Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Smurf2-Mediated Ubiquitination of FOXO4 Regulates Oxygen-glucose Deprivation/Reperfusion-induced Pyroptosis of Cortical Neurons

Author(s): Bin Yan, Yan Jin, Song Mao, Yi Zhang, Dahong Yang, Mingyang Du* and Yugang Yin*

Volume 20, Issue 4, 2023

Published on: 12 October, 2023

Page: [443 - 452] Pages: 10

DOI: 10.2174/0115672026267629230920062917

Price: $65

Abstract

Background: Smad ubiquitination regulatory factor 2 (Smurf2) has been observed to alleviate ischemia-reperfusion injury. This study sought to explore the molecular mechanism of Smurf2-mediated forkhead box O4 (FOXO4) ubiquitination in oxygen-glucose deprivation/ reperfusion (OGD/R)-induced pyroptosis of cortical neurons.

Methods: Human cortical neurons (HCN-2) were subjected to OGD/R to establish a cell model of cerebral stroke. Smurf2, FOXO4, and doublecortin domain containing 2 (DCDC2) expressions were determined by RT-qPCR and Western blot. LDH release, pyroptosis-related proteins NLRP3, GSDMD-N, and cleaved-caspase-3, as well as inflammatory factors IL-1β and IL-18, were assessed by LDH assay kit, Western blot, and ELISA. The ubiquitination level of FOXO4 was determined by ubiquitination assay. The bindings of Smurf2 to FOXO4 and FOXO4 to DCDC2 were testified by Co-IP, ChIP, and dual-luciferase assays. Rescue experiments were designed to validate the role of FOXO4/DCDC2 in the pyroptosis of HCN-2 cells.

Results: Smurf2 was weakly expressed, while FOXO4 and DCDC2 were prominently expressed in OGD/R-treated HCN-2 cells. Smurf2 overexpression promoted LDH release, reduced NLRP3, GSDMD-N, and cleaved-caspase-3 proteins, and decreased IL-1β and IL-18 concentrations. Sumrf2 improved the ubiquitination level of FOXO4 to downregulate its protein level. FOXO4 is bound to the DCDC2 promoter to facilitate its transcription. Overexpression of FOXO4 or DCDC2 reversed the inhibition of Smurf2 overexpression on pyroptosis of OGD/Rtreated HCN-2 cells.

Conclusion: Smurf2 overexpression facilitated the ubiquitination of FOXO4 to reduce its protein level, thereby suppressing DCDC2 transcription and restricting OGD/R-induced pyroptosis of cortical neurons.

[1]
Campbell BCV, Khatri P. Stroke. Lancet 2020; 396(10244): 129-42.
[http://dx.doi.org/10.1016/S0140-6736(20)31179-X] [PMID: 32653056]
[2]
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2021; 335: 113518.
[http://dx.doi.org/10.1016/j.expneurol.2020.113518] [PMID: 33144066]
[3]
Tuo Q, Zhang S, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2022; 42(1): 259-305.
[http://dx.doi.org/10.1002/med.21817] [PMID: 33957000]
[4]
Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Res Bull 2020; 165: 146-60.
[http://dx.doi.org/10.1016/j.brainresbull.2020.10.009] [PMID: 33065175]
[5]
Datta A, Sarmah D, Mounica L. et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 2020; 11(6): 1185-202.
[http://dx.doi.org/10.1007/s12975-020-00806-z] [PMID: 32219729]
[6]
Manikoth Ayyathan D, Levy-Cohen G, Shubely M. et al. Development and characterisation of SMURF2-targeting modifiers. J Enzyme Inhib Med Chem 2021; 36(1): 401-9.
[http://dx.doi.org/10.1080/14756366.2020.1871337] [PMID: 33430646]
[7]
Bai Y, Ying Y. The post-translational modifications of Smurf2 in TGF-β signaling. Front Mol Biosci 2020; 7: 128.
[http://dx.doi.org/10.3389/fmolb.2020.00128] [PMID: 32733916]
[8]
Liu H, Sun S, Liu B. Smurf2 exerts neuroprotective effects on cerebral ischemic injury. J Biol Chem 2021; 297(2): 100537.
[http://dx.doi.org/10.1016/j.jbc.2021.100537] [PMID: 33722608]
[9]
Yu YL, Chou RH, Shyu WC. et al. Smurf2‐mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 2013; 5(4): 531-47.
[http://dx.doi.org/10.1002/emmm.201201783] [PMID: 23526793]
[10]
Nakayoshi T, Sasaki K, Kajimoto H. et al. FOXO4-knockdown suppresses oxidative stress-induced apoptosis of early pro-angiogenic cells and augments their neovascularization capacities in ischemic limbs. PLoS One 2014; 9(3): e92626.
[http://dx.doi.org/10.1371/journal.pone.0092626] [PMID: 24663349]
[11]
Liu W, Li Y, Luo B. Current perspective on the regulation of FOXO4 and its role in disease progression. Cell Mol Life Sci 2020; 77(4): 651-63.
[http://dx.doi.org/10.1007/s00018-019-03297-w] [PMID: 31529218]
[12]
Liu H, Wang L, Weng X. et al. Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress. Redox Biol 2019; 24: 101195.
[http://dx.doi.org/10.1016/j.redox.2019.101195] [PMID: 31004990]
[13]
He B, Yang F, Ning Y, Li Y. Sevoflurane alleviates hepatic ischaemia/reperfusion injury by up‐regulating miR‐96 and down‐regulating FOXO4. J Cell Mol Med 2021; 25(13): 5899-911.
[http://dx.doi.org/10.1111/jcmm.16063] [PMID: 34061461]
[14]
Yu L, Zhang W, Huang C. et al. FoxO4 promotes myocardial ischemia-reperfusion injury: The role of oxidative stress-induced apoptosis. Am J Transl Res 2018; 10(9): 2890-900.
[PMID: 30323875]
[15]
Fukunaga K, Shioda N. Pathophysiological relevance of forkhead transcription factors in brain ischemia. Adv Exp Med Biol 2009; 665: 130-42.
[http://dx.doi.org/10.1007/978-1-4419-1599-3_10] [PMID: 20429421]
[16]
Huang H, Tindall DJ. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim Biophys Acta Mol Cell Res 2011; 1813(11): 1961-4.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.007] [PMID: 21238503]
[17]
Kang C, Lu Z, Zhu G, Chen Y, Wu Y. Knockdown of TRIM22 relieves oxygen–glucose deprivation/reoxygenation-induced apoptosis and inflammation through inhibition of NF-κB/NLRP3 axis. Cell Mol Neurobiol 2021; 41(2): 341-51.
[http://dx.doi.org/10.1007/s10571-020-00855-w] [PMID: 32335773]
[18]
Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I. et al. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2022; 50(D1): D165-73.
[http://dx.doi.org/10.1093/nar/gkab1113] [PMID: 34850907]
[19]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[20]
Ran Y, Su W, Gao F. et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition. Oxid Med Cell Longev 2021; 2021: 1-25.
[http://dx.doi.org/10.1155/2021/1552127] [PMID: 34630845]
[21]
Choi HH, Zou S, Wu J. et al. EGF relays signals to COP1 and facilitates FOXO4 degradation to promote tumorigenesis. Adv Sci 2020; 7(20): 2000681.
[http://dx.doi.org/10.1002/advs.202000681] [PMID: 33101846]
[22]
Liu X, Gao CC, Qi M, Han Y, Zhou M, Zheng L. Expression of FOXO transcription factors in the brain following traumatic brain injury. Neurosci Lett 2021; 753: 135882.
[http://dx.doi.org/10.1016/j.neulet.2021.135882] [PMID: 33838260]
[23]
Zhu M, Goetsch SC, Wang Z. et al. FoxO4 promotes early inflammatory response upon myocardial infarction via endothelial Arg1. Circ Res 2015; 117(11): 967-77.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306919] [PMID: 26438688]
[24]
Liu YZ, Sun Y. High expression of GAS5 promotes neuronal death after cerebral infarction by regulating miR-365a-3p. Eur Rev Med Pharmacol Sci 2018; 22(16): 5270-7.
[PMID: 30178851]
[25]
Liu Y, Li YP, Xiao LM. et al. Extracellular vesicles derived from bone mesenchymal stem cells carrying circ_0000075 relieves cerebral ischemic injury by competitively inhibiting miR-218-5p and up-regulating E3 ubiquitin ligase SMURF2. Mol Neurobiol 2023; 60(5): 2801-18.
[http://dx.doi.org/10.1007/s12035-022-03192-9] [PMID: 36732429]
[26]
Lou Z, Wang AP, Duan XM. et al. Upregulation of NOX2 and NOX4 mediated by TGF-β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell Physiol Biochem 2018; 46(5): 2103-13.
[http://dx.doi.org/10.1159/000489450] [PMID: 29723859]
[27]
Zhang Q, Xiong K, Yan W-T. et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17(8): 1761-8.
[http://dx.doi.org/10.4103/1673-5374.331539] [PMID: 35017436]
[28]
Su H, Fan S, Zhang L, Qi H. TMAO aggregates neurological damage following ischemic stroke by promoting reactive astrocytosis and glial scar formation via the Smurf2/ALK5 axis. Front Cell Neurosci 2021; 15: 569424.
[http://dx.doi.org/10.3389/fncel.2021.569424] [PMID: 33815059]
[29]
Santo EE, Paik J. FOXO in neural cells and diseases of the nervous system. Curr Top Dev Biol 2018; 127: 105-18.
[http://dx.doi.org/10.1016/bs.ctdb.2017.10.002] [PMID: 29433734]
[30]
Zhu J, Jiang X, Chehab FF. FoxO4 interacts with the sterol regulatory factor SREBP2 and the hypoxia inducible factor HIF2α at the CYP51 promoter. J Lipid Res 2014; 55(3): 431-42.
[http://dx.doi.org/10.1194/jlr.M043521] [PMID: 24353279]
[31]
Li L, Zhan Y, Xia H, Wu Y, Wu X, Chen S. Sevoflurane protects against intracerebral hemorrhage via microRNA-133b/FOXO4/BCL2 axis. Int Immunopharmacol 2023; 114: 109453.
[http://dx.doi.org/10.1016/j.intimp.2022.109453] [PMID: 36476488]
[32]
Zhang L, Yuan M, Zhang L, Wu B, Sun X. Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis. Biochem Biophys Res Commun 2019; 514(1): 266-72.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.143] [PMID: 31030940]
[33]
Tang Y, Wa Q, Peng L. et al. Salvianolic acid B suppresses ER stress-induced NLRP3 inflammasome and pyroptosis via the AMPK/FoxO4 and syndecan-4/Rac1 signaling pathways in human endothelial progenitor cells. Oxid Med Cell Longev 2022; 2022: 1-22.
[http://dx.doi.org/10.1155/2022/8332825] [PMID: 35340217]
[34]
Wang Y, Yin X, Rosen G. et al. Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of doublecortin. Neuroscience 2011; 190: 398-408.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.010] [PMID: 21689730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy