Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

A Review of Medicinal Plants and Phytochemicals for the Management of Gout

Author(s): Mohammad Hosein Frazaei, Roghayeh Nouri, Reza Arefnezhad, Pardis Mohammadi Pour, Maryam Naseri and Shirin Assar*

Volume 20, Issue 3, 2024

Published on: 11 October, 2023

Page: [223 - 240] Pages: 18

DOI: 10.2174/0115733971268037230920072503

Price: $65

Abstract

Gout, characterized by elevated uric acid levels, is a common inflammatory joint disease associated with pain, joint swelling, and bone erosion. Existing treatments for gout often result in undesirable side effects, highlighting the need for new, safe, and cost-effective anti-gout drugs. Natural products, including medicinal plants and phytochemicals, have gained attention as potential sources of anti-gout compounds. In this review, we examined articles from 2000 to 2020 using PubMed and Google Scholar, focusing on the effectiveness of medicinal plants and phyto-chemicals in managing gout. Our findings identified 14 plants and nine phytochemicals with anti-gout properties. Notably, Teucrium polium, Prunus avium, Smilax riparia, Rhus coriaria, Foenic-ulum vulgare, Allium cepa, Camellia japonica, and Helianthus annuus exhibited the highest xa-thine oxidase inhibitory activity, attributed to their unique natural bioactive compounds such as phenolics, tannins, coumarins, terpenoids, and alkaloids. Herbal plants and their phytochemicals have demonstrated promising effects in reducing serum urate and inhibiting xanthine. This review aims to report recent studies on plants/phytochemicals derived from herbs beneficial in gout and their different mechanisms.

Next »
Graphical Abstract

[1]
Perez-Ruiz F, Perez-Herrero N, Richette P, Stack AG. High rate of adherence to urate-lowering treatment in patients with gout: who’s to blame? Rheumatol Ther 2020; 7(4): 1011-9.
[http://dx.doi.org/10.1007/s40744-020-00249-w] [PMID: 33111171]
[2]
Albert JA, Hosey T, LaMoreaux B. Increased efficacy and tolerability of pegloticase in patients with uncontrolled gout co-treated with methotrexate: A retrospective study. Rheumatol Ther 2020; 7(3): 639-48.
[http://dx.doi.org/10.1007/s40744-020-00222-7] [PMID: 32720081]
[3]
Calabuig I, Gómez-Garberí M, Andrés M. Gout is prevalent but under-registered among patients with cardiovascular events: A field study. Front Med (Lausanne) 2020; 7: 560.
[http://dx.doi.org/10.3389/fmed.2020.00560] [PMID: 33117824]
[4]
Chiu THT, Liu CH, Chang CC, Lin MN, Lin CL. Vegetarian diet and risk of gout in two separate prospective cohort studies. Clin Nutr 2020; 39(3): 837-44.
[http://dx.doi.org/10.1016/j.clnu.2019.03.016] [PMID: 30955983]
[5]
Yin C, Liu B, Wang P, et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br J Pharmacol 2020; 177(9): 2042-57.
[http://dx.doi.org/10.1111/bph.14967] [PMID: 31883118]
[6]
Coleshill MJ, Aung E, Carland JE, Faasse K, Stocker S, Day RO. Rebranding gout: Could a name change for gout improve adherence to urate-lowering therapy? Ther Innov Regul Sci 2020; 2020: 1-4.
[PMID: 32661926]
[7]
Lestari MW, Bintarti TW. The relationship of nutritional status to uric acid level in community of pondok pesantren al-hidayah, ngawi. Med Health Sci J 2019; 3(1): 41-6.
[http://dx.doi.org/10.33086/mhsj.v3i1.925]
[8]
Harnisch F, Rosa LF, Kracke F, Virdis B, Krömer JOJC. Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production. ChemSusChem 2015; 8(5): 7581-66.
[9]
Kim KY, Ralph Schumacher H, Hunsche E, Wertheimer AI, Kong SX. A literature review of the epidemiology and treatment of acute gout. Clin Ther 2003; 25(6): 1593-617.
[http://dx.doi.org/10.1016/S0149-2918(03)80158-3 ] [PMID: 12860487]
[10]
Chen M, Ye C, Zhu J, et al. Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia. Front Cell Dev Biol 2020; 8: 703.
[http://dx.doi.org/10.3389/fcell.2020.00703] [PMID: 32850823]
[11]
Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum 2020; 50(3) (Suppl.): S24-30.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.010 ] [PMID: 32620199]
[12]
PAHO. 17 January 2016: Neurological syndrome, congenital malformations, and Zika virus infection - Epidemiological Update. 2016. Available From: https://www.paho.org/en/documents/17-january-2016-neurological-syndrome-congenital-malformations-and-zika-virus-infection
[13]
Sailaja AK. Herbal medicine for the treatment of rheumatoid arthritis. J Phy Optics Sci 2020; 3: 127.
[http://dx.doi.org/10.47363/JPSOS/2020(2)114]
[14]
Singh RB, Srinagesh B, Anand S. Urban health risk and resilience in Asian cities. Heidelberg: Springer 2020.
[http://dx.doi.org/10.1007/978-981-15-1205-6]
[15]
Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther 2014; 36(10): 1465-79.
[http://dx.doi.org/10.1016/j.clinthera.2014.07.017] [PMID: 25151572]
[16]
Du X, Zhao L, Yang Y, et al. Investigation of the mechanism of action of Porana sinensis Hemsl. against gout arthritis using network pharmacology and experimental validation. J Ethnopharmacol 2020; 252: 112606.
[http://dx.doi.org/10.1016/j.jep.2020.112606] [PMID: 31988013]
[17]
El-Tantawy WH. Natural products for the management of hyperuricaemia and gout: A review. Arch Physiol Biochem 2021; 127(1): 61-72.
[http://dx.doi.org/10.1080/13813455.2019.1610779 ] [PMID: 31094218]
[18]
Nile SH, Khobragade CN. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract. Nat Prod Commun 2011; 6(10): 1473-40.
[http://dx.doi.org/10.1177/1934578X1100601006]
[19]
Teh CL, Chew KF, Ling GR. Acute gout in hospitalized patients in Sarawak general hospital. Med J Malaysia 2014; 69(3): 126-8.
[PMID: 25326353]
[20]
Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012; 3(1): 764.
[http://dx.doi.org/10.1038/ncomms1756] [PMID: 22473008]
[21]
Aziz WW, Bakar MA, Bakar FA, Dheyab A, Sabran S, Kormin F, Eds. Anti-gout potential of selected Malaysian local fruits. Earth and Environmental Science. Bristol: IOP Publishing 2021.
[22]
Sungthong B, Manok S, Sato H, Sato VH. Effects of Aquilaria Crassna on xanthine oxidase activity in vitro and hyperuricemic mice. Indian J Pharm Sci 2016; 78(4): 547-52.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000151]
[23]
Stamp LK, O’Donnell JL, Chapman PT. Emerging therapies in the long-term management of hyperuricaemia and gout. Intern Med J 2007; 37(4): 258-66.
[http://dx.doi.org/10.1111/j.1445-5994.2007.01315.x ] [PMID: 17388867]
[24]
Falasca GF. Metabolic diseases: Gout. Clin Dermatol 2006; 24(6): 498-508.
[http://dx.doi.org/10.1016/j.clindermatol.2006.07.015 ] [PMID: 17113968]
[25]
Pillinger MH, Rosenthal P, Abeles AM. Hyperuricemia and gout: New insights into pathogenesis and treatment. Bull NYU Hosp Jt Dis 2007; 65(3): 215-21.
[PMID: 17922673]
[26]
Su J, Zhang X, Zhao Q, et al. PD‐1 mRNA expression in peripheral blood mononuclear cells as a biomarker for different stages of primary gouty arthritis. J Cell Mol Med 2020; 24(16): 9323-31.
[http://dx.doi.org/10.1111/jcmm.15582] [PMID: 32639111]
[27]
Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol 2020; 16(7): 380-90.
[http://dx.doi.org/10.1038/s41584-020-0441-1] [PMID: 32541923]
[28]
Chen J, Wu M, Yang J, Wang J, Qiao Y, Li X. The immunological basis in the pathogenesis of gout. Iran J Immunol 2017; 14(2): 90-8.
[PMID: 28630380]
[29]
Vedder D, Gerritsen M, Duvvuri B, van Vollenhoven RF, Nurmohamed MT, Lood C. Neutrophil activation identifies patients with active polyarticular gout. Arthritis Res Ther 2020; 22(1): 148.
[http://dx.doi.org/10.1186/s13075-020-02244-6] [PMID: 32552822]
[30]
Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016; 13(2): 148-59.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[31]
Kim SK, Park KY, Choe JY. Toll-like receptor 9 is involved in NLRP3 inflammasome activation and IL-1β production through monosodium urate-induced mitochondrial DNA. Inflammation 2020; 43(6): 2301-11.
[http://dx.doi.org/10.1007/s10753-020-01299-6]
[32]
Oleinikova GK, Kuznetsova TA, Ivanova NS, Kalinovskii AI, Rovnykh NV, Elyakov GB. Glycosides of marine invertebrates. XV. A new triterpene glycoside - Holothurin A1 - From Caribbean holothurians of the family Holothuriidae. Chem Nat Compd 1982; 18(4): 430-4.
[http://dx.doi.org/10.1007/BF00579637]
[33]
Wan W, Shi Y, Ji L, Li X, Xu X, Zhao D. Interleukin-37 contributes to the pathogenesis of gout by affecting PDZ domain-containing 1 protein through the nuclear factor-kappa B pathway. J Int Med Res 2020; 48(9): 0300060520948717.
[http://dx.doi.org/10.1177/0300060520948717] [PMID: 32910705]
[34]
Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF, Endrini S. Anti-gout potential of Malaysian medicinal plants. Front Pharmacol 2018; 9: 261.
[http://dx.doi.org/10.3389/fphar.2018.00261] [PMID: 29628890]
[35]
Kapoor B, Kaur G, Gupta M, Gupta R. Indian medicinal plants useful in treatment of gout: A review for current status and future prospective. Asian J Pharm Clin Res 2017; 10(11): 407.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20170]
[36]
Ling X, Bochu W. A review of phytotherapy of gout: Perspective of new pharmacological treatments. Pharmazie 2014; 69(4): 243-56.
[PMID: 24791587]
[37]
Aramwit P, Porasuphatana S, Srichana T, Nakpheng T. Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity. Nanoscale Res Lett 2015; 10(1): 152.
[http://dx.doi.org/10.1186/s11671-015-0851-1] [PMID: 25883541]
[38]
Rasekh HR, Khoshnood-Mansourkhani MJ, Kamalinejad M. Hypolipidemic effects of Teucrium polium in rats. Fitoterapia 2001; 72(8): 937-9.
[http://dx.doi.org/10.1016/S0367-326X(01)00348-3 ] [PMID: 11731122]
[39]
Abdollahi M, Karimpour H, Monsef-Esfehani HR. Antinociceptive effects of Teucrium polium L. total extract and essential oil in mouse writhing test. Pharmacol Res 2003; 48(1): 31-5.
[http://dx.doi.org/10.1016/S1043-6618(03)00059-8 ] [PMID: 12770512]
[40]
Kazeminia M, Mehrabi A, Mahmoudi R. Chemical composition, biological activities, and nutritional application of Asteraceae family herbs. Syst Rev 2022; 6(3): 187-213.
[41]
El Masri B, Shu S, Jain AK. Implementation of a dynamic rooting depth and phenology into a land surface model: Evaluation of carbon, water, and energy fluxes in the high latitude ecosystems. Agric For Meteorol 2015; 211-212: 85-99.
[http://dx.doi.org/10.1016/j.agrformet.2015.06.002]
[42]
Mahmoudi R, Nosratpour S. Teucrium polium L. essential oil: Phytochemiacl component and antioxidant properties. Int Food Res J 2013; 20(4)
[43]
Rahmouni F, Hamdaoui L, Rebai T. In vivo anti-inflammatory activity of aqueous extract of Teucrium polium against carrageenan-induced inflammation in experimental models. Arch Physiol Biochem 2017; 123(5): 313-21.
[http://dx.doi.org/10.1080/13813455.2017.1333517 ] [PMID: 28557561]
[44]
De Marino S, Festa C, Zollo F, et al. Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L. Food Chem 2012; 133(1): 21-8.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.054]
[45]
Ardan T, Kovačeva J, Čejková J. Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem 2004; 106(1): 69-75.
[http://dx.doi.org/10.1016/j.acthis.2003.08.001] [PMID: 15032331]
[46]
Atlante A, Valenti D, Gagliardi S, Passarella S. A sensitive method to assay the xanthine oxidase activity in primary cultures of cerebellar granule cells. Brain Res Brain Res Protoc 2000; 6(1-2): 1-5.
[http://dx.doi.org/10.1016/S1385-299X(00)00030-1 ] [PMID: 11086257]
[47]
Saghafi E, Mianabadi M, Hadadchi G. Inhibition effects of Teucrium polium extract on gout. Zahedan J Res Med Sci 2013; 15(11): 24-8.
[48]
Rasekh HR, Yazdanpanah H, Hosseinzadeh L, Bazmohammadi N. Acute and subchronic toxicity of Teucrium polium total extract in rats. Iranian J Pharmaceut Res 2010; 4(4): 245-9.
[49]
Lamb KL, Lynn A, Russell J, Barker ME. Effect of tart cherry juice on risk of gout attacks: Protocol for a randomised controlled trial. BMJ Open 2020; 10(3): e035108.
[http://dx.doi.org/10.1136/bmjopen-2019-035108] [PMID: 32179562]
[50]
Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med 1950; 8(3): 309-11.
[PMID: 14776685]
[51]
Stamp LK, Chapman P, Frampton C, et al. Lack of effect of tart cherry concentrate dose on serum urate in people with gout. Rheumatology (Oxford) 2020; 59(9): 2374-80.
[http://dx.doi.org/10.1093/rheumatology/kez606] [PMID: 31891407]
[52]
Jacob RA, Spinozzi GM, Simon VA, et al. Consumption of cherries lowers plasma urate in healthy women. J Nutr 2003; 133(6): 1826-9.
[http://dx.doi.org/10.1093/jn/133.6.1826] [PMID: 12771324]
[53]
Zhang Y, Neogi T, Chen C, Chaisson C, Hunter DJ, Choi HK. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis Rheum 2012; 64(12): 4004-11.
[http://dx.doi.org/10.1002/art.34677] [PMID: 23023818]
[54]
Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskelet Dis 2019; 11: 1759720X19847018.
[http://dx.doi.org/10.1177/1759720X19847018]
[55]
Sisodia R, Sharma KV, Singh S. Acute toxicity effects of Prunus avium fruit extract and selection of optimum dose against radiation exposure. J Environ Pathol Toxicol Oncol 2009; 28(4): 303-9.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i4.50] [PMID: 20102327]
[56]
Wang WX, Li TX, Ma H, Zhang JF, Jia AQ. Tumoral cytotoxic and antioxidative phenylpropanoid glycosides in Smilax riparia A. DC. J Ethnopharmacol 2013; 149(2): 527-32.
[http://dx.doi.org/10.1016/j.jep.2013.07.011] [PMID: 23892206]
[57]
Wu XH, Ruan JL, Zhang J, Wang SQ, Zhang YW. Pallidifloside D, a saponin glycoside constituent from Smilax riparia, resist to hyperuricemia based on URAT1 and GLUT9 in hyperuricemic mice. J Ethnopharmacol 2014; 157: 201-5.
[http://dx.doi.org/10.1016/j.jep.2014.09.034] [PMID: 25267580]
[58]
Wu XH, Yu CH, Zhang CF, Anderson S, Zhang YW. Smilax riparia reduces hyperuricemia in mice as a potential treatment of gout. Am J Chin Med 2014; 42(1): 257-9.
[http://dx.doi.org/10.1142/S0192415X14200018] [PMID: 24467548]
[59]
Hou PY, Mi C, He Y, et al. Pallidifloside D from Smilax riparia enhanced allopurinol effects in hyperuricemia mice. Fitoterapia 2015; 105: 43-8.
[http://dx.doi.org/10.1016/j.fitote.2015.06.002] [PMID: 26051087]
[60]
Baker A, Zahniser S. Ethanol reshapes the corn market. 2006. Available From: https://www.ers.usda.gov/amber-waves/2006/april/ethanol-reshapes-the-corn-market/
[61]
Pourahmad J, Eskandari MR, Shakibaei R, Kamalinejad M. A search for hepatoprotective activity of aqueous extract of Rhus coriaria L. against oxidative stress cytotoxicity. Food Chem Toxicol 2010; 48(3): 854-8.
[http://dx.doi.org/10.1016/j.fct.2009.12.021] [PMID: 20036300]
[62]
Medicine JCoN. A Dictionary of Traditional Chinese Medicines. Heidelberg: Springer 1977.
[63]
Mahdabadi MN, Zahra K, Nadia T, Farzaneh L, Asma J, Seyed H. Rhus Coriaria effect on serum uric acid level and in vivo xanthine oxidase activity in oxonate-induced hyperuricemic mice. J Pharm Biomed Sci 2013; 3(12): 1-6.
[64]
Moghadam P, Dadelahi S, Hajizadeh YS, Matin MG, Amini M, Hajazimian S. Chemical composition and antibacterial activities of sumac fruit (Rhus coriaria) essential oil on dental caries pathogens. Open Microbiol J 2020; 14(1): 142-6.
[http://dx.doi.org/10.2174/1874285802014010142]
[65]
Safarnejad A, Alamdari L. Tissue culture in medicinal plant of sumac (Rhus coriaria). Semantic Scholar 2011.
[66]
Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R. Pharmacological and antioxidant activities of Rhus coriaria L.(Sumac). Antioxidants 2021; 10(1): 73.
[http://dx.doi.org/10.3390/antiox10010073] [PMID: 33430013]
[67]
Teimoori-Boghsani Y, Bagherieh-Najjar MB, Mianabadi M. Investigation of phytochemical and antioxidant capacity of fennel (Foeniculum vulgare Mill.) against gout. Journal of Medicinal plants and By-product 2018; 7(1): 59-65.
[68]
Musdja MY, Ed. International Conference on Pharmaceutical Research and Practice (ICRP-2018).
[69]
Mikaili P, Shayegh J, Asghari MH, Sarahroodi S, Sharifi M. Currently used traditional phytomedicines with hot nature in Iran. Biol Res 2011; 2(5): 56-68.
[70]
Rahimi R, Ardekani MRS. Medicinal properties of Foeniculum vulgare Mill. in traditional Iranian medicine and modern phytotherapy. Chin J Integr Med 2013; 19(1): 73-9.
[http://dx.doi.org/10.1007/s11655-013-1327-0] [PMID: 23275017]
[71]
Shah AH, Qureshi S, Ageel AM. Toxicity studies in mice of ethanol extracts of Foeniculum vulgare fruit and Ruta chalepensis aerial parts. J Ethnopharmacol 1991; 34(2-3): 167-72.
[http://dx.doi.org/10.1016/0378-8741(91)90034-B] [PMID: 1795520]
[72]
Li L, Teng M, Liu Y, et al. Anti-gouty arthritis and antihyperuricemia effects of sunflower (Helianthus annuus) head extract in gouty and hyperuricemia animal models. Biomed Res Int 2017; 2017: 5852076.
[73]
Mehmood A, Zhao L, Ishaq M, Safdar B, Wang C, Nadeem M. Optimization of total phenolic contents, antioxidant, and in-vitro xanthine oxidase inhibitory activity of sunflower head. CYTA J Food 2018; 16(1): 957-64.
[http://dx.doi.org/10.1080/19476337.2018.1504121]
[74]
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[75]
Islam M, Shehzadi N, Salman M, et al. Pharmacokinetics of caffeic acid from methanol seed extract of Syzygium cumini L in rats. Trop J Pharm Res 2016; 15(2): 363-9.
[http://dx.doi.org/10.4314/tjpr.v15i2.20]
[76]
Liu G, Chen X, Lu X, Zhao J, Li X. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice. J Funct Foods 2020; 72: 104055.
[http://dx.doi.org/10.1016/j.jff.2020.104055]
[77]
Marechal V, Rigal L. Characterization of by-products of sunflower culture - commercial applications for stalks and heads. Ind Crops Prod 1999; 10(3): 185-200.
[http://dx.doi.org/10.1016/S0926-6690(99)00023-0]
[78]
Onoja S, Udem S, Anaga A, Asuzu I. Acute and chronic toxicity studies of hydromethanol leaf extract of Helianthus annuus Linn. in rats. Asian Pac J Trop Med 2018; 11(9): 534.
[http://dx.doi.org/10.4103/1995-7645.242311]
[79]
Pal D. Sunflower (Helianthus annuus L) Seeds in health and nutrition Nuts and seeds in health and disease prevention. Amsterdam: Elsevier 2011; pp. 1097-105.
[http://dx.doi.org/10.1016/B978-0-12-375688-6.10130-6]
[80]
Lee H-M, Yang G, Ahn T-G, et al. 2013; Antiadipogenic effects of Aster glehni extract: In vivo and in vitro effects. Evid Based Complement Alternat Med 2013; 2013: 859624.
[81]
Nugroho A, Kim MH, Choi J, et al. Phytochemical studies of the phenolic substances in Aster glehni extract and its sedative and anticonvulsant activity. Arch Pharm Res 2012; 35(3): 423-30.
[http://dx.doi.org/10.1007/s12272-012-0304-7] [PMID: 22477188]
[82]
Park JE, Yeom Z, Park KT, et al. Hypouricemic effect of ethanol extract of Aster glehni leaves in potassium oxonate-induced hyperuricemic rats. Clin Nutr Res 2018; 7(2): 126-35.
[http://dx.doi.org/10.7762/cnr.2018.7.2.126] [PMID: 29713621]
[83]
Lee S, Han EH, Lee SH, Lim MK, Kim CO, Kang S. Effects of Aster glehni extract on serum uric acid in subjects with mild hyperuricemia: A randomized, placebo-controlled trial. J Med Food 2020; 23(5): 508-14.
[http://dx.doi.org/10.1089/jmf.2019.4513] [PMID: 32150484]
[84]
Yoon I-S, Park D-H, Bae M-S, et al. In vitro and in vivo studies on Quercus acuta Thunb. (Fagaceae) extract: Active constituents, serum uric acid suppression, and xanthine oxidase inhibitory activity. Evid Based Complement Alternat Med 2017; 2017: 4097195.
[85]
Peluso I, Teichner A, Manafikhi H, Palmery M. Camellia sinensis in asymptomatic hyperuricemia: A meta-analysis of tea or tea extract effects on uric acid levels. Crit Rev Food Sci Nutr 2017; 57(2): 391-8.
[http://dx.doi.org/10.1080/10408398.2014.889653] [PMID: 25849609]
[86]
Yoon IS, Park DH, Kim JE, et al. Identification of the biologically active constituents of Camellia japonica leaf and anti-hyperuricemic effect in vitro and in vivo. Int J Mol Med 2017; 39(6): 1613-20.
[http://dx.doi.org/10.3892/ijmm.2017.2973] [PMID: 28487949]
[87]
Chachiyo S, Kulprachakarn K, Saenjum C, et al. Toxicity evaluation of Camellia sinensis var. assamica and its fermented miang product. Pharmacognosy Res 2020; 12(4)
[88]
Ruiz-Miyazawa KW, Borghi SM, Pinho-Ribeiro FA, et al. The citrus flavanone naringenin reduces gout-induced joint pain and inflammation in mice by inhibiting the activation of NFκB and macrophage release of IL-1β. J Funct Foods 2018; 48: 106-16.
[http://dx.doi.org/10.1016/j.jff.2018.06.025]
[89]
Chang SH, Jung EJ, Lim DG, et al. Anti-inflammatory action of Cudrania tricuspidata on spleen cell and T lymphocyte proliferation. J Pharm Pharmacol 2010; 60(9): 1221-6.
[http://dx.doi.org/10.1211/jpp.60.9.0015] [PMID: 18718127]
[90]
Jeong GS, Lee DS, Kim YC. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol 2009; 9(2): 241-6.
[http://dx.doi.org/10.1016/j.intimp.2008.11.008] [PMID: 19084080]
[91]
Song SH, Ki S, Park DH, et al. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts. Molecules 2017; 22(9): 1489.
[http://dx.doi.org/10.3390/molecules22091489] [PMID: 28880226]
[92]
Song S-H, Park D-H, Bae M-S, Choi C-Y, Shim J-H, Yoon G. Ethanol extract of Cudrania tricuspidata leaf ameliorates hyperuricemia in mice via inhibition of hepatic and serum xanthine oxidase activity. Evid Based Complement Alternat Med 2018; 2018: 8037925.
[http://dx.doi.org/10.1155/2018/8037925]
[93]
Koh BS, Park HJ, Kim SR, et al. Adverse drug reactions after taking the extract of Cudrania tricuspidata. Allergy Asthma Respir Dis 2014; 2(5): 387-90.
[http://dx.doi.org/10.4168/aard.2014.2.5.387]
[94]
Hyun TK, Kim M, Lee H, Kim Y, Kim E, Kim JS. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille. Food Chem 2013; 141(3): 1947-55.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.021 ] [PMID: 23870914]
[95]
Hyun TK, Ko YJ, Kim EH, Chung IM, Kim JS. Anti-inflammatory activity and phenolic composition of Dendropanax morbifera leaf extracts. Ind Crops Prod 2015; 74: 263-70.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.002]
[96]
Choi HJ, Park DH, Song SH, Yoon IS, Cho SS. Development and validation of a HPLC-UV method for extraction optimization and biological evaluation of hot-water and ethanolic extracts of Dendropanax morbifera leaves. Molecules 2018; 23(3): 650.
[http://dx.doi.org/10.3390/molecules23030650] [PMID: 29534045]
[97]
Zhu JX, Wang Y, Kong LD, Yang C, Zhang X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. J Ethnopharmacol 2004; 93(1): 133-40.
[http://dx.doi.org/10.1016/j.jep.2004.03.037] [PMID: 15182918]
[98]
Yun JW, Kim SH, Kim YS, et al. Preclinical study of safety of Dendropanax morbifera Leveille leaf extract: General and genetic toxicology. J Ethnopharmacol 2019; 238: 111874.
[http://dx.doi.org/10.1016/j.jep.2019.111874] [PMID: 30986520]
[99]
Zhang H, Li L, Zhou J, et al. Effects of Gnaphalium affine D. Don on hyperuricemia and acute gouty arthritis. J Ethnopharmacol 2017; 203: 304-11.
[http://dx.doi.org/10.1016/j.jep.2017.03.057] [PMID: 28390941]
[100]
Lin W, Xie J, Wu X, Yang L, Wang H. Inhibition of xanthine oxidase activity by gnaphalium affine extract. Chin Med Sci J 2014; 29(4): 225-30.
[http://dx.doi.org/10.1016/S1001-9294(14)60075-4 ] [PMID: 25429747]
[101]
Lin W, Xie J, Wang H. Experimental study of the Gnaphalium affine extraction treat hyperuricemia in rats. Chin J Rheumatol 2005; 9: 509-10.
[102]
Yao C-H, Hsu F-L, Kuo T-F, et al. Evaluation of xanthine oxidase inhibitory potential and in vivo hypouricemic activity of Dimocarpus longan lour. extracts. Pharmacogn Mag 2016; 12(46) (Suppl. 2): 206.
[http://dx.doi.org/10.4103/0973-1296.182176] [PMID: 27279708]
[103]
Ho SC, Hwang LS, Shen YJ, Lin CC. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J Agric Food Chem 2007; 55(26): 10664-70.
[http://dx.doi.org/10.1021/jf0721186] [PMID: 18052097]
[104]
Huang G-J, Wang B-S, Lin W-C, et al. Antioxidant and anti-inflammatory properties of Longan (Dimocarpus longan Lour.) Pericarp. Evid Based Complement Alternat Med 2012; 2012: 709483.
[105]
Rangkadilok N, Worasuttayangkurn L, Bennett RN, Satayavivad J. Identification and quantification of polyphenolic compounds in Longan (Euphoria longana Lam.) fruit. J Agric Food Chem 2005; 53(5): 1387-92.
[http://dx.doi.org/10.1021/jf0403484] [PMID: 15740011]
[106]
Rangkadilok N, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol 2007; 45(2): 328-36.
[http://dx.doi.org/10.1016/j.fct.2006.08.022] [PMID: 17049706]
[107]
Hou CW, Lee YC, Hung HF, Fu HW, Jeng KC. Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am J Chin Med 2012; 40(5): 979-91.
[http://dx.doi.org/10.1142/S0192415X12500723] [PMID: 22928829]
[108]
Worasuttayangkurn L, Watcharasit P, Rangkadilok N, Suntararuks S, Khamkong P, Satayavivad J. Safety evaluation of longan seed extract: Acute and repeated oral administration. Food Chem Toxicol 2012; 50(11): 3949-55.
[http://dx.doi.org/10.1016/j.fct.2012.07.068] [PMID: 22902805]
[109]
Rahmat A, Yen Leng C, Abu Bakar FI, et al. Effect of red onion (Allium cepa var. aggregatum g. don) on serum uric acid level and total antioxidant status in normal and induced hyperuricemic rats. Asian J Pharm Clin Res 2018; 11(3): 178-83.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i3.21790]
[110]
Ioku K, Aoyama Y, Tokuno A, Terao J, Nakatani N, Takei Y. Various cooking methods and the flavonoid content in onion. J Nutr Sci Vitaminol (Tokyo) 2001; 47(1): 78-83.
[http://dx.doi.org/10.3177/jnsv.47.78] [PMID: 11349895]
[111]
Walle T, Otake Y, Walle UK, Wilson FA. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr 2000; 130(11): 2658-61.
[http://dx.doi.org/10.1093/jn/130.11.2658] [PMID: 11053503]
[112]
Jimenez L, Alarcón E, Trevithick-Sutton C, Gandhi N, Scaiano JC. Effect of γ-radiation on green onion DNA integrity: Role of ascorbic acid and polyphenols against nucleic acid damage. Food Chem 2011; 128(3): 735-41.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.098]
[113]
Katsampa P, Valsamedou E, Grigorakis S, Makris DP. A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box-Behnken experimental design and kinetics. Ind Crops Prod 2015; 77: 535-43.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.039]
[114]
Nile SH, Park SW. Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Front Life Sci 2013; 7(3-4): 224-8.
[http://dx.doi.org/10.1080/21553769.2014.901926]
[115]
Hanaei J. Onion, a potent inhibitor of xantine oxidase. Iranian J Pharmaceut Res 2004; 4: 243-7.
[116]
Cavanagh JAE, Yi Z, Gray CW, Munir K, Lehto N, Robinson BH. Cadmium uptake by onions, lettuce and spinach in New Zealand: Implications for management to meet regulatory limits. Sci Total Environ 2019; 668: 780-9.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.010] [PMID: 30865908]
[117]
Kharisu C, Koki I, Ikram R, Low K. Elemental variations and safety assessment of commercial onions (Allium cepa) by inductively coupled plasma-mass spectrometry and chemometrics. Int Food Res J 2019; 26(6)
[118]
Malhat F, Abdallah O. Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. Environ Monit Assess 2019; 191(9): 584.
[http://dx.doi.org/10.1007/s10661-019-7752-1] [PMID: 31440848]
[119]
Zhao XX, Lin FJ, Li H, et al. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front Nutr 2021; 8: 669805.
[http://dx.doi.org/10.3389/fnut.2021.669805] [PMID: 34368207]
[120]
Mayer S, Twarużek M, Błajet-Kosicka A, Grajewski J. Occupational exposure to mould and microbial metabolites during onion sorting-insights into an overlooked workplace. Environ Monit Assess 2016; 188(3): 154.
[http://dx.doi.org/10.1007/s10661-016-5150-5] [PMID: 26863887]
[121]
Scollon AM, Wang H, Ryser ET. Transfer of Listeria monocytogenes during mechanical slicing of onions. Food Control 2016; 65: 160-7.
[http://dx.doi.org/10.1016/j.foodcont.2016.01.021]
[122]
Sato VH, Sungthong B, Rinthong PO, et al. Pharmacological effects of Chatuphalatika in hyperuricemia of gout. Pharm Biol 2018; 56(1): 76-85.
[http://dx.doi.org/10.1080/13880209.2017.1421235 ] [PMID: 29298537]
[123]
Masuoka N, Nihei K, Kubo I. Xanthine oxidase inhibitory activity of alkyl gallates. Mol Nutr Food Res 2006; 50(8): 725-31.
[http://dx.doi.org/10.1002/mnfr.200500250] [PMID: 16865746]
[124]
Rinthong P-o, Mingmalairak S, Tantisira M. Preclinical evaluation of lipid lowering effect and acute toxicity of Thai herbal formulary. 2016. Available From: http://digital.library.tu.ac.th/tu_dc/frontend/Info/item/dc:57070
[125]
Iminjan M, Amat N, Li XH, Upur H, Ahmat D, He B. Investigation into the toxicity of traditional Uyghur medicine Quercus infectoria galls water extract. PLoS One 2014; 9(3): e90756.
[http://dx.doi.org/10.1371/journal.pone.0090756] [PMID: 24608135]
[126]
Valencia-Avilés E, García-Pérez M, Garnica-Romo M, et al. Antioxidant properties of polyphenolic extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla bark. Antioxidants 2018; 7(7): 81.
[http://dx.doi.org/10.3390/antiox7070081] [PMID: 29949924]
[127]
Sheu SY, Fu YT, Huang WD, et al. Evaluation of xanthine oxidase inhibitory potential and in vivo hypouricemic activity of Dimocarpus longan lour. extracts. Pharmacogn Mag 2016 May; 12 (Suppl. 2): S206-12.
[http://dx.doi.org/10.4103/0973-1296.182176] [PMID: 27279708] [PMCID: PMC4883080]
[128]
Shi Y, Williamson G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br J Nutr 2016; 115(5): 800-6.
[http://dx.doi.org/10.1017/S0007114515005310] [PMID: 26785820]
[129]
Huang J, Zhu M, Tao Y, et al. Therapeutic properties of quercetin on monosodium urate crystal-induced inflammation in rat. J Pharm Pharmacol 2012; 64(8): 1119-27.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01504.x ] [PMID: 22775215]
[130]
Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320(5876): 674-7.
[http://dx.doi.org/10.1126/science.1156995] [PMID: 18403674]
[131]
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, et al. Quercetin inhibits gout arthritis in mice: Induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25(5): 555-70.
[http://dx.doi.org/10.1007/s10787-017-0356-x] [PMID: 28508104]
[132]
Nykula T, Kondratiuk V, Synytsia Y. Assessment of hemodynamics in renal arteries in patients with gout and essential hypertension and effectiveness of quercetin treatment. 2018. Available From: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/Apn_2018_24_13.pdf
[133]
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 2018; 62(1): 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[134]
Kurisawa M, Chung JE, Kim YJ, Uyama H, Kobayashi S. Amplification of antioxidant activity and xanthine oxidase inhibition of catechin by enzymatic polymerization. Biomacromolecules 2003; 4(3): 469-71.
[http://dx.doi.org/10.1021/bm034012z] [PMID: 12741757]
[135]
Jhang JJ, Lu CC, Ho CY, Cheng YT, Yen GC. Protective effects of catechin against monosodium urate-induced inflammation through the modulation of NLRP3 inflammasome activation. J Agric Food Chem 2015; 63(33): 7343-52.
[http://dx.doi.org/10.1021/acs.jafc.5b02605] [PMID: 26234731]
[136]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[137]
Im JY, Lee KW, Woo JM, Junn E, Mouradian MM. DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 2012; 21(13): 3013-24.
[http://dx.doi.org/10.1093/hmg/dds131] [PMID: 22492997]
[138]
Canet-Avilés RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 2004; 101(24): 9103-8.
[http://dx.doi.org/10.1073/pnas.0402959101] [PMID: 15181200]
[139]
Younes M, Aggett P, Aguilar F, et al. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16(4): e05239.
[PMID: 32625874]
[140]
Tsai PY, Ka SM, Chang JM, et al. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med 2011; 51(3): 744-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.016 ] [PMID: 21641991]
[141]
Paraste R, Singh BK. Clinical evaluation of efficacy of navaka guggulu and triphala kwatha in the management of medoroga with special reference to obesity. Int J Ayurveda Pharma Res 2020; 59-65.
[http://dx.doi.org/10.47070/ijapr.v8i6.1517]
[142]
Lee HE, Yang G, Park YB, et al. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules 2019; 24(11): 2138.
[http://dx.doi.org/10.3390/molecules24112138] [PMID: 31174271]
[143]
Martinon F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 2010; 233(1): 218-32.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00860.x ] [PMID: 20193002]
[144]
Zhu C, Xu Y, Liu ZH, Wan XC, Li DX, Tai LL. The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice. Biomed Pharmacother 2018; 97: 168-73.
[http://dx.doi.org/10.1016/j.biopha.2017.10.013] [PMID: 29091862]
[145]
Dekant W, Fujii K, Shibata E, Morita O, Shimotoyodome A. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 2017; 277: 104-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.06.008] [PMID: 28655517]
[146]
Isomura T, Suzuki S, Origasa H, et al. Liver-related safety assessment of green tea extracts in humans: A systematic review of randomized controlled trials. Eur J Clin Nutr 2016; 70(11): 1221-9.
[http://dx.doi.org/10.1038/ejcn.2016.78] [PMID: 27188915]
[147]
Li X, Xu DQ, Sun DY, Zhang T, He X, Xiao DM. Curcumin ameliorates monosodium urate‐induced gouty arthritis through Nod‐like receptor 3 inflammasome mediation via inhibiting nuclear factor‐kappa B signaling. J Cell Biochem 2019; 120(4): 6718-28.
[http://dx.doi.org/10.1002/jcb.27969] [PMID: 30592318]
[148]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[149]
Kang BY, Song YJ, Kim KM, Choe YK, Hwang SY, Kim TS. Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol 1999; 128(2): 380-4.
[http://dx.doi.org/10.1038/sj.bjp.0702803] [PMID: 10510448]
[150]
Chen B, Li H, Ou G, Ren L, Yang X, Zeng M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther 2019; 21(1): 193.
[http://dx.doi.org/10.1186/s13075-019-1974-z] [PMID: 31455356]
[151]
Naomie , Sripathy R, Anjana D, et al. In silico, in vitro and in vivo assessment of safety and anti-inflammatory activity of curcumin. Am J Infect Dis 2012; 8(1): 26-33.
[http://dx.doi.org/10.3844/ajidsp.2012.26.33]
[152]
Baur JA, Sinclair DA. Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov 2006; 5(6): 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[153]
King RE, Bomser JA, Min DB. Bioactivity of resveratrol. Compr Rev Food Sci Food Saf 2006; 5(3): 65-70.
[http://dx.doi.org/10.1111/j.1541-4337.2006.00001.x]
[154]
Wang P, Ren D, Chen Y, Jiang M, Wang R, Wang YG. Effect of sodium alginate addition to resveratrol on acute gouty arthritis. Cell Physiol Biochem 2015; 36(1): 201-7.
[http://dx.doi.org/10.1159/000374064] [PMID: 25967960]
[155]
Li J, Liang C, Zhang ZK, et al. TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 2017; 3(1): 17023.
[http://dx.doi.org/10.1038/celldisc.2017.23] [PMID: 28698801]
[156]
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440(7081): 237-41.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[157]
Li H, Ou G, He Y, Ren L, Yang X, Zeng M. Resveratrol attenuates the MSU crystal-induced inflammatory response through the inhibition of TAK1 activity. Int Immunopharmacol 2019; 67: 62-8.
[http://dx.doi.org/10.1016/j.intimp.2018.12.004] [PMID: 30537632]
[158]
Chung YH, Kim HY, Yoon BR, Kang YJ, Lee WW. Suppression of Syk activation by resveratrol inhibits MSU crystal-induced inflammation in human monocytes. J Mol Med (Berl) 2019; 97(3): 369-83.
[http://dx.doi.org/10.1007/s00109-018-01736-y] [PMID: 30637441]
[159]
Sergides C, Chirilă M, Silvestro L, Pitta D, Pittas A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp Ther Med 2016; 11(1): 164-70.
[http://dx.doi.org/10.3892/etm.2015.2895] [PMID: 26889234]
[160]
Sangeetha MK, Vallabi D, Sali VK, Thanka J, Vasanthi HR. Sub-acute toxicity profile of a modified resveratrol supplement. Food Chem Toxicol 2013; 59: 492-500.
[http://dx.doi.org/10.1016/j.fct.2013.06.037] [PMID: 23819915]
[161]
Clifford MN. Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 2000; 80(7): 1033-43.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T]
[162]
Masuda T, Fukuyama Y, Doi S, Masuda A, Kurosawa S, Fujii S. Effects of temperature on the composition and xanthine oxidase inhibitory activities of caffeic acid roasting products. J Agric Food Chem 2019; 67(32): 8977-85.
[http://dx.doi.org/10.1021/acs.jafc.9b03633] [PMID: 31334649]
[163]
Wan Y, Wang F, Zou B, et al. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. J Funct Foods 2019; 57: 150-6.
[http://dx.doi.org/10.1016/j.jff.2019.03.038]
[164]
Masuda T, Shingai Y, Takahashi C, et al. Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid. Free Radic Biol Med 2014; 69: 300-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.016 ] [PMID: 24503177]
[165]
Lee HE, Yang G, Kim ND, et al. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: A novel strategy to treat acute gout. Sci Rep 2016; 6(1): 38622.
[http://dx.doi.org/10.1038/srep38622] [PMID: 27934918]
[166]
Bhalli JA, Neft R, Noteboom J, et al. Caffeic acid genotoxicity: correlation of the Pig‐a assay with regulatory genetic toxicology in vivo endpoints. Environ Mol Mutagen 2019; 60(9): 837-44.
[http://dx.doi.org/10.1002/em.22333] [PMID: 31490579]
[167]
Mahmoudi R. An overview of using some essential oils in functional dairy products from Iran. Malaysian J Sci 2014; 33(1): 3-8.
[168]
Wang SY, Yang CW, Liao JW, Zhen WW, Chu FH, Chang ST. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 2008; 15(11): 940-5.
[http://dx.doi.org/10.1016/j.phymed.2008.06.002] [PMID: 18693097]
[169]
Costabeber I, dos Santos J, Xavier A, et al. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as. Food Chem Toxicol 20085 43(6): 799-836.
[170]
Putra RB, Hertika A, Fadjar M, Wicaksono S, Hakim GA, Saputra F. Acute toxicity of cinnamaldehyde in profile hematology and gill histology of zebrafish. Egyptian J Aqua Bio Fisheries 2022; 26(4)
[171]
Zhu R, Liu H, Liu C, et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol Res 2017; 122: 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[172]
Yong T, Chen S, Xie Y, et al. Cordycepin, a characteristic bioactive constituent in Cordyceps militaris, ameliorates hyperuricemia through URAT1 in hyperuricemic mice. Front Microbiol 2018; 9: 58.
[http://dx.doi.org/10.3389/fmicb.2018.00058] [PMID: 29422889]
[173]
Mizuno T. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushrooms 1999; 1(1): 9-29.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v1.i1.20]
[174]
Ma L, Zhang S, Du M. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res 2015; 35(5): 431-9.
[http://dx.doi.org/10.1016/j.nutres.2015.04.011] [PMID: 25940982]
[175]
Ma L, Zhang S, Yuan Y, Gao J. Hypouricemic actions of exopolysaccharide produced by Cordyceps militaris in potassium oxonate-induced hyperuricemic mice. Curr Microbiol 2014; 69(6): 852-7.
[http://dx.doi.org/10.1007/s00284-014-0666-9] [PMID: 25086583]
[176]
Quy T, Xuan T. Xanthine oxidase inhibitory potential, antioxidant and antibacterial activities of Cordyceps militaris (L.) Link fruiting body. Medicines (Basel) 2019; 6(1): 20.
[http://dx.doi.org/10.3390/medicines6010020] [PMID: 30699961]
[177]
Tan L, Song X, Ren Y, et al. Anti‐inflammatory effects of cordycepin: A review. Phytother Res 2021; 35(3): 1284-97.
[http://dx.doi.org/10.1002/ptr.6890] [PMID: 33090621]
[178]
Cai ZL, Wang CY, Jiang ZJ, et al. Effects of cordycepin on Y-maze learning task in mice. Eur J Pharmacol 2013; 714(1-3): 249-53.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.049] [PMID: 23819912]
[179]
Chen Y, Chen X, Xiang T, et al. Total saponins from dioscorea septemloba thunb reduce serum uric acid levels in rats with hyperuricemia through OATP1A1 up-regulation. J Huazhong Univ Sci Technolog Med Sci 2016; 36(2): 237-42.
[http://dx.doi.org/10.1007/s11596-016-1573-z] [PMID: 27072969]
[180]
Chen GL, Wei W, Xu SY. Effect and mechanism of total saponin of Dioscorea on animal experimental hyperuricemia. Am J Chin Med 2006; 34(1): 77-85.
[http://dx.doi.org/10.1142/S0192415X06003655] [PMID: 16437741]
[181]
Zhou Q, Lin FF, Liu SM, Sui XF. Influence of the total saponin fraction from Dioscorea nipponica Makino on TLR2/4-IL1R receptor singnal pathway in rats of gouty arthritis. J Ethnopharmacol 2017; 206: 274-82.
[http://dx.doi.org/10.1016/j.jep.2017.04.024] [PMID: 28456576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy