]
[14]
Huang, H.; Liao, D.; Zhou, G.; Zhu, Z.; Cui, Y.; Pu, R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine, 2020, 77, 153230.
[http://dx.doi.org/10.1016/j.phymed.2020.153230] [PMID: 32682225]
[15]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int., 2019, 19(1), 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[16]
Singh, S.P.; Hussain, I.; Konwar, B.K.; Deka, R.C.; Singh, C.B. Design of potential IKK-β inhibitors using molecular docking and molecular dynamics techniques for their anti-cancer potential. Curr. Computeraided Drug Des., 2021, 17(1), 83-94.
[http://dx.doi.org/10.2174/1573409916666200102121505] [PMID: 31899679]
[17]
Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging, 2019, 11(10), 3117-3137.
[http://dx.doi.org/10.18632/aging.101966] [PMID: 31105084]
[18]
Ahmad, M.; Gani, A. Development of novel functional snacks containing nano-encapsulated resveratrol with anti-diabetic, anti-obesity and antioxidant properties. Food Chem., 2021, 352, 129323.
[http://dx.doi.org/10.1016/j.foodchem.2021.129323] [PMID: 33691210]
[19]
Banez, M.J.; Geluz, M.I.; Chandra, A.; Hamdan, T.; Biswas, O.S.; Bryan, N.S.; Von Schwarz, E.R. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr. Res., 2020, 78, 11-26.
[http://dx.doi.org/10.1016/j.nutres.2020.03.002] [PMID: 32428778]
[20]
Jia, R.; Li, Y.; Cao, L.; Du, J.; Zheng, T.; Qian, H.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 215, 56-66.
[http://dx.doi.org/10.1016/j.cbpc.2018.10.002] [PMID: 30336289]
[21]
Ho, Y.; Wu, C.Y.; Chin, Y.T.; Li, Z.L.; Pan, Y.; Huang, T.Y.; Su, P.Y.; Lee, S.Y.; Crawford, D.R.; Su, K.W.; Chiu, H.C.; Shih, Y.J.; Changou, C.A.; Yang, Y.C.S.H.; Whang-Peng, J.; Chen, Y.R.; Lin, H.Y.; Mousa, S.A.; Davis, P.J.; Wang, K. NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem. Toxicol., 2020, 136, 111092.
[http://dx.doi.org/10.1016/j.fct.2019.111092] [PMID: 31883986]
[22]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018, 8152373.
[http://dx.doi.org/10.1155/2018/8152373]
[23]
Griñán-Ferré, C.; Bellver-Sanchis, A.; Izquierdo, V.; Corpas, R.; Roig-Soriano, J.; Chillón, M.; Andres-Lacueva, C.; Somogyvári, M.; Sőti, C.; Sanfeliu, C.; Pallàs, M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev., 2021, 67, 101271.
[http://dx.doi.org/10.1016/j.arr.2021.101271] [PMID: 33571701]
[24]
Cao, W.; Dou, Y.; Li, A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem. Res., 2018, 43(9), 1705-1713.
[http://dx.doi.org/10.1007/s11064-018-2586-8] [PMID: 29943083]
[25]
Cao, D.; Wang, M.; Qiu, X.; Liu, D.; Jiang, H.; Yang, N.; Xu, R.M. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev., 2015, 29(12), 1316-1325.
[http://dx.doi.org/10.1101/gad.265462.115] [PMID: 26109052]
[26]
Knutson, M.D.; Leeuwenburgh, C. Resveratrol and novel potent activators of SIRT1: Effects on aging and age-related diseases. Nutr. Rev., 2008, 66(10), 591-596.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00109.x] [PMID: 18826454]
[27]
Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195.
[http://dx.doi.org/10.1074/jbc.M501250200] [PMID: 15749705]
[28]
Dalal, V.; Kumari, R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting femc of staphylococcus aureus: An in‐Silico Approach. ChemistrySelect, 2022, 7(42), e202201728.
[http://dx.doi.org/10.1002/slct.202201728]
[29]
Kumari, R.; Dhankhar, P.; Dalal, V. Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. J. Mol. Graph. Model., 2021, 105, 107870.
[http://dx.doi.org/10.1016/j.jmgm.2021.107870] [PMID: 33647754]
[30]
Kumari, R.; Rathi, R.; Pathak, S.R.; Dalal, V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct., 2022, 1255, 132476.
[http://dx.doi.org/10.1016/j.molstruc.2022.132476]
[31]
Singh, V.; Dhankhar, P.; Dalal, V.; Tomar, S.; Kumar, P. In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. J. Mol. Graph. Model., 2022, 116, 108262.
[http://dx.doi.org/10.1016/j.jmgm.2022.108262] [PMID: 35839717]
[32]
Kumari, R.; Dalal, V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn., 2022, 40(20), 9833-9847.
[http://dx.doi.org/10.1080/07391102.2021.1936179] [PMID: 34096457]
[33]
Kumari, R.; Kumar, V.; Dhankhar, P.; Dalal, V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn., 2023, 41(10), 4650-4666.
[http://dx.doi.org/10.1080/07391102.2022.2071340] [PMID: 35510600]
[34]
Hubbard, B.P.; Sinclair, D.A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci., 2014, 35(3), 146-154.
[http://dx.doi.org/10.1016/j.tips.2013.12.004] [PMID: 24439680]
[35]
Kuningas, M.; Putters, M.; Westendorp, R.G.J.; Slagboom, P.E.; van Heemst, D. SIRT1 gene, age-related diseases, and mortality: The Leiden 85-plus study. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(9), 960-965.
[http://dx.doi.org/10.1093/gerona/62.9.960] [PMID: 17895433]
[36]
Grau, L.; Soucek, R.; Pujol, M.D. Resveratrol derivatives: Synthesis and their biological activities. Eur. J. Med. Chem., 2023, 246, 114962.
[http://dx.doi.org/10.1016/j.ejmech.2022.114962] [PMID: 36463729]
[37]
Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[38]
Ranjbar, A.; Jamshidi, M.; Torabi, S. Molecular modelling of the antiviral action of Resveratrol derivatives against the activity of two novel SARS CoV-2 and 2019-nCoV receptors. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7834-7844.
[PMID: 32744711]
[39]
Zhou, S.; Yang, R.; Teng, Z.; Zhang, B.; Hu, Y.; Yang, Z.; Huan, M.; Zhang, X.; Mei, Q. Dose-dependent absorption and metabolism of trans-polydatin in rats. J. Agric. Food Chem., 2009, 57(11), 4572-4579.
[http://dx.doi.org/10.1021/jf803948g] [PMID: 19397265]
[40]
Feng, X.; Liang, N.; Zhu, D.; Gao, Q.; Peng, L.; Dong, H.; Yue, Q.; Liu, H.; Bao, L.; Zhang, J.; Hao, J.; Gao, Y.; Yu, X.; Sun, J. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One, 2013, 8(3), e59888.
[http://dx.doi.org/10.1371/journal.pone.0059888] [PMID: 23555824]
[41]
Lange, K.W.; Li, S. Resveratrol, pterostilbene, and dementia. Biofactors, 2018, 44(1), 83-90.
[http://dx.doi.org/10.1002/biof.1396] [PMID: 29168580]
[42]
Vergoten, G.; Bailly, C. Molecular modeling of alkaloids bouchardatine and orirenierine binding to sirtuin-1 (SIRT1). Digital Chinese Medicine, 2022, 5(3), 276-285.
[http://dx.doi.org/10.1016/j.dcmed.2022.10.004]
[43]
Liu, J.; Zhao, H.; He, L.; Yu, R.; Kang, C. Discovery and design of dual inhibitors targeting Sphk1 and Sirt1. J. Mol. Model., 2023, 29(5), 141.
[http://dx.doi.org/10.1007/s00894-023-05551-2] [PMID: 37059848]
[44]
Sandak, B.; Wolfson, H.J.; Nussinov, R. Flexible docking allowing induced fit in proteins: Insights from an open to closed conformational isomers. Proteins, 1998, 32(2), 159-174.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19980801)32:2<159::AID-PROT3>3.0.CO;2-G] [PMID: 9714156]
[45]
Davenport, A.M.; Huber, F.M.; Hoelz, A. Structural and functional analysis of human SIRT1. J. Mol. Biol., 2014, 426(3), 526-541.
[http://dx.doi.org/10.1016/j.jmb.2013.10.009] [PMID: 24120939]
[46]
Zhao, X.; Allison, D.; Condon, B.; Zhang, F.; Gheyi, T.; Zhang, A.; Ashok, S.; Russell, M.; MacEwan, I.; Qian, Y.; Jamison, J.A.; Luz, J.G. The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J. Med. Chem., 2013, 56(3), 963-969.
[http://dx.doi.org/10.1021/jm301431y] [PMID: 23311358]
[47]
Bakhtiari, N.; Mirzaie, S.; Hemmati, R.; Moslemee-jalalvand, E.; Noori, A.R.; Kazemi, J. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1. Arch. Biochem. Biophys., 2018, 650, 39-48.
[http://dx.doi.org/10.1016/j.abb.2018.05.012] [PMID: 29758202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy