Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders

Author(s): Francesca Fanfarillo, Giampiero Ferraguti, Marco Lucarelli, Andrea Fuso, Mauro Ceccanti, Sergio Terracina, Ginevra Micangeli, Luigi Tarani and Marco Fiore*

Volume 31, Issue 36, 2024

Published on: 11 October, 2023

Page: [5837 - 5855] Pages: 19

DOI: 10.2174/0109298673256937231004093143

Price: $65

Abstract

Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.

Next »
[1]
Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; Hasin, D.S. Epidemiology of DSM-5 alcohol use disorder. JAMA Psychiatry, 2015, 72(8), 757-766.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.0584] [PMID: 26039070]
[2]
Degenhardt, L.; Charlson, F.; Ferrari, A.; Santomauro, D.; Erskine, H.; Mantilla-Herrara, A.; Whiteford, H.; Leung, J.; Naghavi, M.; Griswold, M.; Rehm, J.; Hall, W.; Sartorius, B.; Scott, J.; Vollset, S.E.; Knudsen, A.K.; Haro, J.M.; Patton, G.; Kopec, J.; Carvalho Malta, D.; Topor-Madry, R.; McGrath, J.; Haagsma, J.; Allebeck, P.; Phillips, M.; Salomon, J.; Hay, S.; Foreman, K.; Lim, S.; Mokdad, A.; Smith, M.; Gakidou, E.; Murray, C.; Vos, T. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry, 2018, 5(12), 987-1012.
[http://dx.doi.org/10.1016/S2215-0366(18)30337-7] [PMID: 30392731]
[3]
World Health Organisation. Global status report on alcohol and health , Available from: http://apps.who.int/iris/ bitstream/handle/10665/44499/9789241564151_eng.pdf;jsessionid=CAF1A0F5B0BA981C2CEDBAC6BD4EC 10C?sequence=1
[4]
Fiore, M.; Minni, A.; Cavalcanti, L.; Raponi, G.; Puggioni, G.; Mattia, A.; Gariglio, S.; Colizza, A.; Meliante, P.G.; Zoccali, F.; Tarani, L.; Barbato, C.; Lucarelli, M.; Ceci, F.M.; Francati, S.; Ferraguti, G.; Ceccanti, M.; Petrella, C. The impact of alcohol consumption and oral microbiota on upper aerodigestive tract carcinomas: A pilot study. Antioxidants, 2023, 12(6), 1233.
[http://dx.doi.org/10.3390/antiox12061233] [PMID: 37371963]
[5]
Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; Fiore, M.; Ferraguti, G. Alcohol drinking, apolipoprotein polymorphisms and the risk of cardiovascular diseases. Curr. Neurovasc. Res., 2021, 18(1), 150-161.
[http://dx.doi.org/10.2174/18755739MTE1eMjEg3] [PMID: 33823779]
[6]
D’Angelo, A.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M.; Giovagnoli, R.; De Persis, S.; Fiore, M.; Ceccanti, M.; Messina, M.P. Acute alcohol intoxication: A clinical overview. Clin. Ter., 2022, 173(3), 280-291.
[http://dx.doi.org/10.7417/CT.2022.2432.35612344] [PMID: 35612344]
[7]
Gorky, J.; Schwaber, J. The role of the gut–brain axis in alcohol use disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 234-241.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.013] [PMID: 26188287]
[8]
Leclercq, S.; Schwarz, M.; Delzenne, N.M.; Stärkel, P.; de Timary, P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: A link with gut microbiota, peripheral inflammation and psychological symptoms. Transl. Psychiatry, 2021, 11(1), 503.
[http://dx.doi.org/10.1038/s41398-021-01610-5] [PMID: 34599147]
[9]
Ceci, F.M.; Fiore, M.; Agostinelli, E.; Tahara, T.; Greco, A.; Ralli, M.; Polimeni, A.; Lucarelli, M.; Colletti, R.; Angeloni, A.; Tirassa, P.; Ceccanti, M.; Messina, M.P.; Vitali, M.; Petrella, C.; Ferraguti, G. Urinary ethyl glucuronide for the assessment of alcohol consumption during pregnancy: Comparison between biochemical data and screening questionnaires. Curr. Med. Chem., 2022, 29(17), 3125-3141.
[http://dx.doi.org/10.2174/0929867328666211125100329] [PMID: 34823457]
[10]
Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[11]
Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; Ceccanti, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3), e12724.
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[12]
de la Monte, S.M.; Kril, J.J. Human alcohol-related neuropathology. Acta Neuropathol., 2014, 127(1), 71-90.
[http://dx.doi.org/10.1007/s00401-013-1233-3] [PMID: 24370929]
[13]
Ramchandani, V.A.; Stangl, B.L.; Blaine, S.K.; Plawecki, M.H.; Schwandt, M.L.; Kwako, L.E.; Sinha, R.; Cyders, M.A.; O’Connor, S.; Zakhari, S. Stress vulnerability and alcohol use and consequences: From human laboratory studies to clinical outcomes. Alcohol, 2018, 72, 75-88.
[http://dx.doi.org/10.1016/j.alcohol.2018.06.001] [PMID: 30322482]
[14]
Derme, M.; Piccioni, M.G.; Brunelli, R.; Crognale, A.; Denotti, M.; Ciolli, P.; Scomparin, D.; Tarani, L.; Paparella, R.; Terrin, G.; Di Chiara, M.; Mattia, A.; Nicotera, S.; Salomone, A.; Ceccanti, M.; Messina, M.P.; Maida, N.L.; Ferraguti, G.; Petrella, C.; Fiore, M. Oxidative stress in a mother consuming alcohol during pregnancy and in her newborn: A case report. Antioxidants, 2023, 12(6), 1216.
[http://dx.doi.org/10.3390/antiox12061216] [PMID: 37371946]
[15]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80, 110783.
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[16]
Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[17]
Shivani, R.; Goldsmith, R.J.; Anthenelli, R.M. Alcoholism and psychiatric disorders: Diagnostic challenges. Alcohol Res. Health, 2002, 26(2), 90-98.
[18]
Rodd, Z.A.; Bertsch, B.A.; Strother, W.N.; Le-Niculescu, H.; Balaraman, Y.; Hayden, E.; Jerome, R.E.; Lumeng, L.; Nurnberger, J.I., Jr; Edenberg, H.J.; McBride, W.J.; Niculescu, A.B. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. Pharmacogenomics J., 2007, 7(4), 222-256.
[http://dx.doi.org/10.1038/sj.tpj.6500420] [PMID: 17033615]
[19]
Köhnke, M.D. Approach to the genetics of alcoholism: A review based on pathophysiology. Biochem. Pharmacol., 2008, 75(1), 160-177.
[http://dx.doi.org/10.1016/j.bcp.2007.06.021] [PMID: 17669369]
[20]
Goldman, D.; Oroszi, G.; Ducci, F. The genetics of addictions: Uncovering the genes. Nat. Rev. Genet., 2005, 6(7), 521-532.
[http://dx.doi.org/10.1038/nrg1635] [PMID: 15995696]
[21]
Lesch, K.P. Alcohol dependence and gene x environment interaction in emotion regulation: Is serotonin the link? Eur. J. Pharmacol., 2005, 526(1-3), 113-124.
[http://dx.doi.org/10.1016/j.ejphar.2005.09.027] [PMID: 16288736]
[22]
Hiroi, N.; Agatsuma, S. Genetic susceptibility to substance dependence. Mol. Psychiatry, 2005, 10(4), 336-344.
[http://dx.doi.org/10.1038/sj.mp.4001622] [PMID: 15583701]
[23]
Oroszi, G.; Goldman, D. Alcoholism: Genes and mechanisms. Pharmacogenomics, 2004, 5(8), 1037-1048.
[http://dx.doi.org/10.1517/14622416.5.8.1037] [PMID: 15584875]
[24]
Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: A molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684.
[http://dx.doi.org/10.2174/0929867321666141229103158] [PMID: 25544474]
[25]
Matošić, A.; Marušić, S.; Vidrih, B.; Kovak-Mufić, A.; Cicin-Šain, L. Neurobiological bases of alcohol addiction. Acta Clin. Croat., 2016, 55(1), 134-150.
[http://dx.doi.org/10.20471/acc.2016.55.01.19] [PMID: 27333729]
[26]
Cotton, N.S. The familial incidence of alcoholism: A review. J. Stud. Alcohol, 1979, 40(1), 89-116.
[http://dx.doi.org/10.15288/jsa.1979.40.89] [PMID: 376949]
[27]
Cservenka, A. Neurobiological phenotypes associated with a family history of alcoholism. Drug Alcohol Depend., 2016, 158, 8-21.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.10.021] [PMID: 26559000]
[28]
Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[29]
Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; Polimeni, A.; Ceccanti, M.; Caronti, B.; Di Certo, M.G.; Barbato, C.; Mattia, A.; Tarani, L.; Fiore, M. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants, 2022, 11(1), 145.
[http://dx.doi.org/10.3390/antiox11010145] [PMID: 35052649]
[30]
Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[31]
Cloninger, C.R.; Bohman, M.; Sigvardsson, S. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch. Gen. Psychiatry, 1981, 38(8), 861-868.
[http://dx.doi.org/10.1001/archpsyc.1981.01780330019001] [PMID: 7259422]
[32]
Iyer-Eimerbrink, P.A.; Nurnberger, J.I., Jr. Genetics of alcoholism. Curr. Psychiatry Rep., 2014, 16(12), 518.
[http://dx.doi.org/10.1007/s11920-014-0518-0] [PMID: 25399692]
[33]
Fadda, F.; Rossetti, Z.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Prog. Neurobiol., 1998, 56(4), 385-431.
[http://dx.doi.org/10.1016/S0301-0082(98)00032-X] [PMID: 9775400]
[34]
Ross, S.; Peselow, E. The neurobiology of addictive disorders. Clin. Neuropharmacol., 2009, 32(5), 269-276.
[http://dx.doi.org/10.1097/WNF.0b013e3181a9163c] [PMID: 19834992]
[35]
Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773.
[http://dx.doi.org/10.1016/S2215-0366(16)00104-8] [PMID: 27475769]
[36]
Wise, R.A.; Robble, M.A. Dopamine and addiction. Annu. Rev. Psychol., 2020, 71(1), 79-106.
[http://dx.doi.org/10.1146/annurev-psych-010418-103337] [PMID: 31905114]
[37]
Heinz, A.; Beck, A.; Grüsser, S.M.; Grace, A.A.; Wrase, J. Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict. Biol., 2009, 14(1), 108-118.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00136.x] [PMID: 18855799]
[38]
Zorrilla, E.P.; Koob, G.F. Impulsivity derived from the dark side: Neurocircuits that contribute to negative urgency. Front. Behav. Neurosci., 2019, 13, 136.
[http://dx.doi.org/10.3389/fnbeh.2019.00136] [PMID: 31293401]
[39]
Courtney, K.E.; Arellano, R.; Barkley-Levenson, E.; Gálvan, A.; Poldrack, R.A.; MacKillop, J.; David Jentsch, J.; Ray, L.A. The relationship between measures of impulsivity and alcohol misuse: An integrative structural equation modeling approach. Alcohol. Clin. Exp. Res., 2012, 36(6), 923-931.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01635.x] [PMID: 22091877]
[40]
Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex, 2000, 10(3), 295-307.
[http://dx.doi.org/10.1093/cercor/10.3.295] [PMID: 10731224]
[41]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[42]
Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiatry Rep., 2011, 13(5), 398-405.
[http://dx.doi.org/10.1007/s11920-011-0224-0] [PMID: 21792580]
[43]
Rehm, J.; Shield, K.D.; Gmel, G.; Rehm, M.X.; Frick, U. Modeling the impact of alcohol dependence on mortality burden and the effect of available treatment interventions in the European Union. Eur. Neuropsychopharmacol., 2013, 23(2), 89-97.
[http://dx.doi.org/10.1016/j.euroneuro.2012.08.001] [PMID: 22920734]
[44]
Hasin, D.S.; Stinson, F.S.; Ogburn, E.; Grant, B.F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry, 2007, 64(7), 830-842.
[http://dx.doi.org/10.1001/archpsyc.64.7.830] [PMID: 17606817]
[45]
Zindel, L.R.; Kranzler, H.R. Pharmacotherapy of alcohol use disorders: Seventy-five years of progress. Curr. Psychiatry Rep., 2014, 8(5), 383-388.
[46]
Pettinati, H.M.; Rabinowitz, A.R. Choosing the right medication for the treatment of alcoholism. Curr. Psychiatry Rep., 2006, 8(5), 383-388.
[http://dx.doi.org/10.1007/s11920-006-0040-0] [PMID: 16968619]
[47]
Petrakis, I.L. A rational approach to the pharmacotherapy of alcohol dependence. J. Clin. Psychopharmacol., 2006, 26(6), S3-S12.
[http://dx.doi.org/10.1097/01.jcp.0000248602.68607.81] [PMID: 17114952]
[48]
Wallhed Finn, S.; Lundin, A.; Sjöqvist, H.; Danielsson, A.K. Pharmacotherapy for alcohol use disorders – Unequal provision across sociodemographic factors and co-morbid conditions. A cohort study of the total population in Sweden. Drug Alcohol Depend., 2021, 227, 108964.
[http://dx.doi.org/10.1016/j.drugalcdep.2021.108964] [PMID: 34518028]
[49]
Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106.
[http://dx.doi.org/10.1708/2925.29410.29912210] [PMID: 29912210]
[50]
Ray, L.A.; Bujarski, S.; Grodin, E.; Hartwell, E.; Green, R.; Venegas, A.; Lim, A.C.; Gillis, A.; Miotto, K. State-of-the-art behavioral and pharmacological treatments for alcohol use disorder. Am. J. Drug Alcohol Abuse, 2019, 45(2), 124-140.
[http://dx.doi.org/10.1080/00952990.2018.1528265] [PMID: 30373394]
[51]
Mohapatra, S.; Rath, N.R. Disulfiram Induced Psychosis. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 68-69.
[http://dx.doi.org/10.9758/cpn.2017.15.1.68.28138114]
[52]
Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 1997, 389(6648), 251-260.
[http://dx.doi.org/10.1038/38444] [PMID: 9305837]
[53]
Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447.
[http://dx.doi.org/10.1038/nrm3382] [PMID: 22722606]
[54]
Woodcock, C.L.; Skoultchi, A.I.; Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res., 2006, 14(1), 17-25.
[http://dx.doi.org/10.1007/s10577-005-1024-3] [PMID: 16506093]
[55]
Warnault, V.; Darcq, E.; Levine, A.; Barak, S.; Ron, D. Chromatin remodeling — a novel strategy to control excessive alcohol drinking. Transl. Psychiatry, 2013, 3(2), e231.
[http://dx.doi.org/10.1038/tp.2013.4] [PMID: 23423140]
[56]
De Majo, F.; Calore, M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res., 2018, 3(1), 20-28.
[http://dx.doi.org/10.1016/j.ncrna.2018.02.003] [PMID: 30159436]
[57]
Werner, R.J.; Kelly, A.D.; Issa, J.P.J. Epigenetics and precision oncology. Cancer J., 2017, 23(5), 262-269.
[http://dx.doi.org/10.1097/PPO.0000000000000281] [PMID: 28926426]
[58]
Nicoglou, A.; Merlin, F. Epigenetics: A way to bridge the gap between biological fields. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Biol. Biomed. Sci., 2017, 66, 73-82.
[http://dx.doi.org/10.1016/j.shpsc.2017.10.002] [PMID: 29033228]
[59]
Helm, M.; Motorin, Y. Detecting RNA modifications in the epitranscriptome: Predict and validate. Nat. Rev. Genet., 2017, 18(5), 275-291.
[http://dx.doi.org/10.1038/nrg.2016.169] [PMID: 28216634]
[60]
Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; Amin, V.; Whitaker, J.W.; Schultz, M.D.; Ward, L.D.; Sarkar, A.; Quon, G.; Sandstrom, R.S.; Eaton, M.L.; Wu, Y.C.; Pfenning, A.R.; Wang, X.; Claussnitzer, M.; Liu, Y.; Coarfa, C.; Harris, R.A.; Shoresh, N.; Epstein, C.B.; Gjoneska, E.; Leung, D.; Xie, W.; Hawkins, R.D.; Lister, R.; Hong, C.; Gascard, P.; Mungall, A.J.; Moore, R.; Chuah, E.; Tam, A.; Canfield, T.K.; Hansen, R.S.; Kaul, R.; Sabo, P.J.; Bansal, M.S.; Carles, A.; Dixon, J.R.; Farh, K.H.; Feizi, S.; Karlic, R.; Kim, A.R.; Kulkarni, A.; Li, D.; Lowdon, R.; Elliott, G.; Mercer, T.R.; Neph, S.J.; Onuchic, V.; Polak, P.; Rajagopal, N.; Ray, P.; Sallari, R.C.; Siebenthall, K.T.; Sinnott-Armstrong, N.A.; Stevens, M.; Thurman, R.E.; Wu, J.; Zhang, B.; Zhou, X.; Beaudet, A.E.; Boyer, L.A.; De Jager, P.L.; Farnham, P.J.; Fisher, S.J.; Haussler, D.; Jones, S.J.M.; Li, W.; Marra, M.A.; McManus, M.T.; Sunyaev, S.; Thomson, J.A.; Tlsty, T.D.; Tsai, L.H.; Wang, W.; Waterland, R.A.; Zhang, M.Q.; Chadwick, L.H.; Bernstein, B.E.; Costello, J.F.; Ecker, J.R.; Hirst, M.; Meissner, A.; Milosavljevic, A.; Ren, B.; Stamatoyannopoulos, J.A.; Wang, T.; Kellis, M. Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518(7539), 317-330.
[http://dx.doi.org/10.1038/nature14248] [PMID: 25693563]
[61]
Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[62]
Stefanska, B.; MacEwan, D.J. Epigenetics and pharmacology. Br. J. Pharmacol., 2015, 2701
[63]
Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet., 2019, 20(2), 109-127.
[http://dx.doi.org/10.1038/s41576-018-0074-2] [PMID: 30479381]
[64]
Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics. Oncol. Rep., 2017, 37(1), 3-9.
[http://dx.doi.org/10.3892/or.2016.5236] [PMID: 27841002]
[65]
Terracina, S.; Ferraguti, G.; Tarani, L.; Messina, M.P.; Lucarelli, M.; Vitali, M.; De Persis, S.; Greco, A.; Minni, A.; Polimeni, A.; Ceccanti, M.; Petrella, C.; Fiore, M. Transgenerational abnormalities induced by paternal preconceptual alcohol drinking: Findings from humans and animal models. Curr. Neuropharmacol., 2022, 20(6), 1158-1173.
[http://dx.doi.org/10.2174/1570159X19666211101111430] [PMID: 34720083]
[66]
Fiore, M.; Petrella, C.; Coriale, G.; Rosso, P.; Fico, E.; Ralli, M.; Greco, A.; De Vincentiis, M.; Minni, A.; Polimeni, A.; Vitali, M.; Messina, M.P.; Ferraguti, G.; Tarani, F.; de Persis, S.; Ceccanti, M.; Tarani, L. Markers of neuroinflammation in the serum of prepubertal children with fetal alcohol spectrum disorders. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 854-868.
[http://dx.doi.org/10.2174/1871527320666211201154839] [PMID: 34852752]
[67]
Egervari, G.; Siciliano, C.A.; Whiteley, E.L.; Ron, D. Alcohol and the brain: From genes to circuits. Trends Neurosci., 2021, 44(12), 1004-1015.
[http://dx.doi.org/10.1016/j.tins.2021.09.006] [PMID: 34702580]
[68]
Rodriguez, F.D.; Coveñas, R. Targeting opioid and neurokinin-1 receptors to treat alcoholism. Curr. Med. Chem., 2011, 18(28), 4321-4334.
[http://dx.doi.org/10.2174/092986711797200444] [PMID: 21861818]
[69]
Rodriguez, F.D.; Coveñas, R. Targeting NPY, CRF/UCNs and NPS neuropeptide systems to treat alcohol use disorder (AUD). Curr. Med. Chem., 2017, 24(23), 2528-2558.
[http://dx.doi.org/10.2174/0929867324666170316120836.28302012] [PMID: 28302012]
[70]
Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med., 2016, 374(4), 363-371.
[http://dx.doi.org/10.1056/NEJMra1511480] [PMID: 26816013]
[71]
Palmisano, M.; Pandey, S.C. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol, 2017, 60, 7-18.
[http://dx.doi.org/10.1016/j.alcohol.2017.01.001] [PMID: 28477725]
[72]
Spanagel, R.; Noori, H.R.; Heilig, M. Stress and alcohol interactions: Animal studies and clinical significance. Trends Neurosci., 2014, 37(4), 219-227.
[http://dx.doi.org/10.1016/j.tins.2014.02.006] [PMID: 24636458]
[73]
Pandey, S.C.; Zhang, H.; Ugale, R.; Prakash, A.; Xu, T.; Misra, K. Effector immediate-early gene arc in the amygdala plays a critical role in alcoholism. J. Neurosci., 2008, 28(10), 2589-2600.
[http://dx.doi.org/10.1523/JNEUROSCI.4752-07.2008] [PMID: 18322102]
[74]
Sakharkar, A.J.; Zhang, H.; Tang, L.; Shi, G.; Pandey, S.C. Histone deacetylases (HDAC)-induced histone modifications in the amygdala: A role in rapid tolerance to the anxiolytic effects of ethanol. Alcohol. Clin. Exp. Res., 2012, 36(1), 61-71.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01581.x] [PMID: 21790673]
[75]
Correa, F.; De Laurentiis, A.; Franchi, A.M. Ethanol downregulates N- acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms. Eur. J. Pharmacol., 2016, 786, 224-233.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.004] [PMID: 27266665]
[76]
Guo, W.; Crossey, E.L.; Zhang, L.; Zucca, S.; George, O.L.; Valenzuela, C.F.; Zhao, X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One, 2011, 6(5), e19351.
[http://dx.doi.org/10.1371/journal.pone.0019351] [PMID: 21655322]
[77]
Kyzar, E.J.; Pandey, S.C. Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci. Lett., 2015, 601, 11-19.
[http://dx.doi.org/10.1016/j.neulet.2015.01.051] [PMID: 25623036]
[78]
Pandey, S.C.; Roy, A.; Zhang, H. The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. Alcohol. Clin. Exp. Res., 2003, 27(3), 396-409.
[http://dx.doi.org/10.1097/01.ALC.0000056616.81971.49] [PMID: 12658105]
[79]
Teppen, T.L.; Krishnan, H.R.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. The potential role of amygdaloid MicroRNA-494 in alcohol-induced anxiolysis. Biol. Psychiatry, 2016, 80(9), 711-719.
[http://dx.doi.org/10.1016/j.biopsych.2015.10.028] [PMID: 26786313]
[80]
Kyzar, E.J.; Zhang, H.; Pandey, S.C. Adolescent alcohol exposure epigenetically suppresses amygdala arc enhancer RNA expression to confer adult anxiety susceptibility. Biol. Psychiatry, 2019, 85(11), 904-914.
[http://dx.doi.org/10.1016/j.biopsych.2018.12.021] [PMID: 30827484]
[81]
McCarthy, M.J.; Duchemin, A.M.; Neff, N.H.; Hadjiconstantinou, M. CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology, 2012, 221(1), 143-153.
[http://dx.doi.org/10.1007/s00213-011-2559-y] [PMID: 22086359]
[82]
D’Addario, C.; Caputi, F.F.; Ekström, T.J.; Di Benedetto, M.; Maccarrone, M.; Romualdi, P.; Candeletti, S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J. Mol. Neurosci., 2013, 49(2), 312-319.
[http://dx.doi.org/10.1007/s12031-012-9829-y] [PMID: 22684622]
[83]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[84]
Mews, P.; Egervari, G.; Nativio, R.; Sidoli, S.; Donahue, G.; Lombroso, S.I.; Alexander, D.C.; Riesche, S.L.; Heller, E.A.; Nestler, E.J.; Garcia, B.A.; Berger, S.L. Alcohol metabolism contributes to brain histone acetylation. Nature, 2019, 574(7780), 717-721.
[http://dx.doi.org/10.1038/s41586-019-1700-7] [PMID: 31645761]
[85]
Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet, 2019, 394(10200), 781-792.
[http://dx.doi.org/10.1016/S0140-6736(19)31775-1] [PMID: 31478502]
[86]
Ron, D.; Barak, S. Molecular mechanisms underlying alcohol-drinking behaviours. Nat. Rev. Neurosci., 2016, 17(9), 576-591.
[http://dx.doi.org/10.1038/nrn.2016.85] [PMID: 27444358]
[87]
Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits. Neuron, 2017, 96(6), 1223-1238.
[http://dx.doi.org/10.1016/j.neuron.2017.10.032] [PMID: 29268093]
[88]
Pandey, S.C.; Kyzar, E.J.; Zhang, H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology, 2017, 122, 74-84.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.002] [PMID: 28174112]
[89]
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[90]
Luger, K.; Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol., 2005, 15(2), 188-196.
[http://dx.doi.org/10.1016/j.sbi.2005.03.006] [PMID: 15837178]
[91]
Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295.
[http://dx.doi.org/10.1021/cr500350x] [PMID: 25424540]
[92]
Arnaudo, A.M.; Garcia, B.A. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin, 2013, 6(1), 24.
[http://dx.doi.org/10.1186/1756-8935-6-24] [PMID: 23916056]
[93]
Rossetto, D.; Avvakumov, N.; Côté, J. Histone phosphorylation. Epigenetics, 2012, 7(10), 1098-1108.
[http://dx.doi.org/10.4161/epi.21975] [PMID: 22948226]
[94]
Lee, J.S.; Smith, E.; Shilatifard, A. The language of histone crosstalk. Cell, 2010, 142(5), 682-685.
[http://dx.doi.org/10.1016/j.cell.2010.08.011] [PMID: 20813257]
[95]
Shanmugam, M.K.; Arfuso, F.; Arumugam, S.; Chinnathambi, A.; Jinsong, B.; Warrier, S.; Wang, L.Z.; Kumar, A.P.; Ahn, K.S.; Sethi, G.; Lakshmanan, M. Role of novel histone modifications in cancer. Oncotarget, 2018, 9(13), 11414-11426.
[http://dx.doi.org/10.18632/oncotarget.23356] [PMID: 29541423]
[96]
Tamburri, S.; Lavarone, E.; Fernández-Pérez, D.; Conway, E.; Zanotti, M.; Manganaro, D.; Pasini, D. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell, 2020, 77(4), 840-856.e5.
[http://dx.doi.org/10.1016/j.molcel.2019.11.021] [PMID: 31883952]
[97]
Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N.; Lu, Z.; Ye, Z.; Zhu, Q.; Wysocka, J.; Ye, Y.; Khochbin, S.; Ren, B.; Zhao, Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6), 1016-1028.
[http://dx.doi.org/10.1016/j.cell.2011.08.008] [PMID: 21925322]
[98]
Young, N.L.; DiMaggio, P.A.; Garcia, B.A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell. Mol. Life Sci., 2010, 67(23), 3983-4000.
[http://dx.doi.org/10.1007/s00018-010-0475-7] [PMID: 20683756]
[99]
Kalda, A.; Heidmets, L.T.; Shen, H.Y.; Zharkovsky, A.; Chen, J.F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res., 2007, 181(1), 76-84.
[http://dx.doi.org/10.1016/j.bbr.2007.03.027] [PMID: 17477979]
[100]
Kumar, A.; Choi, K.H.; Renthal, W.; Tsankova, N.M.; Theobald, D.E.H.; Truong, H.T.; Russo, S.J.; LaPlant, Q.; Sasaki, T.S.; Whistler, K.N.; Neve, R.L.; Self, D.W.; Nestler, E.J. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 2005, 48(2), 303-314.
[http://dx.doi.org/10.1016/j.neuron.2005.09.023] [PMID: 16242410]
[101]
Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[102]
Wapenaar, H.; Dekker, F.J. Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin. Epigenetics, 2016, 8(1), 59.
[http://dx.doi.org/10.1186/s13148-016-0225-2] [PMID: 27231488]
[103]
Lombardi, P.M.; Cole, K.E.; Dowling, D.P.; Christianson, D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol., 2011, 21(6), 735-743.
[http://dx.doi.org/10.1016/j.sbi.2011.08.004] [PMID: 21872466]
[104]
Cochran, A.G.; Conery, A.R.; Sims, R.J., III Bromodomains: A new target class for drug development. Nat. Rev. Drug Discov., 2019, 18(8), 609-628.
[http://dx.doi.org/10.1038/s41573-019-0030-7] [PMID: 31273347]
[105]
de la Cruz, X.; Lois, S.; Sánchez-Molina, S.; Martínez-Balbás, M.A. Do protein motifs read the histone code? BioEssays, 2005, 27(2), 164-175.
[http://dx.doi.org/10.1002/bies.20176] [PMID: 15666348]
[106]
Musselman, C.A.; Lalonde, M.E.; Côté, J.; Kutateladze, T.G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol., 2012, 19(12), 1218-1227.
[http://dx.doi.org/10.1038/nsmb.2436] [PMID: 23211769]
[107]
Benton, C.B.; Fiskus, W.; Bhalla, K.N. Targeting histone acetylation. Cancer J., 2017, 23(5), 286-291.
[http://dx.doi.org/10.1097/PPO.0000000000000284] [PMID: 28926429]
[108]
Taniguchi, Y. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins. Int. J. Mol. Sci., 2016, 17(11), 1849.
[http://dx.doi.org/10.3390/ijms17111849] [PMID: 27827996]
[109]
Choudhury, M.; Park, P.H.; Jackson, D.; Shukla, S.D. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes. Alcohol, 2010, 44(6), 531-540.
[http://dx.doi.org/10.1016/j.alcohol.2010.06.003] [PMID: 20705415]
[110]
Pascual, M.; Boix, J.; Felipo, V.; Guerri, C. Repeated alcohol administration during adolescence causes changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake in the adult rat. J. Neurochem., 2009, 108(4), 920-931.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05835.x] [PMID: 19077056]
[111]
Kim, J.S.; Shukla, S.D. Acute in vitro effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol., 2006, 41(2), 126-132.
[http://dx.doi.org/10.1093/alcalc/agh248] [PMID: 16314425]
[112]
Bannister, A.J.; Schneider, R.; Kouzarides, T. Histone methylation. Cell, 2002, 109(7), 801-806.
[http://dx.doi.org/10.1016/S0092-8674(02)00798-5] [PMID: 12110177]
[113]
Bannister, A.J.; Kouzarides, T. Reversing histone methylation. Nature, 2005, 436(7054), 1103-1106.
[http://dx.doi.org/10.1038/nature04048] [PMID: 16121170]
[114]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[115]
Chen, D.; Ma, H.; Hong, H.; Koh, S.S.; Huang, S.M.; Schurter, B.T.; Aswad, D.W.; Stallcup, M.R. Regulation of transcription by a protein methyltransferase. Science, 1999, 284(5423), 2174-2177.
[http://dx.doi.org/10.1126/science.284.5423.2174]
[116]
Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; Zhang, Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001, 293(5531), 853-857.
[http://dx.doi.org/10.1126/science.1060781] [PMID: 11387442]
[117]
Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol., 2005, 6(11), 838-849.
[http://dx.doi.org/10.1038/nrm1761] [PMID: 16261189]
[118]
Klose, R.J.; Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 307-318.
[http://dx.doi.org/10.1038/nrm2143] [PMID: 17342184]
[119]
Kaniskan, H.Ü.; Martini, M.L.; Jin, J. Inhibitors of protein methyltransferases and demethylases. Chem. Rev., 2018, 118(3), 989-1068.
[http://dx.doi.org/10.1021/acs.chemrev.6b00801] [PMID: 28338320]
[120]
Kang, M.K.; Mehrazarin, S.; Park, N-H.; Wang, C-Y. Epigenetic gene regulation by histone demethylases: Emerging role in oncogenesis and inflammation. Oral Dis., 2017, 23(6), 709-720.
[http://dx.doi.org/10.1111/odi.12569] [PMID: 27514027]
[121]
Arrowsmith, C.H.; Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol., 2019, 26(10), 863-869.
[http://dx.doi.org/10.1038/s41594-019-0290-2] [PMID: 31582844]
[122]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[123]
Finegersh, A.; Homanics, G.E. Acute ethanol alters multiple histone modifications at model gene promoters in the cerebral cortex. Alcohol. Clin. Exp. Res., 2014, 38(7), 1865-1873.
[http://dx.doi.org/10.1111/acer.12465] [PMID: 24942484]
[124]
Qiang, M.; Denny, A.; Lieu, M.; Carreon, S.; Li, J. Histone H3K9 modifications are a local chromatin event involved in ethanol-induced neuroadaptation of the NR2B gene. Epigenetics, 2011, 6(9), 1095-1104.
[http://dx.doi.org/10.4161/epi.6.9.16924] [PMID: 21814037]
[125]
Karpyak, V.M.; Winham, S.J.; Preuss, U.W.; Zill, P.; Cunningham, J.M.; Walker, D.L.; Lewis, K.A.; Geske, J.R.; Colby, C.L.; Abulseoud, O.A.; Hall-Flavin, D.K.; Loukianova, L.L.; Schneekloth, T.D.; Frye, M.A.; Bazov, I.; Heit, J.A.; Bakalkin, G.; Mrazek, D.A.; Biernacka, J.M. Association of the PDYN gene with alcohol dependence and the propensity to drink in negative emotional states. Int. J. Neuropsychopharmacol., 2013, 16(5), 975-985.
[http://dx.doi.org/10.1017/S1461145712001137] [PMID: 23101464]
[126]
Xuei, X.; Dick, D.; Flury-Wetherill, L.; Tian, H-J.; Agrawal, A.; Bierut, L.; Goate, A.; Bucholz, K.; Schuckit, M.; Nurnberger, J., Jr; Tischfield, J.; Kuperman, S.; Porjesz, B.; Begleiter, H.; Foroud, T.; Edenberg, H.J. Association of the κ-opioid system with alcohol dependence. Mol. Psychiatry, 2006, 11(11), 1016-1024.
[http://dx.doi.org/10.1038/sj.mp.4001882] [PMID: 16924269]
[127]
Ponomarev, I.; Wang, S.; Zhang, L.; Harris, R.A.; Mayfield, R.D. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 2012, 32(5), 1884-1897.
[http://dx.doi.org/10.1523/JNEUROSCI.3136-11.2012] [PMID: 22302827]
[128]
Urbano, A.; Smith, J.; Weeks, R.J.; Chatterjee, A. Gene-specific targeting of DNA methylation in the mammalian genome. Cancers, 2019, 11(10), 1515.
[http://dx.doi.org/10.3390/cancers11101515] [PMID: 31600992]
[129]
Dean, W. Pathways of DNA Demethylation BT - DNA Methyltransferases - Role and Function; Jeltsch, A.; Jurkowska, R.Z., Eds.; Springer International Publishing: Cham, 2016, pp. 247-274.
[http://dx.doi.org/10.1007/978-3-319-43624-1_11]
[130]
Cui, D.; Xu, X. DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int. J. Mol. Sci., 2018, 19(5), 1315.
[http://dx.doi.org/10.3390/ijms19051315] [PMID: 29710796]
[131]
Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534.
[http://dx.doi.org/10.1038/nrg.2017.33] [PMID: 28555658]
[132]
Chen, Z.; Zhang, Y. Role of Mammalian DNA methyltransferases in development. Annu. Rev. Biochem., 2020, 89(1), 135-158.
[http://dx.doi.org/10.1146/annurev-biochem-103019-102815] [PMID: 31815535]
[133]
Wu, S.C.; Zhang, Y. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 607-620.
[http://dx.doi.org/10.1038/nrm2950] [PMID: 20683471]
[134]
Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[135]
Ginder, G.D.; Williams, D.C., Jr Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther., 2018, 184, 98-111.
[http://dx.doi.org/10.1016/j.pharmthera.2017.11.002] [PMID: 29128342]
[136]
Rausch, C.; Hastert, F.D.; Cardoso, M.C. DNA modification readers and writers and their interplay. J. Mol. Biol., 2019.
[http://dx.doi.org/10.1016/j.jmb.2019.12.018.31866298] [PMID: 31866298]
[137]
Bochtler, M.; Kolano, A.; Xu, G.L. DNA demethylation pathways: Additional players and regulators. BioEssays, 2017, 39(1), e201600178.
[http://dx.doi.org/10.1002/bies.201600178] [PMID: 27859411]
[138]
Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L. Conversion of 5-Methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL Partner TET1. Science, 2009, 324(5929), 930-935.
[http://dx.doi.org/10.1126/science.1170116]
[139]
Nestler, E.J.; Peña, C.J.; Kundakovic, M.; Mitchell, A.; Akbarian, S. Epigenetic basis of mental illness. Neurosci. a Rev. J. bringing Neurobiol. Neurol. psychiatry, 2016, 22(5), 447-463.
[140]
Starkman, B.G.; Sakharkar, A.J.; Pandey, S.C. Epigenetics-beyond the genome in alcoholism. Alcohol Res., 2012, 34(3), 293-305.
[141]
Longley, M.J.; Lee, J.; Jung, J.; Lohoff, F.W. Epigenetics of alcohol use disorder—A review of recent advances in DNA methylation profiling. Addict. Biol., 2021, 26(6), e13006.
[http://dx.doi.org/10.1111/adb.13006] [PMID: 33538087]
[142]
Jarczak, J.; Miszczak, M.; Radwanska, K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front. Behav. Neurosci., 2023, 17(January), 957203.
[http://dx.doi.org/10.3389/fnbeh.2023.957203] [PMID: 36778133]
[143]
Bahji, A.; Bach, P.; Danilewitz, M.; Crockford, D.; Devoe, D.J.; el-Guebaly, N.; Saitz, R. Pharmacotherapies for adults with alcohol use disorders: A systematic review and network meta-analysis. J. Addict. Med., 2022, 16(6), 630-638.
[http://dx.doi.org/10.1097/ADM.0000000000000992] [PMID: 35653782]
[144]
Philibert, R.A.; Gunter, T.D.; Beach, S.R.H.; Brody, G.H.; Madan, A. MAOA methylation is associated with nicotine and alcohol dependence in women. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(5), 565-570.
[http://dx.doi.org/10.1002/ajmg.b.30778] [PMID: 18454435]
[145]
Liu, C.; Marioni, R.E.; Hedman, Å.K.; Pfeiffer, L.; Tsai, P-C.; Reynolds, L.M.; Just, A.C.; Duan, Q.; Boer, C.G.; Tanaka, T.; Elks, C.E.; Aslibekyan, S.; Brody, J.A.; Kühnel, B.; Herder, C.; Almli, L.M.; Zhi, D.; Wang, Y.; Huan, T.; Yao, C.; Mendelson, M.M.; Joehanes, R.; Liang, L.; Love, S-A.; Guan, W.; Shah, S.; McRae, A.F.; Kretschmer, A.; Prokisch, H.; Strauch, K.; Peters, A.; Visscher, P.M.; Wray, N.R.; Guo, X.; Wiggins, K.L.; Smith, A.K.; Binder, E.B.; Ressler, K.J.; Irvin, M.R.; Absher, D.M.; Hernandez, D.; Ferrucci, L.; Bandinelli, S.; Lohman, K.; Ding, J.; Trevisi, L.; Gustafsson, S.; Sandling, J.H.; Stolk, L.; Uitterlinden, A.G.; Yet, I.; Castillo-Fernandez, J.E.; Spector, T.D.; Schwartz, J.D.; Vokonas, P.; Lind, L.; Li, Y.; Fornage, M.; Arnett, D.K.; Wareham, N.J.; Sotoodehnia, N.; Ong, K.K.; van Meurs, J.B.J.; Conneely, K.N.; Baccarelli, A.A.; Deary, I.J.; Bell, J.T.; North, K.E.; Liu, Y.; Waldenberger, M.; London, S.J.; Ingelsson, E.; Levy, D. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry, 2018, 23(2), 422-433.
[http://dx.doi.org/10.1038/mp.2016.192] [PMID: 27843151]
[146]
Brückmann, C.; Di Santo, A.; Karle, K.N.; Batra, A.; Nieratschker, V. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome. Epigenetics, 2016, 11(6), 456-463.
[http://dx.doi.org/10.1080/15592294.2016.1179411] [PMID: 27128683]
[147]
Ruggeri, B.; Macare, C.; Stopponi, S.; Jia, T.; Carvalho, F.M.; Robert, G.; Banaschewski, T.; Bokde, A.L.W.; Bromberg, U.; Büchel, C.; Cattrell, A.; Conrod, P.J.; Desrivières, S.; Flor, H.; Frouin, V.; Gallinat, J.; Garavan, H.; Gowland, P.; Heinz, A.; Ittermann, B.; Martinot, J.L.; Martinot, M.L.P.; Nees, F.; Papadopoulos-Orfanos, D.; Paus, T.; Poustka, L.; Smolka, M.N.; Vetter, N.C.; Walter, H.; Whelan, R.; Sommer, W.H.; Bakalkin, G.; Ciccocioppo, R.; Schumann, G. Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents. J. Child Psychol. Psychiatry, 2018, 59(6), 650-658.
[http://dx.doi.org/10.1111/jcpp.12843] [PMID: 29197086]
[148]
Lucarelli, M.; Ferraguti. G.; Fuso, A. Active demethylation of non-CpG moieties in animals: a neglected research area. Int. J. Mol. Sci., 2019, 20(24), 6272.
[149]
Fuso, A.; Ferraguti, G.; Scarpa, S.; Ferrer, I.; Lucarelli, M. Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation. PLoS One, 2015, 10(2), e0118318.
[http://dx.doi.org/10.1371/journal.pone.0118318] [PMID: 25692551]
[150]
Fuso, A.; Scarpa, S.; Grandoni, F.; Strom, R.; Lucarelli, M. A reassessment of semiquantitative analytical procedures for DNA methylation: Comparison of bisulfite- and HpaII polymerase-chain-reaction-based methods. Anal. Biochem., 2006, 350(1), 24-31.
[http://dx.doi.org/10.1016/j.ab.2005.12.008] [PMID: 16445884]
[151]
Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet., 2013, 14(3), 204-220.
[http://dx.doi.org/10.1038/nrg3354] [PMID: 23400093]
[152]
Patil, V.; Ward, R.L.; Hesson, L.B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics, 2014, 9(6), 823-828.
[http://dx.doi.org/10.4161/epi.28741] [PMID: 24717538]
[153]
Ramasamy, D.; Deva, M.R.A.K.; Rajkumar, T.; Mani, S. Non-CpG methylation—a key epigenetic modification in cancer. Brief. Funct. Genomics, 2021, 20(5), 304-311.
[http://dx.doi.org/10.1093/bfgp/elab035] [PMID: 34318313]
[154]
Ramsahoye, B.H.; Biniszkiewicz, D.; Lyko, F.; Clark, V.; Bird, A.P.; Jaenisch, R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci., 2000, 97(10), 5237-5242.
[http://dx.doi.org/10.1073/pnas.97.10.5237] [PMID: 10805783]
[155]
Arand, J.; Spieler, D.; Karius, T.; Branco, M.R.; Meilinger, D.; Meissner, A.; Jenuwein, T.; Xu, G.; Leonhardt, H.; Wolf, V.; Walter, J. In vitro control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet., 2012, 8(6), e1002750.
[http://dx.doi.org/10.1371/journal.pgen.1002750] [PMID: 22761581]
[156]
Ziller, M.J.; Müller, F.; Liao, J.; Zhang, Y.; Gu, H.; Bock, C.; Boyle, P.; Epstein, C.B.; Bernstein, B.E.; Lengauer, T.; Gnirke, A.; Meissner, A. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet., 2011, 7(12), e1002389.
[http://dx.doi.org/10.1371/journal.pgen.1002389] [PMID: 22174693]
[157]
Guo, J.U.; Su, Y.; Shin, J.H.; Shin, J.; Li, H.; Xie, B.; Zhong, C.; Hu, S.; Le, T.; Fan, G.; Zhu, H.; Chang, Q.; Gao, Y.; Ming, G.; Song, H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci., 2014, 17(2), 215-222.
[http://dx.doi.org/10.1038/nn.3607] [PMID: 24362762]
[158]
Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D. Global epigenomic reconfiguration during mammalian brain development. Science, 2013, 341(6146), 1237905.
[http://dx.doi.org/10.1126/science.1237905]
[159]
Jiang, S.; Cheng, S.J.; Ren, L.C.; Wang, Q.; Kang, Y.J.; Ding, Y.; Hou, M.; Yang, X.X.; Lin, Y.; Liang, N.; Gao, G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 2019, 47(15), 7842-7856.
[http://dx.doi.org/10.1093/nar/gkz621] [PMID: 31350901]
[160]
Schuettengruber, B.; Bourbon, H.M.; Di Croce, L.; Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell, 2017, 171(1), 34-57.
[http://dx.doi.org/10.1016/j.cell.2017.08.002] [PMID: 28938122]
[161]
Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci., 2009, 10(12), 842-849.
[http://dx.doi.org/10.1038/nrn2763] [PMID: 19888283]
[162]
Barringhaus, K.G.; Zamore, P.D. MicroRNAs. Circulation, 2009, 119(16), 2217-2224.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.715839] [PMID: 19398677]
[163]
Banerjee, A.; Waters, D.; Camacho, O.M.; Minet, E. Quantification of plasma MicroRNAs in a group of healthy smokers, ex-smokers and non-smokers and correlation to biomarkers of tobacco exposure. Biomarkers Biochem. Indic. Expo., 2015, 20(2), 123-131.
[164]
McCrae, J.C.; Sharkey, N.; Webb, D.J.; Vliegenthart, A.D.B.; Dear, J.W. Ethanol consumption produces a small increase in circulating miR-122 in healthy individuals. Clin. Toxicol., 2016, 54(1), 53-55.
[http://dx.doi.org/10.3109/15563650.2015.1112015] [PMID: 26574140]
[165]
Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691.
[http://dx.doi.org/10.1038/srep35691] [PMID: 27767084]
[166]
Vo, N.; Klein, M.E.; Varlamova, O.; Keller, D.M.; Yamamoto, T.; Goodman, R.H.; Impey, S. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA, 2005, 102(45), 16426-16431.
[http://dx.doi.org/10.1073/pnas.0508448102] [PMID: 16260724]
[167]
Hansen, K.F.; Sakamoto, K.; Wayman, G.A.; Impey, S.; Obrietan, K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One, 2010, 5(11), e15497.
[http://dx.doi.org/10.1371/journal.pone.0015497] [PMID: 21124738]
[168]
Wang, J.; Cui, Q. Specific roles of MicroRNAs in their interactions with environmental factors. J. Nucleic Acids, 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/978384] [PMID: 23209884]
[169]
Li, M.D.; van der Vaart, A.D. MicroRNAs in addiction: Adaptation’s middlemen? Mol. Psychiatry, 2011, 16(12), 1159-1168.
[http://dx.doi.org/10.1038/mp.2011.58] [PMID: 21606928]
[170]
Kyzar, E.J.; Zhang, H.; Sakharkar, A.J.; Pandey, S.C. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood. Addict. Biol., 2017, 22(5), 1191-1204.
[http://dx.doi.org/10.1111/adb.12404] [PMID: 27183824]
[171]
Zhang, H.; Kyzar, E.J.; Bohnsack, J.P.; Kokare, D.M.; Teppen, T.; Pandey, S.C. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci. Rep., 2018, 8(1), 10376.
[http://dx.doi.org/10.1038/s41598-018-28415-9] [PMID: 29991681]
[172]
Li, E.; Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol., 2014, 6(5), a019133.
[http://dx.doi.org/10.1101/cshperspect.a019133] [PMID: 24789823]
[173]
Garro, A.J.; McBeth, D.L.; Lima, V.; Lieber, C.S. Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome. Alcohol. Clin. Exp. Res., 1991, 15(3), 395-398.
[http://dx.doi.org/10.1111/j.1530-0277.1991.tb00536.x] [PMID: 1877725]
[174]
Sakharkar, A.J.; Tang, L.; Zhang, H.; Chen, Y.; Grayson, D.R.; Pandey, S.C. Effects of acute ethanol exposure on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. Int. J. Neuropsychopharmacol., 2014, 17(12), 2057-2067.
[http://dx.doi.org/10.1017/S1461145714001047] [PMID: 24968059]
[175]
Guerri, C.; Pascual, M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol, 2010, 44(1), 15-26.
[http://dx.doi.org/10.1016/j.alcohol.2009.10.003] [PMID: 20113871]
[176]
Most, D.; Ferguson, L.; Harris, R.A. Molecular basis of alcoholism. Handb. Clin. Neurol., 2014, 125, 89-111.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00006-9] [PMID: 25307570]
[177]
Zhang, X.; Kusumo, H.; Sakharkar, A.J.; Pandey, S.C.; Guizzetti, M. Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J. Neurochem., 2014, 128(3), 344-349.
[http://dx.doi.org/10.1111/jnc.12465] [PMID: 24117907]
[178]
Marutha Ravindran, C.R.; Ticku, M.K. Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Brain Res. Mol. Brain Res., 2004, 121(1-2), 19-27.
[http://dx.doi.org/10.1016/j.molbrainres.2003.10.025] [PMID: 14969733]
[179]
Werner, C.T.; Altshuler, R.D.; Shaham, Y.; Li, X. Epigenetic mechanisms in drug relapse. Biol. Psychiatry, 2021, 89(4), 331-338.
[http://dx.doi.org/10.1016/j.biopsych.2020.08.005] [PMID: 33066961]
[180]
Nieratschker, V.; Grosshans, M.; Frank, J.; Strohmaier, J.; von der Goltz, C.; El-Maarri, O.; Witt, S.H.; Cichon, S.; Nöthen, M.M.; Kiefer, F.; Rietschel, M. Epigenetic alteration of the dopamine transporter gene in alcohol-dependent patients is associated with age. Addict. Biol., 2014, 19(2), 305-311.
[http://dx.doi.org/10.1111/j.1369-1600.2012.00459.x] [PMID: 22506971]
[181]
Hillemacher, T.; Weinland, C.; Heberlein, A.; Gröschl, M.; Schanze, A.; Frieling, H.; Wilhelm, J.; Kornhuber, J.; Bleich, S. Increased levels of adiponectin and resistin in alcohol dependence—possible link to craving. Drug Alcohol Depend., 2009, 99(1-3), 333-337.
[http://dx.doi.org/10.1016/j.drugalcdep.2008.07.019] [PMID: 18818026]
[182]
Patwell, R. Involvement of DNA methylation in alcohol withdrawal-induced behavioral changes in rats. 2021.
[http://dx.doi.org/10.25417/uic.17025398.v1]
[183]
Bönsch, D.; Reulbach, U.; Bayerlein, K.; Hillemacher, T.; Kornhuber, J.; Bleich, S. Elevated alpha synuclein mRNA levels are associated with craving in patients with alcoholism. Biol. Psychiatry, 2004, 56(12), 984-986.
[http://dx.doi.org/10.1016/j.biopsych.2004.09.016] [PMID: 15601610]
[184]
Bönsch, D.; Lenz, B.; Kornhuber, J.; Bleich, S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport, 2005, 16(2), 167-170.
[http://dx.doi.org/10.1097/00001756-200502080-00020] [PMID: 15671870]
[185]
Foroud, T.; Wetherill, L.F.; Liang, T.; Dick, D.M.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.; Schuckit, M.; Carr, L.; Porjesz, B.; Xuei, X.; Edenberg, H.J. Association of alcohol craving with alpha-synuclein (SNCA). Alcohol. Clin. Exp. Res., 2007, 31(4), 537-545.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00337.x] [PMID: 17374032]
[186]
Schaffner, S.L.; Lussier, A.A.; Baker, J.A.; Goldowitz, D. Neonatal alcohol exposure in mice induces select differentiation- and apoptosis-related chromatin changes both independent of and dependent on sex. Front Genet., 2020, 11, 35.
[http://dx.doi.org/10.3389/fgene.2020.00035]
[187]
Muschler, M.A.N.; Hillemacher, T.; Kraus, C.; Kornhuber, J.; Bleich, S.; Frieling, H. DNA methylation of the POMC gene promoter is associated with craving in alcohol dependence. J. Neural Transm., 2010, 117(4), 513-519.
[http://dx.doi.org/10.1007/s00702-010-0378-7] [PMID: 20191296]
[188]
Zhao, R.; Zhang, R.; Li, W.; Liao, Y.; Tang, J.; Miao, Q.; Hao, W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia-Pac. Psychiatry, 2013, 5(1), 39-50.
[http://dx.doi.org/10.1111/appy.12010] [PMID: 23857790]
[189]
Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res., 2009, 1293, 61-75.
[http://dx.doi.org/10.1016/j.brainres.2009.03.038] [PMID: 19332030]
[190]
Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393(6683), 386-389.
[http://dx.doi.org/10.1038/30764] [PMID: 9620804]
[191]
Pandey, S.C.; Ugale, R.; Zhang, H.; Tang, L.; Prakash, A. Brain chromatin remodeling: A novel mechanism of alcoholism. J. Neurosci., 2008, 28(14), 3729-3737.
[http://dx.doi.org/10.1523/JNEUROSCI.5731-07.2008] [PMID: 18385331]
[192]
You, C.; Zhang, H.; Sakharkar, A.J.; Teppen, T.; Pandey, S.C. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int. J. Neuropsychopharmacol., 2014, 17(2), 313-322.
[http://dx.doi.org/10.1017/S1461145713001144] [PMID: 24103311]
[193]
Pandey, S.C. Anxiety and alcohol abuse disorders: A common role for CREB and its target, the neuropeptide Y gene. Trends Pharmacol. Sci., 2003, 24(9), 456-460.
[http://dx.doi.org/10.1016/S0165-6147(03)00226-8] [PMID: 12967770]
[194]
Attilia, F.; Perciballi, R.; Rotondo, C.; Capriglione, I.; Iannuzzi, S.; Attilia, M.L.; Coriale, G.; Vitali, M.; Cereatti, F.; Fiore, M.; Ceccanti, M. Alcohol withdrawal syndrome: Diagnostic and therapeutic methods. Riv. Psichiatr., 2018, 53(3), 118-122.
[http://dx.doi.org/10.1708/2925.29413.29912213] [PMID: 29912213]
[195]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60.
[http://dx.doi.org/10.2174/18756190MTA2fMjAjz] [PMID: 32348226]
[196]
Kalivas, P.W.; Volkow, N.D. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry, 2011, 16(10), 974-986.
[http://dx.doi.org/10.1038/mp.2011.46] [PMID: 21519339]
[197]
Rani, C.S.S.; Qiang, M.; Ticku, M.K. Potential role of cAMP response element-binding protein in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene transcription in fetal mouse cortical cells. Mol. Pharmacol., 2005, 67(6), 2126-2136.
[http://dx.doi.org/10.1124/mol.104.007872] [PMID: 15774772]
[198]
Biermann, T.; Reulbach, U.; Lenz, B.; Frieling, H.; Muschler, M.; Hillemacher, T.; Kornhuber, J.; Bleich, S. N-methyl-d-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J. Neural Transm., 2009, 116(5), 615-622.
[http://dx.doi.org/10.1007/s00702-009-0212-2] [PMID: 19350219]
[199]
Wang, K.S.; Liu, X.; Zhang, Q.; Wu, L.Y.; Zeng, M. Genome-wide association study identifies 5q21 and 9p24.1 (KDM4C) loci associated with alcohol withdrawal symptoms. J. Neural Transm., 2012, 119(4), 425-433.
[http://dx.doi.org/10.1007/s00702-011-0729-z] [PMID: 22072270]
[200]
Walker, L.C.; Lawrence, A.J. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin. Investig. Drugs, 2018, 27(8), 677-690.
[http://dx.doi.org/10.1080/13543784.2018.1502269] [PMID: 30019949]
[201]
Kaplan, G.; Xu, H.; Abreu, K.; Feng, J.; Cohen-woods, S.; Covault, J. DNA epigenetics in addiction susceptibility. Front. Genet., 2022, 13(January), 806685.
[http://dx.doi.org/10.3389/fgene.2022.806685] [PMID: 35145550]
[202]
Agudelo, M.; Gandhi, N.; Saiyed, Z.; Pichili, V.; Thangavel, S.; Khatavkar, P.; Yndart-Arias, A.; Nair, M. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA). Alcohol. Clin. Exp. Res., 2011, 35(8), no.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01492.x] [PMID: 21447001]
[203]
Montagud-Romero, S.; Cantacorps, L.; Valverde, O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J. Psychopharmacol., 2019, 33(12), 1573-1587.
[http://dx.doi.org/10.1177/0269881119857208] [PMID: 31294671]
[204]
Sharma, R.; Sahota, P.; Thakkar, M.M. Chronic alcohol exposure reduces acetylated histones in the sleep-wake regulatory brain regions to cause insomnia during withdrawal. Neuropharmacology, 2020, 180, 108332.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108332] [PMID: 32961200]
[205]
Chen, W.-Y.; Zhang, H.; Gatta, E.; Glover, E. J.; Pandey, S. C.; Lasek, A. W. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol, 2019, 78, 79-87.
[206]
Grayson, D.R.; Kundakovic, M.; Sharma, R.P. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol. Pharmacol., 2010, 77(2), 126-135.
[http://dx.doi.org/10.1124/mol.109.061333] [PMID: 19917878]
[207]
Qiu, X.; Xiao, X.; Li, N.; Li, Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 72, 60-72.
[http://dx.doi.org/10.1016/j.pnpbp.2016.09.002] [PMID: 27614213]
[208]
Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868.
[http://dx.doi.org/10.1038/nrd2681] [PMID: 18827828]
[209]
Guan, S.P.; Kumar, S.N.; Fann, D.Y.; Kennedy, B.K. A mechanistic perspective on the health promoting effects of alcohol – A focus on epigenetics modification. Alcohol, 2023, 107, 91-96.
[http://dx.doi.org/10.1016/j.alcohol.2022.07.009] [PMID: 35987314]
[210]
Jeanblanc, J.; Lemoine, S.; Jeanblanc, V.; Alaux-Cantin, S.; Naassila, M. The class I-specific HDAC inhibitor MS-275 decreases motivation to consume alcohol and relapse in heavy drinking rats. Int. J. Neuropsychopharmacol., 2015, 18(9), pyv029.
[http://dx.doi.org/10.1093/ijnp/pyv029] [PMID: 25762717]
[211]
Bourguet, E.; Ozdarska, K.; Moroy, G.; Jeanblanc, J.; Naassila, M. Class I HDAC inhibitors : Potential new epigenetic therapeutics for alcohol use disorder (AUD). J Med Chem, 2017, 61(5), 1745-1766.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00115]
[212]
Rodriguez, F.D. Targeting epigenetic mechanisms to treat alcohol use disorders (AUD). Curr. Pharm. Des., 2021, 27(30), 3252-3272.
[http://dx.doi.org/10.2174/1381612827666210203142539] [PMID: 33535943]
[213]
Yang, M.; Barrios, J.; Yan, J.; Zhao, W.; Yuan, S.; Dong, E.; Ai, X. Causal roles of stress kinase JNK2 in DNA methylation and binge alcohol withdrawal-evoked behavioral deficits. Pharmacol. Res., 2021, 164, 105375.
[http://dx.doi.org/10.1016/j.phrs.2020.105375] [PMID: 33316384]
[214]
Qiao, X.; Yin, F.; Ji, Y.; Li, Y.; Yan, P.; Lai, J. 5-Aza-2′-deoxycytidine in the medial prefrontal cortex regulates alcohol-related behavior and Ntf3-TrkC expression in rats. PLoS One, 2017, 12(6), e0179469.
[http://dx.doi.org/10.1371/journal.pone.0179469] [PMID: 28614398]
[215]
Schneeberger, Y.; Stenzig, J.; Hübner, F.; Schaefer, A.; Reichenspurner, H.; Eschenhagen, T. Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N -Phthalyl- L -Tryptophan (RG 108) in rats. Basic Clin. Pharmacol. Toxicol., 2016, 118(5), 327-332.
[http://dx.doi.org/10.1111/bcpt.12514] [PMID: 26525153]
[216]
Barbier, E.; Tapocik, J.D.; Juergens, N.; Pitcairn, C.; Borich, A.; Schank, J.R.; Sun, H.; Schuebel, K.; Zhou, Z.; Yuan, Q.; Vendruscolo, L.F.; Goldman, D.; Heilig, M. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J. Neurosci., 2015, 35(15), 6153-6164.
[http://dx.doi.org/10.1523/JNEUROSCI.4571-14.2015] [PMID: 25878287]
[217]
Berkel, T.D.M.; Pandey, S.C. Emerging role of epigenetic mechanisms in alcohol addiction. Alcohol. Clin. Exp. Res., 2017, 41(4), 666-680.
[http://dx.doi.org/10.1111/acer.13338] [PMID: 28111764]
[218]
Avery, J. Naltrexone and alcohol use. Am. J. Psychiatry, 2022, 179(12), 886-887.
[http://dx.doi.org/10.1176/appi.ajp.20220821] [PMID: 36453035]
[219]
Farris, S.P.; Pietrzykowski, A.Z.; Miles, M.F.; O’Brien, M.A.; Sanna, P.P.; Zakhari, S.; Mayfield, R.D.; Harris, R.A. Applying the new genomics to alcohol dependence. Alcohol, 2015, 49(8), 825-836.
[http://dx.doi.org/10.1016/j.alcohol.2015.03.001] [PMID: 25896098]
[220]
Shen, Y.C.; Fan, J.H.; Edenberg, H.J.; Li, T.K.; Cui, Y.H.; Wang, Y.F.; Tian, C.H.; Zhou, C.F.; Zhou, R.L.; Wang, J.; Zhao, Z.L.; Xia, G.Y. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res., 1997, 21(7), 1272-1277.
[http://dx.doi.org/10.1111/j.1530-0277.1997.tb04448.x] [PMID: 9347089]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy