Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Optimal Weight-based Dosing of Intravenous Immunoglobulin (IVIG) among Overweight and Obese Patients

Author(s): Shima Heidari, Bita Shahrami and Kourosh Sadeghi*

Volume 19, Issue 4, 2024

Published on: 10 October, 2023

Page: [385 - 393] Pages: 9

DOI: 10.2174/0115748855258149231001142811

Price: $65

Abstract

Background: Intravenous immunoglobulin (IVIG), as an expensive medication under a national shortage, has been widely used for the treatment of several autoimmune diseases and immunodeficiency syndromes. Although conducting studies on therapeutic indications of IVIG has increased significantly, a limited number of researches have investigated individualized dosing in terms of the drug, disease state, and some patient-specific factors like obesity.

Objective: The objective of the review was to describe the impact of various weight-based dosing regimens on the pharmacokinetics parameters, efficacy, safety, and cost of IVIG and to choose the best dosing approach for obese patients.

Methods and Results: Thirteen of the total 128 manuscripts collected, reviewed, and analyzed were found from Scopus, PubMed, and Google scholar.

Discussion: The evidence suggests that obesity may have an impact on IVIG pharmacokinetics, safety, and efficacy.

Conclusion: The logical approach is to initial the dose based on the ideal or adjusted body weight and then modify the maintenance dose according to the patient's clinical response.

Graphical Abstract

[1]
Arumugham VB, Rayi A. Intravenous immunoglobulin (IVIG) StatPearls. StatPearls Publishing 2021.
[2]
Immune globulin (Intravenous, subcutaneous, and intramuscular): Drug information. Available From: https://www.uptodate.com/contents/immune-globulin-intravenous-subcutaneous-and-intramuscular-drug-information
[3]
Blackhouse G, Gaebel K, Xie F, et al. Cost-utility of intravenous immunoglobulin (IVIG) compared with corticosteroids for the treatment of chronic inflammatory demyelinating polyneuropathy (CIDP) in Canada. Cost Eff Resour Alloc 2010; 8(1): 14.
[http://dx.doi.org/10.1186/1478-7547-8-14] [PMID: 20565778]
[4]
Pai MP. Drug dosing based on weight and body surface area: Mathematical assumptions and limitations in obese adults. Pharmacotherapy 2012; 32(9): 856-68.
[http://dx.doi.org/10.1002/j.1875-9114.2012.01108.x] [PMID: 22711238]
[5]
Stump SE, Schepers AJ, Jones AR, Alexander MD, Auten JJ. Comparison of weight-based dosing strategies for intravenous immunoglobulin in patients with hematologic malignancies. Pharmacotherapy 2017; 37(12): 1530-6.
[http://dx.doi.org/10.1002/phar.2047] [PMID: 29028117]
[6]
Figgins BS, Aitken SL, Whited LK. Optimization of intravenous immune globulin use at a comprehensive cancer center. Am J Health Syst Pharm 2019; 76 (Suppl. 4): S102-6.
[http://dx.doi.org/10.1093/ajhp/zxz233] [PMID: 31621877]
[7]
Group NICRW. Criteria for the clinical use of intravenous immunoglobulin in Australia. Canberra, ACT, Australia: National Blood Authority 2012.
[8]
British Columbia Provincial Blood Coordinating Office. Intravenous immunoglobulin guidelines. 2012. Available From: www.pbco.ca/index.php?option=com_content&task=category&id=18&Itemid=59
[9]
Wimperis J, Lunn M, Jones A, et al. Clinical guidelines for immunoglobulin use. 2011. Available From: www.ivig.nhs.uk/clinical info.html
[10]
Hodkinson JP. Considerations for dosing immunoglobulin in obese patients. Clin Exp Immunol 2017; 188(3): 353-62.
[http://dx.doi.org/10.1111/cei.12955] [PMID: 28263379]
[11]
WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363(9403): 157-63.
[http://dx.doi.org/10.1016/S0140-6736(03)15268-3] [PMID: 14726171]
[13]
Kuchta KF. Pathophysiologic changes of obesity. Anesthesiol Clin North America 2005; 23(3): 421-429,. vi.
[http://dx.doi.org/10.1016/j.atc.2005.03.004] [PMID: 16005821]
[14]
Gupta S, DeAngelo J, Melamed I, et al. subcutaneous immunoglobulin 16.5% (Cutaquig®) in primary immunodeficiency disease: Safety, tolerability, efficacy, and patient experience with enhanced infusion regimens. J Clin Immunol 2023; 43(6): 1414-25.
[http://dx.doi.org/10.1007/s10875-023-01509-4] [PMID: 37160610]
[15]
Koleba T, Ensom MHH. Pharmacokinetics of intravenous immunoglobulin: A systematic review. Pharmacotherapy 2006; 26(6): 813-27.
[http://dx.doi.org/10.1592/phco.26.6.813] [PMID: 16716135]
[16]
Patel DD, Bussel JB. Neonatal Fc receptor in human immunity: Function and role in therapeutic intervention. J Allergy Clin Immunol 2020; 146(3): 467-78.
[http://dx.doi.org/10.1016/j.jaci.2020.07.015] [PMID: 32896307]
[17]
Mahmood I, Tegenge MA, Golding B. Considerations for optimizing dosing of immunoglobulins based on pharmacokinetic evidence. Antibodies 2020; 9(2): 24.
[http://dx.doi.org/10.3390/antib9020024] [PMID: 32575458]
[18]
Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 2010; 49(2): 71-87.
[http://dx.doi.org/10.2165/11318100-000000000-00000] [PMID: 20067334]
[19]
Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity (Silver Spring) 2015; 23(3): 512-8.
[http://dx.doi.org/10.1002/oby.21003] [PMID: 25612251]
[20]
Kolb H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med 2022; 20(1): 494.
[http://dx.doi.org/10.1186/s12916-022-02672-y] [PMID: 36575472]
[21]
Borvak J, Richardson J, Medesan C, et al. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 1998; 10(9): 1289-98.
[http://dx.doi.org/10.1093/intimm/10.9.1289] [PMID: 9786428]
[22]
Zhang T, Krekels EHJ, Smit C, Knibbe CAJ. Drug pharmacokinetics in the obese population: Challenging common assumptions on predictors of obesity-related parameter changes. Expert Opin Drug Metab Toxicol 2022; 18(10): 657-74.
[http://dx.doi.org/10.1080/17425255.2022.2132931] [PMID: 36217846]
[23]
Lee JL, Mohd Saffian S, Makmor-Bakry M, et al. Population pharmacokinetic modelling of intravenous immunoglobulin in patients with predominantly antibody deficiencies. Br J Clin Pharmacol 2021; 87(7): 2956-66.
[http://dx.doi.org/10.1111/bcp.14712] [PMID: 33377197]
[24]
Hodkinson JP, Lucas M, Lee M, Harrison M, Lunn MP, Chapel H. Therapeutic immunoglobulin should be dosed by clinical outcome rather than by body weight in obese patients. Clin Exp Immunol 2015; 181(1): 179-87.
[http://dx.doi.org/10.1111/cei.12616] [PMID: 25731216]
[25]
Chow S, Salmasi G, Callum JL, Lin Y. Trimming the fat with an IVIG approval process. Transfus Apheresis Sci 2012; 46(3): 349-52.
[http://dx.doi.org/10.1016/j.transci.2012.03.030] [PMID: 22503308]
[26]
Rocchio MA, Hussey AP, Southard RA, Szumita PM. Impact of ideal body weight dosing for all inpatient i.v. immune globulin indications. Am J Health Syst Pharm 2013; 70(9): 751-2.
[http://dx.doi.org/10.2146/ajhp110744] [PMID: 23592355]
[27]
Rajabally YA, Afzal S. Clinical and economic comparison of an individualised immunoglobulin protocol vs. standard dosing for chronic inflammatory demyelinating polyneuropathy. J Neurol 2019; 266(2): 461-7.
[http://dx.doi.org/10.1007/s00415-018-9157-4] [PMID: 30556098]
[28]
Hamrock DJ. Adverse events associated with intravenous immunoglobulin therapy. Int Immunopharmacol 2006; 6(4): 535-42.
[http://dx.doi.org/10.1016/j.intimp.2005.11.015] [PMID: 16504916]
[29]
Copelan EA, Strohm PL, Kennedy MS, Tutschka PJ. Hemolysis following intravenous immune globulin therapy. Transfusion 1986; 26(5): 410-2.
[http://dx.doi.org/10.1046/j.1537-2995.1986.26587020113.x] [PMID: 3765031]
[30]
Woodruff RK, Grigg AP, Firkin FC, Smith IL. Fatal thrombotic events during treatment of autoimmune thrombocytopenia with intravenous immunoglobulin in elderly patients. Lancet 1986; 328(8500): 217-8.
[http://dx.doi.org/10.1016/S0140-6736(86)92511-0] [PMID: 2873457]
[31]
Klaesson S, Ringdén O, Ljungman P, Aschan J, Hägglund H, Winiarski J. Does high-dose intravenous immune globulin treatment after bone marrow transplantation increase mortality in veno-occlusive disease of the liver? Transplantation 1995; 60(11): 1225-30.
[http://dx.doi.org/10.1097/00007890-199512000-00009] [PMID: 8525515]
[32]
Wada Y, Kamei A, Fujii Y, Ishikawa K, Chida S. Cerebral infarction after high-dose intravenous immunoglobulin therapy for Kawasaki disease. J Pediatr 2006; 148(3): 399-400.
[http://dx.doi.org/10.1016/j.jpeds.2005.10.027] [PMID: 16615977]
[33]
Caress JB, Hobson-Webb L, Passmore LV, Finkbiner AP, Cartwright MS. Case-control study of thromboembolic events associated with IV immunoglobulin. J Neurol 2009; 256(3): 339-42.
[http://dx.doi.org/10.1007/s00415-009-0969-0] [PMID: 19253011]
[34]
Kahwaji J, Barker E, Pepkowitz S, et al. Acute hemolysis after high-dose intravenous immunoglobulin therapy in highly HLA sensitized patients. Clin J Am Soc Nephrol 2009; 4(12): 1993-7.
[http://dx.doi.org/10.2215/CJN.04540709] [PMID: 19833910]
[35]
Al-Riyami AZ, Lee J, Connolly M, Shereck E. Cerebral sinus thrombosis following IV immunoglobulin therapy of immune thrombocytopenia purpura. Pediatr Blood Cancer 2011; 57(1): 157-9.
[http://dx.doi.org/10.1002/pbc.22968] [PMID: 21445949]
[36]
Manotas K, Jin J, Vinograd C, et al. Hemolysis after high dose IVIG in blood group A women with alloimmune thrombocytopenia. Blood 2013; 122(21): 3540.
[http://dx.doi.org/10.1182/blood.V122.21.3540.3540]
[37]
Mohamed M, Bates G, Eastley B. Massive intravascular haemolysis after high dose intravenous immunoglobulin therapy. Br J Haematol 2013; 160(5): 570.
[http://dx.doi.org/10.1111/bjh.12182] [PMID: 23294261]
[38]
Ammann EM, Jones MP, Link BK, et al. Intravenous immune globulin and thromboembolic adverse events in patients with hematologic malignancy. Blood 2016; 127(2): 200-7.
[http://dx.doi.org/10.1182/blood-2015-05-647552] [PMID: 26443622]
[39]
Haskin JA, Warner DJ, Blank DU. Acute renal failure after large doses of intravenous immune globulin. Ann Pharmacother 1999; 33(7-8): 800-3.
[http://dx.doi.org/10.1345/aph.18305] [PMID: 10466908]
[40]
Dantal J. Intravenous immunoglobulins: In-depth review of excipients and acute kidney injury risk. Am J Nephrol 2013; 38(4): 275-84.
[http://dx.doi.org/10.1159/000354893] [PMID: 24051350]
[41]
Van Anh KVY, Shah S, Tremoulet AH. Hemolysis from intravenous immunoglobulin in obese patients with kawasaki disease. Front Pediatr 2020; 8: 146.
[http://dx.doi.org/10.3389/fped.2020.00146] [PMID: 32318529]
[42]
Khan S, Grimbacher B, Boecking C, et al. Serum trough IgG level and annual intravenous immunoglobulin dose are not related to body size in patients on regular replacement therapy. Drug Metab Lett 2011; 5(2): 132-6.
[http://dx.doi.org/10.2174/187231211795305302] [PMID: 21457142]
[43]
Anderson CR, Olson JA. Correlation of weight-based i.v. immune globulin doses with changes in serum immunoglobulin G levels. Am J Health Syst Pharm 2015; 72(4): 285-9.
[http://dx.doi.org/10.2146/ajhp140171] [PMID: 25631835]
[44]
Grindeland JW, Grindeland CJ, Moen C, Leedahl ND, Leedahl DD. Outcomes associated with standardized ideal body weight dosing of intravenous immune globulin in hospitalized patients: A multicenter study. Ann Pharmacother 2020; 54(3): 205-12.
[http://dx.doi.org/10.1177/1060028019880300] [PMID: 31578070]
[45]
Ameratunga R. Initial intravenous immunoglobulin doses should be based on adjusted body weight in obese patients with primary immunodeficiency disorders. Allergy Asthma Clin Immunol 2017; 13(1): 47.
[http://dx.doi.org/10.1186/s13223-017-0220-y] [PMID: 29225631]
[46]
Pecoraro A, Ricci S, Vultaggio A, Boggia GM, Spadaro G. Correlations among subcutaneous immunoglobulin dosage, immunoglobulin G serum pre-infusional levels and body mass index in primary antibody deficiency patients: A pooled analysis from the SHIFT/IBIS studies. Clin Drug Investig 2020; 40(3): 279-86.
[http://dx.doi.org/10.1007/s40261-020-00885-8] [PMID: 32036588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy