Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Bioinformatics Perspective of Drug Repurposing

Author(s): Binita Patel, Brijesh Gelat, Mehul Soni, Pooja Rathaur and Kaid Johar SR*

Volume 19, Issue 4, 2024

Published on: 10 October, 2023

Page: [295 - 315] Pages: 21

DOI: 10.2174/0115748936264692230921071504

Price: $65

Abstract

Different diseases can be treated with various therapeutic agents. Drug discovery aims to find potential molecules for existing and emerging diseases. However, factors, such as increasing development cost, generic competition due to the patent expiry of several drugs, increase in conservative regulatory policies, and insufficient breakthrough innovations impairs the development of new drugs and the learning productivity of pharmaceutical industries. Drug repurposing is the process of finding new therapeutic applications for already approved, withdrawn from use, abandoned, and experimental drugs. Drug repurposing is another method that may partially overcome the hurdles related to drug discovery and hence appears to be a wise attempt. However, drug repurposing being not a standard regulatory process, leads to administrative concerns and problems. The drug repurposing also requires expensive, high-risk clinical trials to establish the safety and efficacy of the repurposed drug. Recent innovations in the field of bioinformatics can accelerate the new drug repurposing studies by identifying new targets of the existing drugs along with drug candidate screening and refinement. Recent advancements in the field of comprehensive high throughput data in genomics, epigenetics, chromosome architecture, transcriptomic, proteomics, and metabolomics may also contribute to the understanding of molecular mechanisms involved in drug-target interaction. The present review describes the current scenario in the field of drug repurposing along with the application of various bioinformatic tools for the identification of new targets for the existing drug.

Next »
[1]
Lee HM, Kim Y. Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders. Schizophr Res Treatment 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/6378137] [PMID: 27073698]
[2]
Kim TW. Drug repositioning approaches for the discovery of new therapeutics for alzheimer’s disease, neurotherapeutics. Neurotherapeutics 2015; 12(1): 132-42.
[http://dx.doi.org/10.1007/s13311-014-0325-7]
[3]
Mehndiratta MM, Wadhai S, Tyagi B, Gulati N, Sinha M. Drug repositioning Int J Epilepsy 2016; 3(2): 091-4.
[http://dx.doi.org/10.1016/j.ijep.2016.09.002]
[4]
Padhy BM, Gupta YK. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J Postgrad Med 2011; 57(2): 153-60.
[http://dx.doi.org/10.4103/0022-3859.81870] [PMID: 21654146]
[5]
Reaume AG. Drug repurposing through nonhypothesis driven phenotypic screening. Drug Discov Today Ther Strateg 2011; 8(3-4): 85-8.
[http://dx.doi.org/10.1016/j.ddstr.2011.09.007]
[6]
Rastogi SC, Rastogi P, Mendiratta N. Mendiratta, Bioinformatics Methods And Applications: Genomics Proteomics And Drug Discovery 3Rd. 2008. https://books.google.co.in/books?hl=en&lr=&id=H-hnEAAAQBAJ&oi=fnd&pg=PP1&dq=bioinformatics&ots=On10Ww3-tZ&sig=FZKLDUkS25Nm-FLfglM4IVRhkSo
[7]
Barratt MJ, Frail DE. Drug Repositioning: Bringing New Life to Shelved Assets and Existing Drugs. John Wiley and Sons 2012.
[http://dx.doi.org/10.1002/9781118274408]
[8]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[9]
Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011; 12(4): 303-11.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[10]
Jafari RM, Sheibani M, Nezamoleslami S, Shayesteh S, Jand Y, Dehpour AR. Drug repositioning: A review. J Iran Med Counc 2018; 1: 7-10.
[11]
Wang YW, He SJ, Feng X, et al. Metformin: A review of its potential indications. Drug Des Devel Ther 2017; 11: 2421-9.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
[12]
Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: Connections of metabolism and cell proliferation. Ann N Y Acad Sci 2011; 1243(1): 54-68.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06285.x] [PMID: 22211893]
[13]
Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci 2013; 110(3): 972-7.
[http://dx.doi.org/10.1073/pnas.1221055110] [PMID: 23277563]
[14]
Chong CR, Xu J, Lu J, Bhat S, Sullivan DJ Jr, Liu JO. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol 2007; 2(4): 263-70.
[http://dx.doi.org/10.1021/cb600362d] [PMID: 17432820]
[15]
Kim J, Tang JY, Gong R, et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 2010; 17(4): 388-99.
[http://dx.doi.org/10.1016/j.ccr.2010.02.027] [PMID: 20385363]
[16]
Guastella AJ, Dadds MR, Lovibond PF, Mitchell P, Richardson R. A randomized controlled trial of the effect of d-cycloserine on exposure therapy for spider fear. J Psychiatr Res 2007; 41(6): 466-71.
[http://dx.doi.org/10.1016/j.jpsychires.2006.05.006] [PMID: 16828803]
[17]
Na ES, De Jesús-Cortés H, Martinez-Rivera A, et al. D-cycloserine improves synaptic transmission in an animal mode of Rett syndrome. PLoS One 2017; 12(8): e0183026.
[http://dx.doi.org/10.1371/journal.pone.0183026] [PMID: 29370281]
[18]
Aronskyy I, Masoudi-Sobhanzadeh Y, Cappuccio A, Zaslavsky E. Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discov Today 2021; 26(12): 2800-15.
[http://dx.doi.org/10.1016/j.drudis.2021.07.026] [PMID: 34339864]
[19]
Smith DP, Oechsle O, Rawling MJ, Savory E, Lacoste AMB, Richardson PJ. Expert-augmented computational drug repurposing identified baricitinib as a treatment for COVID-19. Front Pharmacol 2021; 12: 709856.
[http://dx.doi.org/10.3389/fphar.2021.709856] [PMID: 34393789]
[20]
Brueggeman L, Sturgeon ML, Martin RM, et al. Drug repositioning in epilepsy reveals novel antiseizure candidates. Ann Clin Transl Neurol 2019; 6(2): 295-309.
[http://dx.doi.org/10.1002/acn3.703] [PMID: 30847362]
[21]
Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today 2016; 21(7): 1189-95.
[http://dx.doi.org/10.1016/j.drudis.2016.05.015] [PMID: 27240777]
[22]
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018; 175(2): 168-80.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[23]
Li X, Qin G, Yang Q, Chen L, Xie L. Biomolecular network-based synergistic drug combination discovery. BioMed Res Int 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/8518945] [PMID: 27891522]
[24]
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58(3): 621-81.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[25]
Chen D, Liu X, Yang Y, Yang H, Lu P. Systematic synergy modeling: Understanding drug synergy from a systems biology perspective. BMC Syst Biol 2015; 9(1): 56.
[http://dx.doi.org/10.1186/s12918-015-0202-y] [PMID: 26377814]
[26]
Zhang N, Fu JN, Chou TC. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am J Cancer Res 2016; 6: 97-104.
[PMID: 4759401]
[27]
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: Visual analytics of multi-drug combination synergies. Nucleic Acids Res 2020; 48(W1): W488-93.
[http://dx.doi.org/10.1093/nar/gkaa216] [PMID: 32246720]
[28]
Di Veroli GY, Fornari C, Wang D, et al. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016; 32(18): 2866-8.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[29]
Lewis R, Guha R, Korcsmaros T, Bender A. Synergy Maps: Exploring compound combinations using network-based visualization. J Cheminform 2015; 7(1): 36.
[http://dx.doi.org/10.1186/s13321-015-0090-6] [PMID: 26236402]
[30]
Xu M, Zhao X, Wang J, et al. DFFNDDS: Prediction of synergistic drug combinations with dual feature fusion networks. J Cheminform 2023; 15(1): 33.
[http://dx.doi.org/10.1186/s13321-023-00690-3] [PMID: 36927504]
[31]
Zhang M, Lee S, Yao B, Xiao G, Xu L, Xie Y. DIGREM: An integrated web-based platform for detecting effective multi-drug combinations. Bioinformatics 2019; 35(10): 1792-4.
[http://dx.doi.org/10.1093/bioinformatics/bty860] [PMID: 30295728]
[32]
Brogi S. Computational approaches for drug discovery. Molecules 2019; 24(17): 3061.
[http://dx.doi.org/10.3390/molecules24173061] [PMID: 31443558]
[33]
Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 2018; 19(2): 286-302.
[http://dx.doi.org/10.1093/bib/bbw114] [PMID: 27881428]
[34]
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22(4): bbaa357.
[http://dx.doi.org/10.1093/bib/bbaa357] [PMID: 33348366]
[35]
Chen H, Cheng F, Li J. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding. PLOS Comput Biol 2020; 16(7): e1008040.
[http://dx.doi.org/10.1371/journal.pcbi.1008040] [PMID: 32667925]
[36]
Vogrinc D, Kunej T. Drug repositioning: Computational approaches and research examples classified according to the evidence level. Discoveries 2017; 5(2): e75.
[http://dx.doi.org/10.15190/d.2017.5] [PMID: 32309593]
[37]
Aparoy P, Kumar Reddy K, Reddanna P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem 2012; 19(22): 3763-78.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[38]
March-Vila E, Pinzi L, Sturm N, et al. On the integration of in silico drug design methods for drug repurposing. Front Pharmacol 2017; 8: 298.
[http://dx.doi.org/10.3389/fphar.2017.00298] [PMID: 28588497]
[39]
Zhan P, Yu B, Ouyang L. Drug repurposing: An effective strategy to accelerate contemporary drug discovery. Drug Discov Today 2022; 27(7): 1785-8.
[http://dx.doi.org/10.1016/j.drudis.2022.05.026] [PMID: 35661705]
[40]
Sharma VP. Drug repositioning: A faster path to drug discovery. Adv Pharmacoepidemiol Drug Saf 2012; 1(6)
[http://dx.doi.org/10.4172/2167-1052.1000e117]
[41]
Ozsoy MG, Özyer T, Polat F, Alhajj R. Realizing drug repositioning by adapting a recommendation system to handle the process. BMC Bioinformatics 2018; 19(1): 136.
[http://dx.doi.org/10.1186/s12859-018-2142-1] [PMID: 29649971]
[42]
Brown AS, Patel CJ. A standard database for drug repositioning. Sci Data 2017; 4(1): 170029.
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[43]
Brown AS, Kong SW, Kohane IS, Patel CJ. ksRepo: A generalized platform for computational drug repositioning. BMC Bioinformatics 2016; 17(1): 78.
[http://dx.doi.org/10.1186/s12859-016-0931-y] [PMID: 26860211]
[44]
Ferreira L, dos Santos R, Oliva G, Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[45]
Hu Y, Bajorath J. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database. J Chem Inf Model 2012; 52(7): 1806-11.
[http://dx.doi.org/10.1021/ci300274c] [PMID: 22758389]
[46]
Gohlke BO, Overkamp T, Richter A, et al. 2D and 3D similarity landscape analysis identifies PARP as a novel off-target for the drug Vatalanib. BMC Bioinformatics 2015; 16(1): 308.
[http://dx.doi.org/10.1186/s12859-015-0730-x] [PMID: 26403354]
[47]
Wang Z, Liang L, Yin Z, Lin J. Improving chemical similarity ensemble approach in target prediction. J Cheminform 2016; 8(1): 20.
[http://dx.doi.org/10.1186/s13321-016-0130-x] [PMID: 27110288]
[48]
Khashan R, Zheng W, Tropsha A. Scoring protein interaction decoys using exposed residues (SPIDER): A novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues. Proteins 2012; 80(9): 2207-17.
[http://dx.doi.org/10.1002/prot.24110] [PMID: 22581643]
[49]
Geppetti P, Veldhuis NA, Lieu T, Bunnett NW. G protein-coupled receptors: Dynamic machines for signaling pain and itch. Neuron 2015; 88(4): 635-49.
[http://dx.doi.org/10.1016/j.neuron.2015.11.001] [PMID: 26590341]
[50]
Jacobson KA. New paradigms in GPCR drug discovery. Biochem Pharmacol 2015; 98(4): 541-55.
[http://dx.doi.org/10.1016/j.bcp.2015.08.085] [PMID: 26265138]
[51]
Sharma AK, Kapoor VK, Kaur G. Herb–drug interactions: A mechanistic approach. Drug Chem Toxicol 2022; 45(2): 594-603.
[http://dx.doi.org/10.1080/01480545.2020.1738454] [PMID: 32160796]
[52]
Nicholls A, McGaughey GB, Sheridan RP, et al. Molecular shape and medicinal chemistry: A perspective. J Med Chem 2010; 53(10): 3862-86.
[http://dx.doi.org/10.1021/jm900818s] [PMID: 20158188]
[53]
Méndez-Lucio O, Tran J, Medina-Franco JL, Meurice N, Muller M. Toward drug repurposing in epigenetics: olsalazine as a hypomethylating compound active in a cellular context. ChemMedChem 2014; 9(3): 560-5.
[http://dx.doi.org/10.1002/cmdc.201300555] [PMID: 24482360]
[54]
Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW. Detecting drug promiscuity using Gaussian ensemble screening. J Chem Inf Model 2012; 52(8): 1948-61.
[http://dx.doi.org/10.1021/ci3000979] [PMID: 22747187]
[55]
Pérez-Nueno VI, Karaboga AS, Souchet M, Ritchie DW. GES polypharmacology fingerprints: A novel approach for drug repositioning. J Chem Inf Model 2014; 54(3): 720-34.
[http://dx.doi.org/10.1021/ci4006723] [PMID: 24494653]
[56]
Jenkins JL, Glick M, Davies JW. A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes. J Med Chem 2004; 47(25): 6144-59.
[http://dx.doi.org/10.1021/jm049654z] [PMID: 15566286]
[57]
Yera ER, Cleves AE, Jain AN. Chemical structural novelty: On-targets and off-targets. J Med Chem 2011; 54(19): 6771-85.
[http://dx.doi.org/10.1021/jm200666a] [PMID: 21916467]
[58]
Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Mol 2020; 25: 1375.
[http://dx.doi.org/10.3390/molecules25061375]
[59]
Lionta E, Spyrou G, Vassilatis D, Cournia Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem 2014; 14(16): 1923-38.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[60]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[61]
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Computeraided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[62]
Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLOS Comput Biol 2009; 5(7): e1000423.
[http://dx.doi.org/10.1371/journal.pcbi.1000423] [PMID: 19578428]
[63]
Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem 2012; 58: 431-40.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.024] [PMID: 23153814]
[64]
Nacev BA, Grassi P, Dell A, Haslam SM, Liu JO. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J Biol Chem 2011; 286(51): 44045-56.
[http://dx.doi.org/10.1074/jbc.M111.278754] [PMID: 22025615]
[65]
Choudhury C, Murugan N, Today UP-DD. Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Elsevier 2022. Available from: https://www.sciencedirect.com/science/article/pii/S135964462200112X (accessed November 17, 2022).
[66]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[67]
Meslamani J, Li J, Sutter J, Stevens A, Bertrand HO, Rognan D. Protein-ligand-based pharmacophores: Generation and utility assessment in computational ligand profiling. J Chem Inf Model 2012; 52(4): 943-55.
[http://dx.doi.org/10.1021/ci300083r] [PMID: 22480372]
[68]
Zhang Y, Xhaard H, Ghemtio L. Predictive classification models and targets identification for betulin derivatives as Leishmania donovani inhibitors. J Cheminform 2018; 10(1): 40.
[http://dx.doi.org/10.1186/s13321-018-0291-x] [PMID: 30120601]
[69]
Voet A, Qing X, Lee XY, et al. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. J Receptor Ligand Channel Res 2014; 7: 81-92.
[http://dx.doi.org/10.2147/JRLCR.S46843]
[70]
Lee M, Kim D. Large-scale reverse docking profiles and their applications. BMC Bioinformatics 2012; 13 (Suppl. 17): S6.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S6]
[71]
Huang H, Zhang G, Zhou Y, et al. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem 2018; 6: 138.
[http://dx.doi.org/10.3389/fchem.2018.00138] [PMID: 29868550]
[72]
Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov 2016; 11(7): 707-15.
[http://dx.doi.org/10.1080/17460441.2016.1190706] [PMID: 27186904]
[73]
Zhao J, Yang P, Li F, et al. Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis. PLoS One 2012; 7(9): e44938.
[http://dx.doi.org/10.1371/journal.pone.0044938] [PMID: 23028693]
[74]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5): e1002503.
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[75]
Li H, Gao Z, Kang L, et al. TarFisDock: A web server for identifying drug targets with docking approach Nucleic Acids Res 2006; 34(Web Server): W219-24.
[http://dx.doi.org/10.1093/nar/gkl114] [PMID: 16844997]
[76]
Gao Z, Li H, Zhang H, et al. PDTD: A web-accessible protein database for drug target identification. BMC Bioinformatics 2008; 9(1): 104.
[http://dx.doi.org/10.1186/1471-2105-9-104] [PMID: 18282303]
[77]
Xu X, Huang M, Zou X. Docking-based inverse virtual screening: Methods, applications, and challenges. Biophys Rep 2018; 4(1): 1-16.
[http://dx.doi.org/10.1007/s41048-017-0045-8] [PMID: 29577065]
[78]
Scrima M, Lauro G, Grimaldi M, et al. Structural evidence of N6-isopentenyladenosine as a new ligand of farnesyl pyrophosphate synthase. J Med Chem 2014; 57(18): 7798-803.
[http://dx.doi.org/10.1021/jm500869x] [PMID: 25184810]
[79]
Schomburg KT, Bietz S, Briem H, Henzler AM, Urbaczek S, Rarey M. Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 2014; 54(6): 1676-86.
[http://dx.doi.org/10.1021/ci500130e] [PMID: 24851945]
[80]
Ellingson SR, Dakshanamurthy S, Brown M, Smith JC, Baudry J. Accelerating virtual high-throughput ligand docking: Current technology and case study on a petascale supercomputerConcurr Comput Pract Exp. John Wiley and Sons Ltd 2014; pp. 1268-77.
[http://dx.doi.org/10.1002/cpe.3070]
[81]
Badar MS, Shamsi S, Ahmed J, Alam MA. Molecular dynamics simulations: Concept. Methods, and Applications. Springer Nature 2022; pp. 131-51.
[http://dx.doi.org/10.1007/978-3-030-94651-7_7]
[82]
De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics and related methods in drug discovery. J Med Chem 2016; 59(9): 4035-61.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[83]
Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol 2011; 9(1): 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[84]
Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci 2018; 14(10): 1232-44.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[85]
Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 2018; 9(1): 2691.
[http://dx.doi.org/10.1038/s41467-018-05116-5] [PMID: 30002366]
[86]
Sutherland JJ, Webster YW, Willy JA, et al. Toxicogenomic module associations with pathogenesis: A network-based approach to understanding drug toxicity. Pharmacogenomics J 2018; 18(3): 377-90.
[http://dx.doi.org/10.1038/tpj.2017.17] [PMID: 28440344]
[87]
Wu Z, Wang Y, Chen L. Network-based drug repositioning. Mol Biosyst 2013; 9(6): 1268-81.
[http://dx.doi.org/10.1039/c3mb25382a] [PMID: 23493874]
[88]
Kuchaiev O, Stevanović A, Hayes W, Pržulj N. GraphCrunch 2: Software tool for network modeling, alignment and clustering. BMC Bioinformatics 2011; 12(1): 24.
[http://dx.doi.org/10.1186/1471-2105-12-24] [PMID: 21244715]
[89]
Sander J, Ester M, Kriegel HP, Xu X. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Min Knowl Discov 1998; 2(2): 169-94.
[http://dx.doi.org/10.1023/A:1009745219419]
[90]
Crawford J, Milenković T. ClueNet: Clustering a temporal network based on topological similarity rather than denseness. PLoS One 2018; 13(5): e0195993.
[http://dx.doi.org/10.1371/journal.pone.0195993] [PMID: 29738568]
[91]
Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 2012; 9(5): 471-2.
[http://dx.doi.org/10.1038/nmeth.1938] [PMID: 22426491]
[92]
Yu L, Huang J, Ma Z, Zhang J, Zou Y, Gao L. Inferring drugdisease associations based on known protein complexes. BMC Med Genomics 2015; 8(S2)(2): S2.
[http://dx.doi.org/10.1186/1755-8794-8-S2-S2] [PMID: 26044949]
[93]
Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol 2013; 7(S5)(5): S6.
[http://dx.doi.org/10.1186/1752-0509-7-S5-S6] [PMID: 24564976]
[94]
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008; 82(4): 949-58.
[http://dx.doi.org/10.1016/j.ajhg.2008.02.013] [PMID: 18371930]
[95]
Rao N, Poojari T, Poojary C, Sande R, Sawant S. Drug Repurposing: A shortcut to new biological entities. Pharm Chem J 2022; 56(9): 1203-14.
[http://dx.doi.org/10.1007/s11094-022-02778-w] [PMID: 36531825]
[96]
Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics 2005; 6(1): 55.
[http://dx.doi.org/10.1186/1471-2105-6-55] [PMID: 15766383]
[97]
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLOS Comput Biol 2010; 6(1): e1000641.
[http://dx.doi.org/10.1371/journal.pcbi.1000641] [PMID: 20090828]
[98]
Martínez V, Navarro C, Cano C, Fajardo W, Blanco A. DrugNet: Network-based drug–disease prioritization by integrating heterogeneous data. Artif Intell Med 2015; 63(1): 41-9.
[http://dx.doi.org/10.1016/j.artmed.2014.11.003] [PMID: 25704113]
[99]
Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013; 8(4): e60618.
[http://dx.doi.org/10.1371/journal.pone.0060618] [PMID: 23593264]
[100]
Chen X, Yan CC, Zhang X, et al. Drug–target interaction prediction: Databases, web servers and computational models. Brief Bioinform 2016; 17(4): 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[101]
Zenke Y, Yoh K, Matsumoto S, et al. Clinical impact of gastric acid-suppressing medication use on the efficacy of erlotinib and gefitinib in patients with advanced non–small-cell lung cancer harboring EGFR mutations. Clin Lung Cancer 2016; 17(5): 412-8.
[http://dx.doi.org/10.1016/j.cllc.2016.01.006] [PMID: 26944770]
[102]
Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. J Cheminform 2020; 12(1): 46.
[http://dx.doi.org/10.1186/s13321-020-00450-7] [PMID: 33431024]
[103]
Xia X. Bioinformatics and drug discovery. Curr Top Med Chem 2017; 17(15): 1709-26.
[http://dx.doi.org/10.2174/1568026617666161116143440] [PMID: 27848897]
[104]
Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019; 47(D1): D1005-12.
[http://dx.doi.org/10.1093/nar/gky1120] [PMID: 30445434]
[105]
Shaffer JR, Feingold E, Marazita ML. Genome-wide association studies: Prospects and challenges for oral health. J Dent Res 2012; 91(7): 637-41.
[http://dx.doi.org/10.1177/0022034512446968] [PMID: 22562461]
[106]
Irham LM, Adikusuma W, Perwitasari DA, et al. The use of genomic variants to drive drug repurposing for chronic hepatitis B. Biochem Biophys Rep 2022; 31: 101307.
[http://dx.doi.org/10.1016/j.bbrep.2022.101307] [PMID: 35832745]
[107]
Lau A, So HC. Turning genome-wide association study findings into opportunities for drug repositioning. Comput Struct Biotechnol J 2020; 18: 1639-50.
[http://dx.doi.org/10.1016/j.csbj.2020.06.015] [PMID: 32670504]
[108]
Bhat GR, Sethi I, Rah B, Kumar R, Afroze D. Innovative in silico approaches for characterization of genes and proteins. Front Genet 2022; 13: 865182.
[http://dx.doi.org/10.3389/fgene.2022.865182] [PMID: 35664302]
[109]
Diogo D, Tian C, et al. henome-wide association studies across large population cohorts support drug target validation, Nature. Com. (n.d.). Available from: https://www.nature.com/articles/s41467–018-06540-3 (accessed August 7, 2023).
[110]
Cronin RM, Field JR, Bradford Y, et al. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Front Genet 2014; 5: 250.
[http://dx.doi.org/10.3389/fgene.2014.00250] [PMID: 25177340]
[111]
Lippmann C, Kringel D, Ultsch A, Lötsch J. Computational functional genomics-based approaches in analgesic drug discovery and repurposing. Pharmacogenomics 2018; 19(9): 783-97.
[http://dx.doi.org/10.2217/pgs-2018-0036] [PMID: 29792109]
[112]
[113]
Jiang H, Huang Y. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network. BMC Bioinformatics 2022; 23(1): 9.
[http://dx.doi.org/10.1186/s12859-021-04553-2] [PMID: 34983364]
[114]
Zhao BW, Hu L, You ZH, Wang L, Su XR. HINGRL: Predicting drug–disease associations with graph representation learning on heterogeneous information networks. Brief Bioinform 2022; 23(1): bbab515.
[http://dx.doi.org/10.1093/bib/bbab515] [PMID: 34891172]
[115]
Tanoli Z, Vähä-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Discov 2021; 16(9): 977-89.
[http://dx.doi.org/10.1080/17460441.2021.1883585] [PMID: 33543671]
[116]
Zheng M, Liu X, Xu Y, Li H, Luo C, Jiang H. Computational methods for drug design and discovery: Focus on China. Trends Pharmacol Sci 2013; 34(10): 549-59.
[http://dx.doi.org/10.1016/j.tips.2013.08.004] [PMID: 24035675]
[117]
Mervin LH, Bulusu KC, Kalash L, et al. Orthologue chemical space and its influence on target prediction. Bioinformatics 2018; 34(1): 72-9.
[http://dx.doi.org/10.1093/bioinformatics/btx525] [PMID: 28961699]
[118]
Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple pairwise kernels for drug bioactivity predictionBioinformatics. Oxford: Academic 2018; pp. i509-18.
[http://dx.doi.org/10.1093/bioinformatics/bty277]
[119]
Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12.
[http://dx.doi.org/10.1039/D0RA02297G] [PMID: 35517730]
[120]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[121]
Ravikumar B, Timonen S, Alam Z, Parri E, Wennerberg K, Aittokallio T. Chemogenomic analysis of the druggable kinome and its application to repositioning and lead identification studies. Cell Chem Biol 2019; 26(11): 1608-1622.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.08.007] [PMID: 31521622]
[122]
Gilvary C, Elkhader J, Madhukar N, Henchcliffe C, Goncalves MD, Elemento O. A machine learning and network framework to discover new indications for small molecules. PLOS Comput Biol 2020; 16(8): e1008098.
[http://dx.doi.org/10.1371/journal.pcbi.1008098] [PMID: 32764756]
[123]
Gönen M, Khan S, Samuel K. Kernelized Bayesian Matrix Factorization. Proceedings of the 30th International Conference on Macline Learning,PMLR 28(3) 364-72.2013;
[124]
Güvenç Paltun B, Mamitsuka H, Kaski S. Improving drug response prediction by integrating multiple data sources: Matrix factorization, kernel and network-based approaches. Brief Bioinform 2021; 22(1): 346-59.
[http://dx.doi.org/10.1093/bib/bbz153] [PMID: 31838491]
[125]
Huang EW, Bhope A, Lim J, Sinha S, Emad A. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples. PLOS Comput Biol 2020; 16(1): e1007607.
[http://dx.doi.org/10.1371/journal.pcbi.1007607] [PMID: 31967990]
[126]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[127]
Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: From computational models to experimental design principles. Curr Pharm Des 2014; 20(1): 23-36.
[128]
Branco I, Choupina A. Bioinformatics: New tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol 2021; 105(3): 937-51.
[http://dx.doi.org/10.1007/s00253-020-11056-2] [PMID: 33404829]
[129]
Low ZY, Farouk IA, Lal SK. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 2020; 12(9): 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[130]
Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: A brief overview. J Pharm Pharmacol 2020; 72(9): 1145-51.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[131]
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22(1): 970.
[http://dx.doi.org/10.1186/s12913-022-08272-z] [PMID: 35906687]
[132]
Sharma PP, Bansal M, Sethi A, et al. Computational methods directed towards drug repurposing for COVID-19: Advantages and limitations. RSC Advances 2021; 11(57): 36181-98.
[http://dx.doi.org/10.1039/D1RA05320E] [PMID: 35492747]
[133]
Haupt VJ, Schroeder M. Old friends in new guise: Repositioning of known drugs with structural bioinformatics. Brief Bioinform 2011; 12(4): 312-26.
[http://dx.doi.org/10.1093/bib/bbr011] [PMID: 21441562]
[134]
Shineman DW, Alam J, Anderson M, et al. Overcoming obstacles to repurposing for neurodegenerative disease. Ann Clin Transl Neurol 2014; 1(7): 512-8.
[http://dx.doi.org/10.1002/acn3.76] [PMID: 25356422]
[135]
de Oliveira EAM, Lang KL. Drug repositioning: Concept, classification, methodology, and importance in rare/orphans and neglected diseases. J Appl Pharm Sci 2018; 8: 157-65.
[http://dx.doi.org/10.7324/JAPS.2018.8822]
[136]
Su M. Amitriptyline therapy in chronic pain. Int Arch Clin Pharmacol 2015; 1(1): 1.
[http://dx.doi.org/10.23937/2572-3987.1510001]
[137]
Salih NA, van Griensven J, Chappuis F, et al. Liposomal amphotericin B for complicated visceral leishmaniasis (kala-azar) in eastern Sudan: How effective is treatment for this neglected disease? Trop Med Int Health 2014; 19(2): 146-52.
[http://dx.doi.org/10.1111/tmi.12238] [PMID: 24433217]
[138]
Dalen JE. Aspirin to prevent heart attack and stroke: What’s the right dose? Am J Med 2006; 119(3): 198-202.
[http://dx.doi.org/10.1016/j.amjmed.2005.11.013] [PMID: 16490462]
[139]
Grandaliano G, Losappio V, Maiorano A. Immunosuppression in kidney transplantation. Kidney Transplant. Challenging Futur 2012; pp. 186-207.
[http://dx.doi.org/10.2174/978160805144111201010186]
[140]
Fagien S, Walt JG, Carruthers J, et al. Patient-reported outcomes of bimatoprost for eyelash growth: Results from a randomized, double-masked, vehicle-controlled, parallel-group study. Aesthet Surg J 2013; 33(6): 789-98.
[http://dx.doi.org/10.1177/1090820X13495887] [PMID: 23873891]
[141]
Pathak A, Kumar S, Kumar M, Dikshit H. Study to assess the role of bromocriptine in treatment of diabetes mellitus. Int J Basic Clin Pharmacol 2016; 423-8.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20160756]
[142]
Davis KL, Kaye JA, Masters ET, Iyer S. Real-world outcomes in patients with ALK-positive non-small cell lung cancer treated with crizotinib. Curr Oncol 2018; 25(1): 40-9.
[http://dx.doi.org/10.3747/co.25.3723] [PMID: 29507494]
[143]
Schade S, Paulus W. D-cycloserine in neuropsychiatric diseases: A systematic review. Int J Neuropsychopharmacol 2016; 19(4): pyv102.
[http://dx.doi.org/10.1093/ijnp/pyv102] [PMID: 26364274]
[144]
Colombo MD, Cassano N, Bellia G, Vena GA. Cyclosporine regimens in plaque psoriasis: An overview with special emphasis on dose, duration, and old and new treatment approaches. Sci World J 2013; 2013: 11.
[http://dx.doi.org/10.1155/2013/805705]
[145]
McMahon CG. Dapoxetine: A new option in the medical management of premature ejaculation. Ther Adv Urol 2012; 4(5): 233-51.
[http://dx.doi.org/10.1177/1756287212453866] [PMID: 23024705]
[146]
Lynn M, Drake A, Larry MD, Millikan E. The antipruritic effect of 5% doxepin cream. Arch Dermatol 1995; 1403-8. [Available from: http://archderm.jamanetwork.com/
[147]
Arnold LM. Duloxetine and other antidepressants in the treatment of patients with fibromyalgia. Pain Med 2007; 8(2): S63-74.
[http://dx.doi.org/10.1111/j.1526-4637.2006.00178.x] [PMID: 17714117]
[148]
Zhou H. Clinical pharmacokinetics of etanercept: A fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol 2005; 45(5): 490-7.
[http://dx.doi.org/10.1177/0091270004273321] [PMID: 15831771]
[149]
Royce ME, Osman D. Everolimus in the treatment of metastatic breast cancer. Breast Cancer 2015; 9: BCBCR.S29268.
[http://dx.doi.org/10.4137/BCBCR.S29268] [PMID: 26417203]
[150]
Wallin Å. Minthon, Wattmo C. Galantamine treatment in Alzheimer’s disease: Response and long-term outcome in a routine clinical setting. Neuropsychiatr Dis Treat 2011; 7: 565-76.
[http://dx.doi.org/10.2147/NDT.S24196] [PMID: 22003296]
[151]
Pauwels B, Korst AEC, Lardon F, Vermorken JB. Combined modality therapy of gemcitabine and radiation. Oncologist 2005; 10(1): 34-51.
[http://dx.doi.org/10.1634/theoncologist.10-1-34] [PMID: 15632251]
[152]
Clarke AK. Antimalarial drugs in the treatment of rheumatological diseases. Rheumatology 1998; 37(5): 580b.
[http://dx.doi.org/10.1093/rheumatology/37.5.580b] [PMID: 9651091]
[153]
Peters CP, Eshuis EJ, Toxopeüs FM, et al. Adalimumab for Crohn’s disease: Long-term sustained benefit in a population-based cohort of 438 patients. J Crohn’s Colitis 2014; 8(8): 866-75.
[http://dx.doi.org/10.1016/j.crohns.2014.01.012] [PMID: 24491515]
[154]
Kim BR, Ohn J, Choi CW, Youn SW. Methotrexate in a real-world psoriasis treatment: Is it really a dangerous medication for all? Ann Dermatol 2017; 29(3): 346-8.
[http://dx.doi.org/10.5021/ad.2017.29.3.346] [PMID: 28566915]
[155]
Glesk I, Xu L, Rand D, Prucnal PR. Wawelenght tunable semiconductor fiber ring laser through electro-optical polarization control. Acta Phys Slovaca 2003; 53: 413-6.
[156]
Billes SK, Sinnayah P, Cowley MA. Naltrexone/bupropion for obesity: An investigational combination pharmacotherapy for weight loss. Pharmacol Res 2014; 84: 1-11.
[http://dx.doi.org/10.1016/j.phrs.2014.04.004] [PMID: 24754973]
[157]
Evidente VGH, Pappert EJ. Botulinum toxin therapy for cervical dystonia: The science of dosing, tremor and other hyperkinetic movements. Tremor Other Hyperkinet Mov 2014; 12(4): 273.
[http://dx.doi.org/10.7916/D84X56BF]
[158]
Stiff P, Micallef I, McCarthy P, et al. Treatment with plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-CSF: Implications for the heavily pretreated patient. Biol Blood Marrow Transplant 2009; 15(2): 249-56.
[http://dx.doi.org/10.1016/j.bbmt.2008.11.028] [PMID: 19167685]
[159]
Takahashi M, Nishida S, Nakamura M, et al. Restless legs syndrome augmentation among Japanese patients receiving pramipexole therapy: Rate and risk factors in a retrospective study. PLoS One 2017; 12(3): e0173535.
[http://dx.doi.org/10.1371/journal.pone.0173535] [PMID: 28264052]
[160]
Stacey BR, Emir B, Petersel D, Murphy K. Pregabalin in treatment-refractory fibromyalgia. Open Rheumatol J 2010; 4(1): 35-8.
[http://dx.doi.org/10.2174/1874312901004010035] [PMID: 21270936]
[161]
Reikvam H, Hovland R, Forthun RB, et al. Disease-stabilizing treatment based on all-trans retinoic acid and valproic acid in acute myeloid leukemia – identification of responders by gene expression profiling of pretreatment leukemic cells. BMC Cancer 2017; 17(1): 630.
[http://dx.doi.org/10.1186/s12885-017-3620-y] [PMID: 28877686]
[162]
Vogel V. Update on raloxifene: Role in reducing the risk of invasive breast cancer in postmenopausal women. Breast Cancer 2011; 3: 127-37.
[http://dx.doi.org/10.2147/BCTT.S11288] [PMID: 24367182]
[163]
Buch MH, Smolen JS, Betteridge N, et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis 2011; 70(6): 909-20.
[http://dx.doi.org/10.1136/ard.2010.144998] [PMID: 21378402]
[164]
Lüscher Dias T, Schuch V, Beltrão-Braga PCB, et al. Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Transl Psychiatry 2020; 10(1): 141.
[http://dx.doi.org/10.1038/s41398-020-0827-5] [PMID: 32398742]
[165]
Latif T, Chauhan N, Khan R, Moran A, Usmani SZ. Thalidomide and its analogues in the treatment of multiple myeloma. Exp Hematol Oncol 2012; 1(1): 27.
[http://dx.doi.org/10.1186/2162-3619-1-27] [PMID: 23210501]
[166]
Pacini C, Iorio F, Gonçalves E, et al. DvD: An R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data. Bioinformatics 2013; 29(1): 132-4.
[http://dx.doi.org/10.1093/bioinformatics/bts656] [PMID: 23129297]
[167]
Poroikov VV, Filimonov DA, Ihlenfeldt WD, et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 2003; 43(1): 228-36.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[168]
Luo H, Chen J, Shi L, et al. DRAR-CPI: A server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome. Nucleic Acids Res 2011; 39(Web Server issue): (Suppl. 2): W492-8..
[http://dx.doi.org/10.1093/nar/gkr299] [PMID: 21558322]
[169]
Setoain J, Franch M, Martínez M, et al. NFFinder: An online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic Acids Res 2015; 43(W1): W193-9.
[http://dx.doi.org/10.1093/nar/gkv445] [PMID: 25940629]
[170]
Zhong Y, Chen EY, Liu R, et al. Renoprotective effect of combined inhibition of angiotensin-converting enzyme and histone deacetylase. J Am Soc Nephrol 2013; 24(5): 801-11.
[http://dx.doi.org/10.1681/ASN.2012060590] [PMID: 23559582]
[171]
Peyvandipour A, Saberian N, Shafi A, Donato M, Draghici S. A novel computational approach for drug repurposing using systems biology. Bioinformatics 2018; 34(16): 2817-25.
[http://dx.doi.org/10.1093/bioinformatics/bty133] [PMID: 29534151]
[172]
Luo H, Zhang P, Cao XH, et al. DPDR-CPI, a server that predicts drug positioning and drug repositioning via chemical-protein interactome. Sci Rep 2016; 6(1): 35996.
[http://dx.doi.org/10.1038/srep35996] [PMID: 27805045]
[173]
Napolitano F, Carrella D, Mandriani B, et al. gene2drug: A computational tool for pathway-based rational drug repositioning. Bioinformatics 2018; 34(9): 1498-505.
[http://dx.doi.org/10.1093/bioinformatics/btx800] [PMID: 29236977]
[174]
Coelho ED, Arrais JP, Oliveira JL. Computational discovery of putative leads for drug repositioning through drug-target interaction prediction. PLOS Comput Biol 2016; 12(11): e1005219.
[http://dx.doi.org/10.1371/journal.pcbi.1005219] [PMID: 27893735]
[175]
Zhou H, Gao M, Skolnick J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci Rep 2015; 5(1): 11090.
[http://dx.doi.org/10.1038/srep11090] [PMID: 26057345]
[176]
Luo H, Wang J, Li M, et al. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithmBioinformatics. Oxford University Press 2016; pp. 2664-71.
[http://dx.doi.org/10.1093/bioinformatics/btw228]
[177]
Liu T, Naderi M, Alvin C, Mukhopadhyay S, Brylinski M. Break down in order to build up: Decomposing small molecules for fragment-based drug design with e MolFrag. J Chem Inf Model 2017; 57(4): 627-31.
[http://dx.doi.org/10.1021/acs.jcim.6b00596] [PMID: 28346786]
[178]
Jia Z, Liu Y, Guan N, Bo X, Luo Z, Barnes MR. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics 2016; 17(1): 414.
[http://dx.doi.org/10.1186/s12864-016-2737-8] [PMID: 27234029]
[179]
Yu H, Choo S, Park J, Jung J, Kang Y, Lee D. Prediction of drugs having opposite effects on disease genes in a directed network. BMC Syst Biol 2016; 10(S1) (Suppl. 1): S2.
[http://dx.doi.org/10.1186/s12918-015-0243-2] [PMID: 26818006]
[180]
Kim J, Yoo M, Kang J, Tan AC. K-Map: Connecting kinases with therapeutics for drug repurposing and development. Hum Genomics 2013; 7(1): 20.
[http://dx.doi.org/10.1186/1479-7364-7-20] [PMID: 24060470]
[181]
Ferrero E, Agarwal P. Connecting genetics and gene expression data for target prioritisation and drug repositioning. BioData Min 2018; 11(1): 7.
[http://dx.doi.org/10.1186/s13040-018-0171-y] [PMID: 29881461]
[182]
Dai S-X, Chen H, Li W-X, et al. Efficient repositioning of approved drugs as anti-HIV agents using Anti-HIV-Predictor. BioRxiv 2016; 087445.
[http://dx.doi.org/10.1101/087445]
[183]
Fu C, Jin G, Gao J, Zhu R, Ballesteros-villagrana E, Wong STC. DrugMap Central: An on-line query and visualization tool to facilitate drug repositioning studies. Bioinformatics 2013; 29(14): 1834-6.
[http://dx.doi.org/10.1093/bioinformatics/btt279] [PMID: 23681121]
[184]
Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 2011; 7(1): 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[185]
Luo H, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 2018; 34(11): 1904-12.
[http://dx.doi.org/10.1093/bioinformatics/bty013] [PMID: 29365057]
[186]
Zu S, Chen T, Li S. Global optimization-based inference of chemogenomic features from drug–target interactions. Bioinformatics 2015; 31(15): 2523-9.
[http://dx.doi.org/10.1093/bioinformatics/btv181] [PMID: 25819672]
[187]
Zhou X, Wang M, Katsyv I, Irie H, Zhang B. EMUDRA: Ensemble of multiple drug repositioning approaches to improve prediction accuracy. Bioinformatics 2018; 34(18): 3151-9.
[http://dx.doi.org/10.1093/bioinformatics/bty325] [PMID: 29688306]
[188]
Low YS, Daugherty AC, Schroeder EA, et al. Synergistic drug combinations from electronic health records and gene expression. J Am Med Inform Assoc 2017; 24(3): 565-76.
[http://dx.doi.org/10.1093/jamia/ocw161] [PMID: 27940607]
[189]
Lim H, Poleksic A, Yao Y, et al. Large-scale off-target identification using fast and accurate dual regularized one-class collaborative filtering and its application to drug repurposing. PLOS Comput Biol 2016; 12(10): e1005135.
[http://dx.doi.org/10.1371/journal.pcbi.1005135] [PMID: 27716836]
[190]
Chen H, Zhang Z, Peng W. miRDDCR: A miRNA-based method to comprehensively infer drug-disease causal relationships. Sci Rep 2017; 7(1): 15921.
[http://dx.doi.org/10.1038/s41598-017-15716-8] [PMID: 29162848]
[191]
Louhimo R, Laakso M, Belitskin D, Klefström J, Lehtonen R, Hautaniemi S. Data integration to prioritize drugs using genomics and curated data. BioData Min 2016; 9(1): 21.
[http://dx.doi.org/10.1186/s13040-016-0097-1] [PMID: 27231484]
[192]
Brown AS, Patel CJ. MeSHDD: Literature-based drug-drug similarity for drug repositioning. J Am Med Inform Assoc 2017; 24(3): 614-8.
[http://dx.doi.org/10.1093/jamia/ocw142] [PMID: 27678460]
[193]
Shameer K, Johnson KW, Glicksberg BS, et al. Prioritizing small molecule as candidates for drug repositioning using. Mach Learn 2018.
[http://dx.doi.org/10.1101/331975]
[194]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[195]
Wishart DS, Knox C, Guo AC, et al. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue)(1): D901-6..
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[196]
Dabral S, Khan IA, Pant T, et al. Deciphering the precise target for saroglitazar associated antiangiogenic effect: A computational synergistic approach. ACS Omega 2023; 8(17): 14985-5002.
[http://dx.doi.org/10.1021/acsomega.2c07570] [PMID: 37151537]
[197]
Sood D, Kumar N, Singh A, Sakharkar MK, Tomar V, Chandra R. Antibacterial and pharmacological evaluation of fluoroquinolones: A chemoinformatics approach. Genomics Inform 2018; 16(3): 44-51.
[http://dx.doi.org/10.5808/GI.2018.16.3.44] [PMID: 30309202]
[198]
Jukič M, Kores K, Janežič D, Bren U. Repurposing of drugs for SARS-CoV-2 using inverse docking fingerprints. Front Chem 2021; 9: 757826.
[http://dx.doi.org/10.3389/fchem.2021.757826] [PMID: 35028304]
[199]
Li X, Yu J, Zhang Z, et al. Network bioinformatics analysis provides insight into drug repurposing for COVID-19. Medicine in Drug Discovery 2021; 10: 100090.
[http://dx.doi.org/10.1016/j.medidd.2021.100090] [PMID: 33817623]
[200]
Lavecchia A, Cerchia C. In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov Today 2016; 21(2): 288-98.
[http://dx.doi.org/10.1016/j.drudis.2015.12.007] [PMID: 26743596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy