Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Comprehensive Investigation of the Influence of High-Altitude Hypoxia on Clopidogrel Metabolism and Gut Microbiota

Author(s): Juanhong Zhang, Yuemei Sun, Jiaxin He, Guofan Wu, Rong Wang* and Junmin Zhang*

Volume 24, Issue 10, 2023

Published on: 11 October, 2023

Page: [723 - 733] Pages: 11

DOI: 10.2174/0113892002272030231005103840

Price: $65

Abstract

Background: The amount of metabolites converted into active metabolites is correspondingly reduced since only more than 50% of clopidogrel is absorbed.

Objective: Exploring the effect of gut microbiota altered by altitude hypoxia on the pre-absorption metabolism of clopidogrel.

Methods: In vitro and in vivo experiments were conducted to analyze the metabolism of clopidogrel through LCMS/ MS, while 16S rRNA analysis was used to investigate the changes in the gut microbiota of high-altitude animals.

Results: We demonstrated that the intestinal flora is involved in the metabolism of clopidogrel through in vivo and in vitro experiments. In addition, the plateau environment caused changes in the number and composition of intestinal microbes. Intriguingly, alterations in the microbial population could lead to an increase in the pre-absorption metabolism of clopidogrel after rapid entry into the plateau, the amount of absorbed blood is thus reduced, which may affect the bioavailability and therapeutic effect of clopidogrel.

Conclusion: Our results not only as a first clinical reference for dose adjustment of clopidogrel in high-altitude environments but also would be helpful to provide a statement on the broader significance within the field of pharmacokinetics or personalized medicine.

« Previous
Graphical Abstract

[1]
Hajizadeh, R.; Ghaffari, S.; Ziaee, M.; Shokouhi, B.; Separham, A.; Sarbakhsh, P. In vitro inhibition of platelets aggregation with generic form of clopidogrel versus branded in patients with stable angina pectoris. J. Cardiovasc. Thorac. Res., 2017, 9(4), 191-195.
[http://dx.doi.org/10.15171/jcvtr.2017.33] [PMID: 29391931]
[2]
Michelson, A.D. Platelet function testing in cardiovascular diseases. Circulation, 2004, 110(19), e489-e493.
[http://dx.doi.org/10.1161/01.CIR.0000147228.29325.F9] [PMID: 15533872]
[3]
Qiu, X.; Zhang, Y.; Gu, H.; Jiang, Y.; Pan, Y.; Jiang, Y.; Meng, X.; Wang, Y.; Zhao, X.; Li, H.; Wang, X.; Wang, Y.; Li, Z. Association Between CYP2B6 polymorphisms and efficacy of clopidogrel in minor stroke or transient ischemic attack. Stroke, 2023, 54(7), 1770-1776.
[http://dx.doi.org/10.1161/STROKEAHA.122.040507] [PMID: 37264909]
[4]
Sangkuhl, K.; Klein, T.E.; Altman, R.B. Clopidogrel pathway. Pharmacogenet. Genomics, 2010, 20(7), 463-465.
[http://dx.doi.org/10.1097/FPC.0b013e3283385420] [PMID: 20440227]
[5]
Loer, H.L.H.; Türk, D.; Gómez-Mantilla, J.D.; Selzer, D.; Lehr, T. Physiologically based pharmacokinetic (PBPK) modeling of clopidogrel and its four relevant metabolites for CYP2B6, CYP2C8, CYP2C19, and CYP3A4 drug–drug–gene interaction predictions. Pharmaceutics, 2022, 14(5), 915.
[http://dx.doi.org/10.3390/pharmaceutics14050915] [PMID: 35631502]
[6]
Kazui, M.; Nishiya, Y.; Ishizuka, T.; Hagihara, K.; Farid, N.A.; Okazaki, O.; Ikeda, T.; Kurihara, A. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab. Dispos., 2010, 38(1), 92-99.
[http://dx.doi.org/10.1124/dmd.109.029132] [PMID: 19812348]
[7]
Xu, L.; Li, R.; Li, J.; Dong, Z.; Zong, J.; Tan, C.; Ye, Z.; Shi, L.; Gong, X.; Li, C. Simultaneous determination of clopidogrel, 2-oxo-clopidogrel, and the thiol metabolite of clopidogrel in human plasma by LC-MS/MS. J. Biomed. Res., 2022, 36(2), 109-119.
[http://dx.doi.org/10.7555/JBR.36.20210125] [PMID: 35387902]
[8]
Chu, J.N.; Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(4), 219-238.
[http://dx.doi.org/10.1038/s41575-021-00539-w] [PMID: 34785786]
[9]
Zhang, J.; Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev., 2018, 50(3), 357-368.
[http://dx.doi.org/10.1080/03602532.2018.1497647] [PMID: 30227749]
[10]
Li, X.; Liu, L.; Cao, Z.; Li, W.; Li, H.; Lu, C.; Yang, X.; Liu, Y. Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed. Pharmacother., 2020, 121, 109653.
[http://dx.doi.org/10.1016/j.biopha.2019.109653] [PMID: 31810138]
[11]
Swanson, H.I. Drug metabolism by the host and gut microbiota: A partnership or rivalry? Drug Metab. Dispos., 2015, 43(10), 1499-1504.
[http://dx.doi.org/10.1124/dmd.115.065714] [PMID: 26261284]
[12]
Bai, X.; Liu, G.; Yang, J.; Zhu, J.; Li, X. Gut microbiota as the potential mechanism to mediate drug metabolism under high-altitude hypoxia. Curr. Drug Metab., 2022, 23(1), 8-20.
[http://dx.doi.org/10.2174/1389200223666220128141038] [PMID: 35088664]
[13]
Noh, K.; Kang, Y.R.; Nepal, M.R.; Shakya, R.; Kang, M.J.; Kang, W.; Lee, S.; Jeong, H.G.; Jeong, T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res., 2017, 40(12), 1345-1355.
[http://dx.doi.org/10.1007/s12272-017-0986-y] [PMID: 29181640]
[14]
Zimmermann-Kogadeeva, M.; Zimmermann, M.; Goodman, A.L. Insights from pharmacokinetic models of host-microbiome drug metabolism. Gut Microbes, 2020, 11(3), 587-596.
[http://dx.doi.org/10.1080/19490976.2019.1667724] [PMID: 31564204]
[15]
Cai, J.; Auster, A.; Cho, S.; Lai, Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage J. Adv. Res., 2023, S2090-1232(23), 00181-9.
[http://dx.doi.org/10.1016/j.jare.2023.07.002] [PMID: 37419381]
[16]
Quigley, E.M.M. Gut microbiome as a clinical tool in gastrointestinal disease management: Are we there yet? Nat. Rev. Gastroenterol. Hepatol., 2017, 14(5), 315-320.
[http://dx.doi.org/10.1038/nrgastro.2017.29] [PMID: 28356581]
[17]
Ghaffari, P.; Shoaie, S.; Nielsen, L.K. Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. J. Transl. Med., 2022, 20(1), 173.
[http://dx.doi.org/10.1186/s12967-022-03365-z] [PMID: 35410233]
[18]
Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; Shilo, S.; Lador, D.; Vila, A.V.; Zmora, N.; Pevsner-Fischer, M.; Israeli, D.; Kosower, N.; Malka, G.; Wolf, B.C.; Avnit-Sagi, T.; Lotan-Pompan, M.; Weinberger, A.; Halpern, Z.; Carmi, S.; Fu, J.; Wijmenga, C.; Zhernakova, A.; Elinav, E.; Segal, E. Environment dominates over host genetics in shaping human gut microbiota. Nature, 2018, 555(7695), 210-215.
[http://dx.doi.org/10.1038/nature25973] [PMID: 29489753]
[19]
Stower, H. Environmental shaping of the microbiome. Nat. Med., 2018, 24(12), 1782.
[PMID: 30523320]
[20]
Scepanovic, P.; Hodel, F.; Mondot, S.; Partula, V.; Byrd, A.; Hammer, C.; Alanio, C.; Bergstedt, J.; Patin, E.; Touvier, M.; Lantz, O.; Albert, M.L.; Duffy, D.; Quintana-Murci, L.; Fellay, J. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome, 2019, 7(1), 130.
[http://dx.doi.org/10.1186/s40168-019-0747-x] [PMID: 31519223]
[21]
Karl, J.P.; Berryman, C.E.; Young, A.J.; Radcliffe, P.N.; Branck, T.A.; Pantoja-Feliciano, I.G.; Rood, J.C.; Pasiakos, S.M. Associations between the gut microbiota and host responses to high altitude. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G1003-G1015.
[http://dx.doi.org/10.1152/ajpgi.00253.2018] [PMID: 30212253]
[22]
Mazel, F. Living the high life: Could gut microbiota matter for adaptation to high altitude? Mol. Ecol., 2019, 28(9), 2119-2121.
[http://dx.doi.org/10.1111/mec.15093] [PMID: 31127960]
[23]
Zhou, X.; Nian, Y.; Qiao, Y.; Yang, M.; Xin, Y.; Li, X. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude. Curr. Drug Metab., 2018, 19(11), 960-969.
[http://dx.doi.org/10.2174/1389200219666180529112913] [PMID: 29807512]
[24]
Zhang, J.; Zhang, J.; Wang, R.; Jia, Z. Effects of gut microbiota on drug metabolism and guidance for rational drug use under hypoxic conditions at high altitudes. Curr. Drug Metab., 2019, 20(2), 155-165.
[http://dx.doi.org/10.2174/1389200219666181019145159] [PMID: 30338735]
[25]
Cheng, J.; Sun, Y.; Zhao, Y.; Guo, Q.; Wang, Z.; Wang, R. Research progress on the mechanism of intestinal barrier damage and drug therapy in a high altitude environment. Curr. Drug Deliv., 2023.
[PMID: 36892115]
[26]
Zhao, A.; Li, W.; Wang, R. The influences and mechanisms of high-altitude hypoxia exposure on drug metabolism. Curr. Drug Metab., 2023, 24(3), 152-161.
[http://dx.doi.org/10.2174/1389200224666221228115526] [PMID: 36579391]
[27]
Guo, Q.; Li, X.; Li, W.; Wang, R.; Zhao, A.; Wang, Z. A pharmacodynamic evaluation of the protective effects of roxadustat against hypoxic injury at high altitude. Drug Des. Devel. Ther., 2023, 17, 75-85.
[http://dx.doi.org/10.2147/DDDT.S390975] [PMID: 36686057]
[28]
Luo, B.; Wang, R.; Li, W.; Yang, T.; Wang, C.; Lu, H.; Zhao, A.; Zhang, J.; Jia, Z. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed. Pharmacother., 2017, 89, 1078-1085.
[http://dx.doi.org/10.1016/j.biopha.2017.02.092] [PMID: 28292016]
[29]
Zhang, J.; He, J.; Huang, J.; Li, X.; Fan, X.; Li, W.; Wu, G.; Xie, C.; Fan, X.X.; Zhang, J.; Yao, X.; Wang, R.; Leung, E.L.H. Pharmacokinetics, absorption and transport mechanism for ginseng polysaccharides. Biomed. Pharmacother., 2023, 162, 114610.
[http://dx.doi.org/10.1016/j.biopha.2023.114610] [PMID: 36989718]
[30]
Zhang, J.; Chen, Y.; Sun, Y.; Wang, R.; Zhang, J.; Jia, Z. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv., 2018, 25(1), 1175-1181.
[http://dx.doi.org/10.1080/10717544.2018.1469687] [PMID: 29790376]
[31]
Zhang, J.; Zhang, M.; Zhang, J.; Wang, R. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats. Eur. J. Pharm. Sci., 2020, 153, 105490.
[http://dx.doi.org/10.1016/j.ejps.2020.105490] [PMID: 32721527]
[32]
Zhang, J.; Wang, R. Changes in CYP3A4 enzyme expression and biochemical markers under acute hypoxia affect the pharmacokinetics of sildenafil. Front. Physiol., 2022, 13, 755769.
[http://dx.doi.org/10.3389/fphys.2022.755769] [PMID: 35153825]
[33]
Leser, T.D.; Lindecrona, R.H.; Jensen, T.K.; Jensen, B.B.; Møller, K. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microbiol., 2000, 66(8), 3290-3296.
[http://dx.doi.org/10.1128/AEM.66.8.3290-3296.2000] [PMID: 10919783]
[34]
Kim, I.S.; Yoo, D.H.; Jung, I.H.; Lim, S.; Jeong, J.J.; Kim, K.A.; Bae, O.N.; Yoo, H.H.; Kim, D.H. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem. Pharmacol., 2016, 122, 72-79.
[http://dx.doi.org/10.1016/j.bcp.2016.09.023] [PMID: 27687643]
[35]
Yoo, H.H.; Kim, I.S.; Yoo, D.H.; Kim, D.H. Effects of orally administered antibiotics on the bioavailability of amlodipine. J. Hypertens., 2016, 34(1), 156-162.
[http://dx.doi.org/10.1097/HJH.0000000000000773] [PMID: 26630218]
[36]
Takeuchi, K.; Takayama, S.; Izuhara, C. Comparative effects of the anti-platelet drugs, clopidogrel, ticlopidine, and cilostazol on aspirin-induced gastric bleeding and damage in rats. Life Sci., 2014, 110(2), 77-85.
[http://dx.doi.org/10.1016/j.lfs.2014.06.017] [PMID: 24984214]
[37]
Hui, L.; Rong, W.; Zheng-ping, J.; Juan, X.; Hua, X. Effects of high altitude exposure on physiology and pharmacokinetics. Curr. Drug Metab., 2016, 17(6), 559-565.
[http://dx.doi.org/10.2174/1389200216666151015113948] [PMID: 26467068]
[38]
Dello Russo, C.; Bandiera, T.; Monici, M.; Surdo, L.; Yip, V.L.M.; Wotring, V.; Morbidelli, L. Physiological adaptations affecting drug pharmacokinetics in space: What do we really know? A critical review of the literature. Br. J. Pharmacol., 2022, 179(11), 2538-2557.
[http://dx.doi.org/10.1111/bph.15822] [PMID: 35170019]
[39]
Sun, Y.; Hao, Y.; Zhang, Q.; Liu, X.; Wang, L.; Li, J.; Li, M.; Li, D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. Sci. Total Environ., 2023, 905, 167079.
[http://dx.doi.org/10.1016/j.scitotenv.2023.167079] [PMID: 37714349]
[40]
Zhang, X.; Jia, X.; Wang, S.; Xin, J.; Sun, N.; Wang, Y.; Zhang, X.; Wan, Z.; Fan, J.; Li, H.; Bai, Y.; Ni, X.; Huang, Y.; Wang, H.; Ma, H. Disrupted gut microbiota aggravates spatial memory dysfunction induced by high altitude exposure: A link between plateau environment and microbiome–gut–brain axis. Ecotoxicol. Environ. Saf., 2023, 259, 115035.
[http://dx.doi.org/10.1016/j.ecoenv.2023.115035] [PMID: 37224779]
[41]
Zhang, X.; Xu, W.; Zhong, W.; Zhang, W.; Yang, C.; Duan, L.; Niu, H.; Dong, Y.; Liu, T.; Xia, S.; Wang, B. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau. J. Zhejiang Univ. Sci. B, 2023, 24(9), 823-838.
[http://dx.doi.org/10.1631/jzus.B2200509] [PMID: 37701958]
[42]
Pan, Z.; Hu, Y.; Huang, Z.; Han, N.; Li, Y.; Zhuang, X.; Yin, J.; Peng, H.; Gao, Q.; Zhang, W.; Huang, Y.; Cui, Y.; Bi, Y.; Xu, Z.Z.; Yang, R. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci. China Life Sci., 2022, 65(10), 2093-2113.
[http://dx.doi.org/10.1007/s11427-021-2056-1] [PMID: 35301705]
[43]
Wang, K.; Liu, L.; Yang, Y.; Liu, X.; Zhang, L.; Xu, W.; Zhang, Y.; Yang, X.; Zhang, P.; Peng, K.; Gong, Y.; Liu, N. An effective UFLC–MS/MS method used to study pharmacokinetics of major constituents of Fukeqianjin formula in rat plasma. Chin. Med., 2020, 15(1), 74.
[http://dx.doi.org/10.1186/s13020-020-00347-5] [PMID: 32724332]
[44]
Liu, Z.; Wu, X.; Si, Z.; Kong, D.; Yang, D.; Zhou, F.; Wang, Z. Simultaneous determination of nine constituents by validated UFLC-MS/MS in the plasma of cough variant asthma rats and its application to pharmacokinetic study after oral administration of Huanglong cough oral liquid. J. Pharm. Biomed. Anal., 2021, 193, 113726.
[http://dx.doi.org/10.1016/j.jpba.2020.113726] [PMID: 33171336]
[45]
Girme, A.; Pawar, S.; Ghule, C.; Shengule, S.; Saste, G.; Balasubramaniam, A.K.; Deshmukh, A.; Hingorani, L. Bioanalytical method development and validation study of neuroprotective extract of kashmiri saffron using ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS): In vivo pharmacokinetics of apocarotenoids and carotenoids. Molecules, 2021, 26(6), 1815.
[http://dx.doi.org/10.3390/molecules26061815] [PMID: 33807056]
[46]
Liu, X.Y.; Zhang, Y.B.; Yang, X.W.; Xu, W.; Liu, L.; Zhang, P.; Gong, Y.; Liu, N.F.; Peng, K.F. Simultaneous determination of twenty-five compounds with anti-inflammatory activity in Spatholobi Caulis by using an optimized UFLC-MS/MS method: An application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2021, 204, 114267.
[http://dx.doi.org/10.1016/j.jpba.2021.114267] [PMID: 34303214]
[47]
Turner, R.M.; Fontana, V.; Bayliss, M.; Whalley, S.; Santoyo Castelazo, A.; Pirmohamed, M. Development, validation and application of a novel HPLC-MS/MS method for the quantification of atorvastatin, bisoprolol and clopidogrel in a large cardiovascular patient cohort. J. Pharm. Biomed. Anal., 2018, 159, 272-281.
[http://dx.doi.org/10.1016/j.jpba.2018.06.062] [PMID: 30005242]
[48]
Liu, G.; Dong, C.; Shen, W.; Lu, X.; Zhang, M.; Gui, Y.; Zhou, Q.; Yu, C. Development and validation of an HPLC–MS/MS method to determine clopidogrel in human plasma. Acta Pharm. Sin. B, 2016, 6(1), 55-63.
[http://dx.doi.org/10.1016/j.apsb.2015.11.001] [PMID: 26904399]
[49]
Nageswara Rao, R.; Prasad, K.G.; Bindu Priya, P.; Bijarji, S. HPLC-PDA-ORD bioassay of S-(+) and R-(-) clopidogrel on rat dried blood spots. Chirality, 2014, 26(2), 102-107.
[http://dx.doi.org/10.1002/chir.22271] [PMID: 24436208]
[50]
J, K.; K S, K.; R, S.; R R, H.; Kaaviya, A.A.; P, S.; K S, L. A review of analytical methods for the determination of clopidogrel in pharmaceuticals and biological matrices. Crit. Rev. Anal. Chem., 2018, 48(2), 119-131.
[http://dx.doi.org/10.1080/10408347.2018.1427548] [PMID: 29350995]
[51]
Jiang, X.; Wu, J.; Tan, B.; Yan, S.; Deng, N.; Wei, H. Effect of chronic unpredicted mild stress-induced depression on clopidogrel pharmacokinetics in rats. PeerJ, 2022, 10, e14111.
[http://dx.doi.org/10.7717/peerj.14111] [PMID: 36213502]
[52]
Wada, M.; Nishiwaki, J.; Yamane, T.; Ohwaki, Y.; Aboul-Enein, H.Y.; Nakashima, K. Interaction study of aspirin or clopidogrel on pharmacokinetics of donepezil hydrochloride in rats by HPLC-fluorescence detection. Biomed. Chromatogr., 2007, 21(6), 616-620.
[http://dx.doi.org/10.1002/bmc.794] [PMID: 17340563]
[53]
Dhurjad, P.; Dhavaliker, C.; Gupta, K.; Sonti, R. Exploring drug metabolism by the gut microbiota: Modes of metabolism and experimental approaches. Drug Metab. Dispos., 2022, 50(3), 224-234.
[http://dx.doi.org/10.1124/dmd.121.000669] [PMID: 34969660]
[54]
Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; Kurilshikov, A.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020, 11(1), 362.
[http://dx.doi.org/10.1038/s41467-019-14177-z] [PMID: 31953381]
[55]
Zhang, J.; Wang, R.; Pereira, S.A. Editorial: Drug metabolism and transport: the Frontier of personalized medicine. Front. Pharmacol., 2023, 14, 1246827.
[http://dx.doi.org/10.3389/fphar.2023.1246827] [PMID: 37492090]
[56]
Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B, 2021, 11(7), 1789-1812.
[http://dx.doi.org/10.1016/j.apsb.2020.09.013] [PMID: 34386321]
[57]
Dikeocha, I.J.; Al-Kabsi, A.M.; Miftahussurur, M.; Alshawsh, M.A. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB J., 2022, 36(6), e22350.
[http://dx.doi.org/10.1096/fj.202101986R] [PMID: 35579628]
[58]
Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; Chen, Z.S. Microbiota in health and diseases. Signal Transduct. Target. Ther., 2022, 7(1), 135.
[http://dx.doi.org/10.1038/s41392-022-00974-4] [PMID: 35461318]
[59]
de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut, 2022, 71(5), 1020-1032.
[http://dx.doi.org/10.1136/gutjnl-2021-326789] [PMID: 35105664]
[60]
Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol., 2018, 9, 2013.
[http://dx.doi.org/10.3389/fmicb.2018.02013] [PMID: 30258412]
[61]
Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci., 2019, 28, 105-110.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.011] [PMID: 32395568]
[62]
Lin, J.H.; Lu, A.Y. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev., 1997, 49(4), 403-449.
[PMID: 9443165]
[63]
Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; Yu, A.M.; Zuo, Z.; Bi, H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2019, 9(6), 1113-1144.
[http://dx.doi.org/10.1016/j.apsb.2019.10.001] [PMID: 31867160]
[64]
Zhang, Z.; Tang, W. Drug metabolism in drug discovery and development. Acta Pharm. Sin. B, 2018, 8(5), 721-732.
[http://dx.doi.org/10.1016/j.apsb.2018.04.003] [PMID: 30245961]
[65]
Wang, R.; Sun, Y.; Yin, Q.; Xie, H.; Li, W.; Wang, C.; Guo, J.; Hao, Y.; Tao, R.; Jia, Z. The effects of metronidazole on cytochrome P450 activity and expression in rats after acute exposure to high altitude of 4300 m. Biomed. Pharmacother., 2017, 85, 296-302.
[http://dx.doi.org/10.1016/j.biopha.2016.11.024] [PMID: 27899252]
[66]
Wang, C.; Wang, R.; Xie, H.; Sun, Y.; Tao, R.; Liu, W.; Li, W.; Lu, H.; Jia, Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine, 2016, 83, 110-117.
[http://dx.doi.org/10.1016/j.cyto.2016.04.003] [PMID: 27104804]
[67]
Li, W.; Wang, R.; Xie, H.; Zhang, J.; Jia, Z. Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude. Exp. Ther. Med., 2015, 9(1), 98-104.
[http://dx.doi.org/10.3892/etm.2014.2049] [PMID: 25452782]
[68]
Zhang, J.; Sun, Y.; Wang, R.; Zhang, J. Gut microbiota-mediated drug-drug interaction between amoxicillin and aspirin. Sci. Rep., 2019, 9(1), 16194.
[http://dx.doi.org/10.1038/s41598-019-52632-5] [PMID: 31700098]
[69]
Li, X.; Wang, R.; Huo, Y.; Zhao, A.; Li, W.; Feng, S. Pharmacodynamic of cilostazol for anti-altitude hypoxia. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2022, 47(2), 202-210.
[PMID: 35545410]
[70]
Ding, Y.; Wang, R.; Zhang, J.; Zhao, A.; Lu, H.; Li, W.; Wang, C.; Yuan, X. Potential regulation mechanisms of p-gp in the blood-brain barrier in hypoxia. Curr. Pharm. Des., 2019, 25(10), 1041-1051.
[http://dx.doi.org/10.2174/1381612825666190610140153] [PMID: 31187705]
[71]
Karaźniewicz-Łada, M.; Danielak, D.; Burchardt, P.; Kruszyna, &#321.; Komosa, A.; Lesiak, M.; Główka, F. Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases. Clin. Pharmacokinet., 2014, 53(2), 155-164.
[http://dx.doi.org/10.1007/s40262-013-0105-2] [PMID: 24127209]
[72]
Polasek, T.M.; Doogue, M.P.; Miners, J.O. Metabolic activation of clopidogrel: In vitro data provide conflicting evidence for the contributions of CYP2C19 and PON1. Ther. Adv. Drug Saf., 2011, 2(6), 253-261.
[http://dx.doi.org/10.1177/2042098611422559] [PMID: 25083217]
[73]
Steinhubl, S.R. Genotyping, clopidogrel metabolism, and the search for the therapeutic window of thienopyridines. Circulation, 2010, 121(4), 481-483.
[http://dx.doi.org/10.1161/CIR.0b013e3181d1e0e1] [PMID: 20083686]
[74]
Ford, N.F. Clopidogrel resistance: Pharmacokinetic or pharmacogenetic? J. Clin. Pharmacol., 2009, 49(5), 506-512.
[http://dx.doi.org/10.1177/0091270009332433] [PMID: 19246723]
[75]
Zhu, H.J.; Wang, X.; Gawronski, B.E.; Brinda, B.J.; Angiolillo, D.J.; Markowitz, J.S. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J. Pharmacol. Exp. Ther., 2013, 344(3), 665-672.
[http://dx.doi.org/10.1124/jpet.112.201640] [PMID: 23275066]
[76]
Paul, R.; Paul, S. Exploration on the drug solubility enhancement in aqueous medium with the help of endo -functionalized molecular tubes: A computational approach. Phys. Chem. Chem. Phys., 2021, 23(34), 18999-19010.
[http://dx.doi.org/10.1039/D1CP01187A] [PMID: 34612438]
[77]
Tang, X.; Zhang, Y.; Zhang, Y.Y.; Zhang, Z.; Tian, Y. Development and validation of a sensitive LC‐MS/MS method for simultaneous analysis of clopidogrel and simvastatin and their main metabolites in beagles: Application to pharmacokinetic drug interactions. Biomed. Chromatogr., 2023, 37(10), e5714.
[http://dx.doi.org/10.1002/bmc.5714] [PMID: 37574765]
[78]
Duong, J.K.; Nand, R.A.; Patel, A.; Della Pasqua, O.; Gross, A.S. A physiologically based pharmacokinetic model of clopidogrel in populations of European and Japanese ancestry: An evaluation of CYP2C19 activity. Pharmacol. Res. Perspect., 2022, 10(2), e00946.
[http://dx.doi.org/10.1002/prp2.946] [PMID: 35307978]
[79]
Ford, N.F. The metabolism of clopidogrel: CYP2C19 is a minor pathway. J. Clin. Pharmacol., 2016, 56(12), 1474-1483.
[http://dx.doi.org/10.1002/jcph.769] [PMID: 27196064]
[80]
Close, S.L. Clopidogrel pharmacogenetics: Metabolism and drug interactions. Drug Metabol. Drug Interact., 2011, 26(2), 45-51.
[http://dx.doi.org/10.1515/dmdi.2011.002] [PMID: 21819266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy