Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Application of the Different Analytical Methods for Non-chromophoric Pharmaceutical Compounds

Author(s): Neha Singh, Sumit Pannu, Karanvir Singh, Md Jawaid Akhtar*, Ankit Anchliya and Shah Alam Khan

Volume 19, Issue 8, 2023

Published on: 10 October, 2023

Page: [629 - 651] Pages: 23

DOI: 10.2174/0115734129255201230925103348

Price: $65

Abstract

The physicochemical properties of non-chromophoric compounds that lack a group to absorb UV-visible radiation make them difficult to analyze with a simple detector. Pharmaceutical formulations and their unknown impurities, which show weak or no response with a UV detector, remain undetected and pose a challenge to the analysis of these compounds. Direct measurement of a chromophore complex formed between the compound and the colored ions present in the electrolyte solution with UV detection is one of the validated methods to analyze non-chromophoric compounds. The derivatization with either chromophore or fluorescent group for the detection of the non-chromophoric compounds with HPLC-UV-Vis or fluorescence detector is also commonly used to study the physicochemical properties of the pharmaceutical formulations. The other techniques to analyze such non-chromophoric compounds include conductivity (ionic molecules), amperometry (molecules oxidized or reduced), mass spectrometry, evaporative light scattering detector (ELSD), condensation nucleation light scattering detector (CNLSD), capillary electrophoresis (CE), gas chromatography (GC), etc. This review covers various separation and detection techniques developed for the analysis of non-chromophoric compounds.

Graphical Abstract

[1]
Nageswara Rao, R.; Nagaraju, V. An overview of the recent trends in development of HPLC methods for determination of impurities in drugs. J. Pharm. Biomed. Anal., 2003, 33(3), 335-377.
[http://dx.doi.org/10.1016/S0731-7085(03)00293-0] [PMID: 14550856]
[2]
Brown, P.R. High-performance liquid chromatography. Past developments, present status, and future trends. Anal. Chem., 1990, 62(19), 995A-1008A.
[PMID: 2256550]
[3]
McCrossen, S.D.; Bryant, D.K.; Cook, B.R.; Richards, J.J. Comparison of LC detection methods in the investigation of non-UV detectable organic impurities in a drug substance. J. Pharm. Biomed. Anal., 1998, 17(3), 455-471.
[http://dx.doi.org/10.1016/S0731-7085(97)00235-5] [PMID: 9656157]
[4]
Pastore, P.; Favaro, G.; Badocco, D.; Tapparo, A.; Cavalli, S.; Saccani, G. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode. J. Chromatogr. A, 2005, 1098(1-2), 111-115.
[http://dx.doi.org/10.1016/j.chroma.2005.08.065] [PMID: 16314166]
[5]
Kvasnička, F.; Voldřich, M. Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J. Chromatogr. A, 2006, 1103(1), 145-149.
[http://dx.doi.org/10.1016/j.chroma.2005.11.005] [PMID: 16310200]
[6]
Arce, L.; Ríos, A.; Valcárcel, M. Direct determination of biogenic amines in wine by integrating continuous flow clean-up and capillary electrophoresis with indirect UV detection. J. Chromatogr. A, 1998, 803(1-2), 249-260.
[http://dx.doi.org/10.1016/S0021-9673(97)01255-7] [PMID: 9604335]
[7]
Dixon, R.W. Aerosol-based detectors for liquid chromatography: Do they have a role in bioanalysis? Bioanalysis, 2009, 1(8), 1389-1392.
[http://dx.doi.org/10.4155/bio.09.116] [PMID: 21083086]
[8]
Yu, H.; Xu, L.; You, T. Indirect electrochemiluminescence detection of lysine and histidine separated by capillary electrophoresis based on charge displacement. Luminescence, 2013, 28(2), 217-221.
[http://dx.doi.org/10.1002/bio.2367] [PMID: 22685037]
[9]
Kitagawa, T.; Ohtani, W.; Maeno, Y.; Fujiwara, K.; kimura, Y. Sensitive enzyme immunoassay of colistin and its application to detect residual colistin in rainbow trout tissue. J. Assoc. Off. Anal. Chem., 1985, 68(4), 661-664.
[http://dx.doi.org/10.1093/jaoac/68.4.661] [PMID: 3928592]
[10]
Thomas, A.H.; Thomas, J.M.; Holloway, I. Microbiological and chemical analysis of polymyxin B and polymyxin E (colistin) sulphates. Analyst, 1980, 105(1256), 1068-1075.
[http://dx.doi.org/10.1039/an9800501068]
[11]
Leroy, P.; Decolin, D.; Nicolas, S.; Archimbault, P.; Nicolas, A. Residue determination of two co-administered antibacterial agents : Cephalexin and colistin : In calf tissues using high-performance liquid chromatography and microbiological methods. J. Pharm. Biomed. Anal., 1989, 7(12), 1837-1846.
[http://dx.doi.org/10.1016/0731-7085(89)80201-8] [PMID: 2490572]
[12]
Thomas, A.H.; Holloway, I. Thin-layer chromatographic method for the identification of the polymyxins. J. Chromatogr. A, 1978, 161, 417-420.
[http://dx.doi.org/10.1016/S0021-9673(01)85266-3]
[13]
Guo, K.; Chen, Y. Simple and rapid detection of aromatic amines using a thin layer chromatography plate. Anal. Methods, 2010, 2(8), 1156-1159.
[http://dx.doi.org/10.1039/c0ay00316f]
[14]
Xia, T.; Fu, S.; Wang, Q.; Wen, Y.; Chan, S.; Zhu, S.; Gao, S.; Tao, X.; Zhang, F.; Chen, W. Targeted metabolomic analysis of 33 amino acids and biogenic amines in human urine by ion-pairing HPLC-MS/MS: Biomarkers for tacrolimus nephrotoxicity after renal transplantation. Biomed. Chromatogr., 2018, 32(7), e4198.
[http://dx.doi.org/10.1002/bmc.4198] [PMID: 29369388]
[15]
Dziągwa-Becker, M.M.; Marin Ramos, J.M.; Topolski, J.K.; Oleszek, W.A. Determination of free amino acids in plants by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Anal. Methods, 2015, 7(18), 7574-7581.
[http://dx.doi.org/10.1039/C5AY01280E]
[16]
da Silva Medeiros, T.; Pinto, E.C.; Cabral, L.M.; de Sousa, V.P. Tobramycin: A review of detectors used in analytical approaches for drug substance, its impurities and in pharmaceutical formulation. Microchem. J., 2021, 160, 105658.
[http://dx.doi.org/10.1016/j.microc.2020.105658]
[17]
Bedia Erim, F. Recent analytical approaches to the analysis of biogenic amines in food samples. Trends Analyt. Chem., 2013, 52, 239-247.
[http://dx.doi.org/10.1016/j.trac.2013.05.018]
[18]
Önal, A.; Tekkeli, S.E.K.; Önal, C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem., 2013, 138(1), 509-515.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.056] [PMID: 23265518]
[19]
Zacharis, C.K.; Tzanavaras, P.D. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: A review of analytical methods. J. Pharm. Biomed. Anal., 2008, 48(3), 483-496.
[http://dx.doi.org/10.1016/j.jpba.2008.05.028] [PMID: 18599247]
[20]
Stead, D.A. Current methodologies for the analysis of aminoglycosides. J. Chromatogr., Biomed. Appl., 2000, 747(1-2), 69-93.
[http://dx.doi.org/10.1016/S0378-4347(00)00133-X] [PMID: 11103900]
[21]
Magnusson, L.E.; Risley, D.S.; Koropchak, J.A. Aerosol-based detectors for liquid chromatography. J. Chromatogr. A, 2015, 1421, 68-81.
[http://dx.doi.org/10.1016/j.chroma.2015.07.045] [PMID: 26212804]
[22]
Gamache, P.H.; McCarthy, R.S.; Freeto, S.M.; Asa, D.J.; Woodcock, M.J.; Laws, K. HPLC analysis of nonvolatile analytes using charged aerosol detection. LC GC Eur., 2005, 18(6), 345.
[23]
Crafts, C.; Bailey, B.; Gamache, P.; Liu, X.; Acworth, I. Comprehensive Approaches for Measurement of Active Pharmaceutical Ingredients.Counter‐Ions, and Excipients Using HPLC with Charged Aerosol Detection. Applications of Ion Chromatography for Pharmaceutical and Biological Products; wiley, 2012, pp. 221-236.
[24]
Mitchell, C.R.; Bao, Y.; Benz, N.J.; Zhang, S. Comparison of the sensitivity of evaporative universal detectors and LC/MS in the HILIC and the reversed-phase HPLC modes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(32), 4133-4139.
[http://dx.doi.org/10.1016/j.jchromb.2009.10.027] [PMID: 19926350]
[25]
Allen, L.B.; Koropchak, J.A. Condensation nucleation light scattering: a new approach to development of high-sensitivity, universal detectors for separations. Anal. Chem., 1993, 65(6), 841-844.
[http://dx.doi.org/10.1021/ac00054a033]
[26]
Rosenfeld, J.M. Derivatization in the current practice of analytical chemistry. Trends Analyt. Chem., 2003, 22(11), 785-798.
[http://dx.doi.org/10.1016/S0165-9936(03)01205-6]
[27]
Rosenfeld, J. Enhancement of analysis by analytical derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(17-18), 1157-1158.
[http://dx.doi.org/10.1016/j.jchromb.2011.04.010] [PMID: 21515095]
[28]
Tsai, E.W.; Chamberlin, S.D.; Forsyth, R.J.; Bell, C.; Ip, D.P.; Brooks, M.A. Determination of bisphosphonate drugs in pharmaceutical dosage formulations by ion chromatography with indirect UV detection. J. Pharm. Biomed. Anal., 1994, 12(8), 983-991.
[http://dx.doi.org/10.1016/0731-7085(94)00047-6] [PMID: 7819384]
[29]
Zhang, K.; Kurita, K.L.; Venkatramani, C.; Russell, D. Seeking universal detectors for analytical characterizations. J. Pharm. Biomed. Anal., 2019, 162, 192-204.
[http://dx.doi.org/10.1016/j.jpba.2018.09.029] [PMID: 30265979]
[30]
Soliven, A.; Haidar Ahmad, I.A.; Tam, J.; Kadrichu, N.; Challoner, P.; Markovich, R.; Blasko, A. A simplified guide for charged aerosol detection of non-chromophoric compounds—Analytical method development and validation for the HPLC assay of aerosol particle size distribution for amikacin. J. Pharm. Biomed. Anal., 2017, 143, 68-76.
[http://dx.doi.org/10.1016/j.jpba.2017.05.013] [PMID: 28577419]
[31]
Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal., 2002, 28(6), 1215-1220.
[http://dx.doi.org/10.1016/S0731-7085(02)00021-3] [PMID: 12049986]
[32]
Thakkar, H.; Jain, S.; Kumar, S.; Bhalekar, V.S.; Gangakhedkar, S.; Shah, R.P. Hyphenated liquid chromatography : Diode array detection : Charged aerosol detection : High resolution : Multistage mass spectrometry with online hydrogen/deuterium exchange: One stop solution for pharmaceutical impurity profiling. J. Chromatogr. A, 2023, 1689, 463725.
[http://dx.doi.org/10.1016/j.chroma.2022.463725] [PMID: 36586282]
[33]
Bidlingmeyer, B.A.; Cohen, S.A.; Tarvin, T.L. Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr., Biomed. Appl., 1984, 336(1), 93-104.
[http://dx.doi.org/10.1016/S0378-4347(00)85133-6] [PMID: 6396315]
[34]
Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to modern liquid chromatography; John Wiley & Sons, 2011.
[35]
Qi, B.L.; Liu, P.; Wang, Q.Y.; Cai, W.J.; Yuan, B.F.; Feng, Y.Q. Derivatization for liquid chromatography-mass spectrometry. Trends Analyt. Chem., 2014, 59, 121-132.
[http://dx.doi.org/10.1016/j.trac.2014.03.013]
[36]
Anderson, J.M. Fluorescent hydrazides for the high-performance liquid chromatographic determination of biological carbonyls. Anal. Biochem., 1986, 152(1), 146-153.
[http://dx.doi.org/10.1016/0003-2697(86)90133-8] [PMID: 2937341]
[37]
Paraskevas, G.; Atta-Politou, J.; Koupparis, M. Spectrophotometric determination of lisinopril in tablets using 1-fluoro-2,4-dinitrobenzene reagent. J. Pharm. Biomed. Anal., 2002, 29(5), 865-872.
[http://dx.doi.org/10.1016/S0731-7085(02)00207-8] [PMID: 12093520]
[38]
Terrlink, T.; van Leeuwen, P.A.; Houdijk, A. Plasma amino acids determined by liquid chromatography within 17 minutes. Clin. Chem., 1994, 40(2), 245-249.
[http://dx.doi.org/10.1093/clinchem/40.2.245] [PMID: 8313601]
[39]
Khalil, N.Y. A highly sensitive HPLC method with automated on-line sample pre-treatment and fluorescence detection for determination of reboxetine in human plasma. Talanta, 2010, 80(3), 1251-1256.
[http://dx.doi.org/10.1016/j.talanta.2009.09.010] [PMID: 20006083]
[40]
de Lima, L.F.; Brandão, P.F.; Donegatti, T.A.; Ramos, R.M.; Gonçalves, L.M.; Cardoso, A.A.; Pereira, E.A.; Rodrigues, J.A. 4-hydrazinobenzoic acid as a derivatizing agent for aldehyde analysis by HPLC-UV and CE-DAD. Talanta, 2018, 187, 113-119.
[http://dx.doi.org/10.1016/j.talanta.2018.04.091] [PMID: 29853022]
[41]
Escrig-Doménech, A.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Ramis-Ramos, G. Derivatization of hydroxyl functional groups for liquid chromatography and capillary electroseparation. J. Chromatogr. A, 2013, 1296, 140-156.
[http://dx.doi.org/10.1016/j.chroma.2013.04.027] [PMID: 23643100]
[42]
Rastkari, N.; Khoobi, M.; Shafiee, A.; Khoshayand, M.R.; Ahmadkhaniha, R. Development and validation of a simple and sensitive HPLC–UV method for the determination of captopril in human plasma using a new derivatizing reagent 2-naphthyl propiolate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 932, 144-151.
[http://dx.doi.org/10.1016/j.jchromb.2013.06.019] [PMID: 23831707]
[43]
Al Deeb, S.K.; Hamdan, I.I.; Al Najjar, S.M. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta, 2004, 64(3), 695-702.
[http://dx.doi.org/10.1016/j.talanta.2004.03.044] [PMID: 18969661]
[44]
Ai, Y.; Sun, Y.N.; Liu, L.; Yao, F.Y.; Zhang, Y.; Guo, F.Y.; Zhao, W.J.; Liu, J.L.; Zhang, N. Determination of biogenic amines in different parts of Lycium barbarum L. by HPLC with precolumn dansylation. Molecules, 2021, 26(4), 1046.
[http://dx.doi.org/10.3390/molecules26041046] [PMID: 33671270]
[45]
Özdestan, Ö.; Üren, A. A method for benzoyl chloride derivatization of biogenic amines for high performance liquid chromatography. Talanta, 2009, 78(4-5), 1321-1326.
[http://dx.doi.org/10.1016/j.talanta.2009.02.001] [PMID: 19362195]
[46]
Belal, F.; Walash, M.; El-Enany, N.; Zayed, S. Highly sensitive HPLC method for assay of aliskiren in human plasma through derivatization with 1-naphthyl isocyanate using UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 933, 24-29.
[http://dx.doi.org/10.1016/j.jchromb.2013.06.004] [PMID: 23872160]
[47]
Gatti, R.; Gioia, M.G.; Leoni, A.; Andreani, A. 2,5-Dimethyl-1H-pyrrole-3,4-dicarbaldehyde as a precolumn derivatization reagent for HPLC/UV detection of amino acids. J. Pharm. Biomed. Anal., 2010, 53(2), 207-211.
[http://dx.doi.org/10.1016/j.jpba.2009.12.031] [PMID: 20096532]
[48]
Douša, M.; Břicháč, J.; Tkadlecová, M.; Man, S.; Zezula, J.; Hájíček, J.; Pekárek, T. A novel approach for HPLC determination of 2-cynaoacetamide using derivatization procedure with 2-hydroxyacetophenone as a new useful derivatization reagent. J. Pharm. Biomed. Anal., 2016, 128, 391-397.
[http://dx.doi.org/10.1016/j.jpba.2016.06.016] [PMID: 27344628]
[49]
Li, H.; Lee, J.R.; Nguyen, D.Q.A.; Kim, S.B.; Seo, Y.G.; Chang, Y.K.; Hong, S.K.; Moon, M.H.; Chung, I.Y.; Kim, C.J. Quantitative analysis of valiolamine through pre-column derivatization with phenylisocyanate using high-performance liquid chromatography with UV detection: Selection of reagent, identification of derivative and optimization of derivatization conditions. J. Pharm. Biomed. Anal., 2009, 49(4), 957-963.
[http://dx.doi.org/10.1016/j.jpba.2009.02.020] [PMID: 19303235]
[50]
Qian, K.; Tang, T.; Shi, T.; Wang, F.; Li, J.; Cao, Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal. Chim. Acta, 2009, 635(2), 222-226.
[http://dx.doi.org/10.1016/j.aca.2009.01.022] [PMID: 19216882]
[51]
Li, W.; Jia, H.; Zhao, K. Determination of clarithromycin in rat plasma by HPLC–UV method with pre-column derivatization. Talanta, 2007, 71(1), 385-390.
[http://dx.doi.org/10.1016/j.talanta.2006.04.015] [PMID: 19071316]
[52]
Ashfaq, M.; Aslam, A.; Mustafa, G.; Danish, M.; Nazar, M.F.; Asghar, M.N. Derivatization/chromophore introduction of tranexamic acid and its HPLC determination in pharmaceutical formulations. J.Assoc. Arab. Univ. Basic. Appl. Sci., 2015, 17(1), 51-56.
[http://dx.doi.org/10.1016/j.jaubas.2014.02.005]
[53]
Liu, S.J.; Xu, J.J.; Ma, C.L.; Guo, C.F. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem., 2018, 266, 275-283.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.001] [PMID: 30381186]
[54]
Shah, J.A.; Weber, D.J. High-performance liquid chromatographic assay of pirlimycin in human serum and urine using 9-fluorenylmethylchloroformate. J. Chromatogr., Biomed. Appl., 1984, 309(1), 95-105.
[http://dx.doi.org/10.1016/0378-4347(84)80009-2] [PMID: 6480775]
[55]
Sayare, S.; Lode, R.; Ghode, P.; Pachauri, A. Development and validation of RP-HPLC method for estimation of vigabatrin using derivatization with 9-fluorenylmethyloxycarbonyl chloride. J. Pharmac. Sci. Res., 2019, 11(6), 2224-2227.
[56]
Pourasghar, M.; Koenneke, A.; Meiers, P.; Schneider, M. Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC. J. Pharm. Anal., 2019, 9(2), 100-107.
[http://dx.doi.org/10.1016/j.jpha.2019.01.004] [PMID: 31011466]
[57]
Kurpet, K.; Głowacki, R.; Chwatko, G. Simultaneous determination of human serum albumin and low-molecular-weight thiols after derivatization with monobromobimane. Molecules, 2021, 26(11), 3321.
[http://dx.doi.org/10.3390/molecules26113321] [PMID: 34205933]
[58]
Jin, Y.; Pan, Y.; Jin, B.; Jin, D.; Zhang, C. (S)-1-(5-(4-Methylpiperazin-1-yl)-2,4-dinitrophenyl)pyrrolidine-2-carboxylic acid as a derivatization reagent for ultrasensitive detection of amine enantiomers by HPLC-MS/MS and its application to the chiral metabolite analysis of (R)-1-aminoindan in saliva. J. Pharm. Biomed. Anal., 2021, 194, 113815.
[http://dx.doi.org/10.1016/j.jpba.2020.113815] [PMID: 33328145]
[59]
Nefedova, L.; Sahaidak-Nikitiuk, R.; Blazheyevskiy, M.; Barnatovych, S. Development of RP HPLC method for aminocaproic acid determination in a complex nasal drug. ScienceRise. Pharm. Sci., 2020, (5 (27)), 52-59.
[60]
Dixon, R.W.; Peterson, D.S. Development and testing of a detection method for liquid chromatography based on aerosol charging. Anal. Chem., 2002, 74(13), 2930-2937.
[http://dx.doi.org/10.1021/ac011208l] [PMID: 12141649]
[61]
Russell, J.J.; Heaton, J.C.; Underwood, T.; Boughtflower, R.; McCalley, D.V. Performance of charged aerosol detection with hydrophilic interaction chromatography. J. Chromatogr. A, 2015, 1405, 72-84.
[http://dx.doi.org/10.1016/j.chroma.2015.05.050] [PMID: 26091786]
[62]
Hutchinson, J.P.; Li, J.; Farrell, W.; Groeber, E.; Szucs, R.; Dicinoski, G.; Haddad, P.R. Universal response model for a corona charged aerosol detector. J. Chromatogr. A, 2010, 1217(47), 7418-7427.
[http://dx.doi.org/10.1016/j.chroma.2010.09.056] [PMID: 20961549]
[63]
Górecki, T.; Lynen, F.; Szucs, R.; Sandra, P. Universal response in liquid chromatography using charged aerosol detection. Anal. Chem., 2006, 78(9), 3186-3192.
[http://dx.doi.org/10.1021/ac060078j] [PMID: 16643012]
[64]
Behrens, B.; Baune, M.; Jungkeit, J.; Tiso, T.; Blank, L.M.; Hayen, H. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J. Chromatogr. A, 2016, 1455, 125-132.
[http://dx.doi.org/10.1016/j.chroma.2016.05.079] [PMID: 27283098]
[65]
Zhang, B.; Li, X.; Yan, B. Advances in HPLC detection—towards universal detection. Anal. Bioanal. Chem., 2008, 390(1), 299-301.
[http://dx.doi.org/10.1007/s00216-007-1633-0] [PMID: 17924099]
[66]
Swartz, M.; Emanuele, M.; Awad, A.; Grenier, A.; Hartley, D. An overview of corona charged aerosol detection in pharmaceutical analysis. Synomics Pharma, White Paper., 2009.
[67]
Furota, S.; Ogawa, N.O.; Takano, Y.; Yoshimura, T.; Ohkouchi, N. Quantitative analysis of underivatized amino acids in the sub- to several-nanomolar range by ion-pair HPLC using a corona-charged aerosol detector (HPLC–CAD). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095, 191-197.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.033] [PMID: 30077100]
[68]
Maljurić, N.; Otašević, B.; Golubović, J.; Krmar, J.; Zečević, M.; Protić, A. A new strategy for development of eco-friendly RP-HPLC method using corona charged aerosol detector and its application for simultaneous analysis of risperidone and its related impurities. Microchem. J., 2020, 153, 104394.
[http://dx.doi.org/10.1016/j.microc.2019.104394]
[69]
Wahl, O.; Holzgrabe, U. Impurity profiling of ibandronate sodium by HPLC–CAD. J. Pharm. Biomed. Anal., 2015, 114, 254-264.
[http://dx.doi.org/10.1016/j.jpba.2015.06.002] [PMID: 26092222]
[70]
Asthana, C.; Peterson, G.M.; Shastri, M.D.; Patel, R.P. A novel and sensitive HILIC-CAD method for glucosamine quantification in plasma and its application to a human pharmacokinetic study. J. Pharm. Biomed. Anal., 2020, 178, 112954.
[http://dx.doi.org/10.1016/j.jpba.2019.112954] [PMID: 31704130]
[71]
Ragham, P.K.; Chandrasekhar, K.B. Development and validation of a stability-indicating RP-HPL C-CAD method for gabapentin and its related impurities in presence of degradation products. J. Pharm. Biomed. Anal., 2016, 125, 122-129.
[http://dx.doi.org/10.1016/j.jpba.2016.03.035] [PMID: 27018505]
[72]
Nováková, L.; Solichová, D.; Solich, P. Hydrophilic interaction liquid chromatography : Charged aerosol detection as a straightforward solution for simultaneous analysis of ascorbic acid and dehydroascorbic acid. J. Chromatogr. A, 2009, 1216(21), 4574-4581.
[http://dx.doi.org/10.1016/j.chroma.2009.03.060] [PMID: 19358994]
[73]
Joseph, A.; Patel, S.; Rustum, A. Development and validation of a RP-HPLC method for the estimation of netilmicin sulfate and its related substances using charged aerosol detection. J. Chromatogr. Sci., 2010, 48(7), 607-612.
[http://dx.doi.org/10.1093/chromsci/48.7.607] [PMID: 20819288]
[74]
Joseph, A.; Rustum, A. Development and validation of a RP-HPLC method for the determination of gentamicin sulfate and its related substances in a pharmaceutical cream using a short pentafluorophenyl column and a charged aerosol detector. J. Pharm. Biomed. Anal., 2010, 51(3), 521-531.
[http://dx.doi.org/10.1016/j.jpba.2009.09.002] [PMID: 19815362]
[75]
Jia, S.; Park, J.H.; Lee, J.; Kwon, S.W. Comparison of two aerosol-based detectors for the analysis of gabapentin in pharmaceutical formulations by hydrophilic interaction chromatography. Talanta, 2011, 85(5), 2301-2306.
[http://dx.doi.org/10.1016/j.talanta.2011.04.012] [PMID: 21962646]
[76]
Infantes-Garcia, M.R.; Verkempinck, S.H.E.; Guevara-Zambrano, J.M.; Hendrickx, M.E.; Grauwet, T. Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. J. Food Compos. Anal., 2021, 102, 104022.
[http://dx.doi.org/10.1016/j.jfca.2021.104022]
[77]
Qiu, X.; Zuo, L.; Sun, S.; Zhao, X.; Xu, S.; Zhu, Z.; Zhao, T.; Sun, Z.; Yao, J.; Shan, G. Impurity profiling of compound amino acid injection (6AA) using ion-pair high performance liquid chromatography coupled with corona-charged aerosol detection and high resolution mass spectrometry. J. Pharm. Biomed. Anal., 2021, 201, 114099.
[http://dx.doi.org/10.1016/j.jpba.2021.114099] [PMID: 33957362]
[78]
Dreux, M.; Lafosse, M.; Morin-Allory, L. The evaporative light scattering detector-a universal instrument for non-volatile solutes in LC and SFC. LC GC INTERNATIONAL., 1996, 9, 148-156.
[79]
Nair, L.M.; Werling, J.O. Aerosol based detectors for the investigation of phospholipid hydrolysis in a pharmaceutical suspension formulation. J. Pharm. Biomed. Anal., 2009, 49(1), 95-99.
[http://dx.doi.org/10.1016/j.jpba.2008.10.027] [PMID: 19070982]
[80]
Mengesha, A.E.; Bummer, P.M. Simple chromatographic method for simultaneous analyses of phosphatidylcholine, lysophosphatidylcholine, and free fatty acids. AAPS PharmSciTech, 2010, 11(3), 1084-1091.
[http://dx.doi.org/10.1208/s12249-010-9470-4] [PMID: 20585908]
[81]
Donot, F.; Cazals, G.; Gunata, Z.; Egron, D.; Malinge, J.; Strub, C.; Fontana, A.; Schorr-Galindo, S. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 942-943, 98-106.
[http://dx.doi.org/10.1016/j.jchromb.2013.10.016] [PMID: 24239934]
[82]
Cobb, Z.; Shaw, P.N.; Lloyd, L.L.; Wrench, N.; Barrett, D.A. Evaporative light-scattering detection coupled to microcolumn liquid chromatography for the analysis of underivatized amino acids: Sensitivity, linearity of response and comparisons with UV absorbance detection. J. Microcolumn Sep., 2001, 13(4), 169-175.
[http://dx.doi.org/10.1002/mcs.1037]
[83]
Shanmugavelan, P.; Kim, S.Y.; Kim, J.B.; Kim, H.W.; Cho, S.M.; Kim, S.N.; Kim, S.Y.; Cho, Y.S.; Kim, H.R. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydr. Res., 2013, 380, 112-117.
[http://dx.doi.org/10.1016/j.carres.2013.06.024] [PMID: 24021435]
[84]
Varache, M.; Ciancone, M.; Couffin, A.C. Development and validation of a novel UPLC-ELSD method for the assessment of lipid composition of nanomedicine formulation. Int. J. Pharm., 2019, 566, 11-23.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.038] [PMID: 31112794]
[85]
Mondal, B.; Kote, M.; Lunagariya, C.; Patel, M. Development of a simple high performance liquid chromatography (HPLC)/evaporative light scattering detector (ELSD) method to determine Polysorbate 80 in a pharmaceutical formulation. Saudi Pharm. J., 2020, 28(3), 325-328.
[http://dx.doi.org/10.1016/j.jsps.2020.01.012] [PMID: 32194334]
[86]
Mourey, T.H.; Oppenheimer, L.E. Principles of operation of an evaporative light-scattering detector for liquid chromatography. Anal. Chem., 1984, 56(13), 2427-2434.
[http://dx.doi.org/10.1021/ac00277a039]
[87]
Kohler, M.; Haerdi, W.; Christen, P.; Veuthey, J.L. The evaporative light scattering detector: Some applications in pharmaceutical analysis. Trends Analyt. Chem., 1997, 16(8), 475-484.
[http://dx.doi.org/10.1016/S0165-9936(97)00072-1]
[88]
Webster, G.K.; Jensen, J.S.; Diaz, A.R. An investigation into detector limitations using evaporative light-scattering detectors for pharmaceutical applications. J. Chromatogr. Sci., 2004, 42(9), 484-490.
[http://dx.doi.org/10.1093/chromsci/42.9.484] [PMID: 15693189]
[89]
Rodríguez, S.A.; Qiu, F.; Mulcey, M.; Weigandt, K.; Tamblyn, T. Monitoring the chemical and physical stability for tromethamine excipient in a lipid based formulation by HPLC coupled with ELSD. J. Pharm. Biomed. Anal., 2015, 115, 245-253.
[http://dx.doi.org/10.1016/j.jpba.2015.07.010] [PMID: 26254033]
[90]
Clarot, I.; Storme-Paris, I.; Chaminade, P.; Estevenon, O.; Nicolas, A.; Rieutord, A. Simultaneous quantitation of tobramycin and colistin sulphate by HPLC with evaporative light scattering detection. J. Pharm. Biomed. Anal., 2009, 50(1), 64-67.
[http://dx.doi.org/10.1016/j.jpba.2009.03.013] [PMID: 19372021]
[91]
Galanakis, E.G.; Megoulas, N.C.; Solich, P.; Koupparis, M.A. Development and validation of a novel LC non-derivatization method for the determination of amikacin in pharmaceuticals based on evaporative light scattering detection. J. Pharm. Biomed. Anal., 2006, 40(5), 1114-1120.
[http://dx.doi.org/10.1016/j.jpba.2005.09.008] [PMID: 16242884]
[92]
Megoulas, N.C.; Koupparis, M.A. Development and validation of a novel LC/ELSD method for the quantitation of gentamicin sulfate components in pharmaceuticals. J. Pharm. Biomed. Anal., 2004, 36(1), 73-79.
[http://dx.doi.org/10.1016/j.jpba.2004.05.018] [PMID: 15351050]
[93]
Megoulas, N.C.; Koupparis, M.A. Direct determination of kanamycin in raw materials, veterinary formulation and culture media using a novel liquid chromatography–evaporative light scattering method. Anal. Chim. Acta, 2005, 547(1), 64-72.
[http://dx.doi.org/10.1016/j.aca.2004.11.031]
[94]
Wu, P.Y.; Chen, H.; Su, N.W.; Chiou, T.Y.; Lee, W.J. First determination of glycidyl ester species in edible oils by reverse-phase ultra-performance liquid chromatography coupled with an evaporative light-scattering detector. Molecules, 2021, 26(9), 2702.
[http://dx.doi.org/10.3390/molecules26092702] [PMID: 34062981]
[95]
Burmaoglu, R.E.; Saglik Aslan, S. Determination of zoledronic acid and its related substances by high performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. Sci., 2019, 57(1), 33-43.
[PMID: 30165485]
[96]
Carballo-Marrero, S.; Prats-Moya, M.S.; Maestre-Pérez, S.E.; Todolí-Torro, J.L. Microwave assisted high performance liquid chromatography for the separation of triacylglycerols in vegetable oils using an evaporative light scattering detector. Food Chem., 2019, 300, 125203.
[http://dx.doi.org/10.1016/j.foodchem.2019.125203] [PMID: 31330367]
[97]
Song, X.; Xie, J.; Zhang, M.; Zhang, Y.; Li, J.; Huang, Q.; He, L. Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1076, 103-109.
[http://dx.doi.org/10.1016/j.jchromb.2018.01.020] [PMID: 29406023]
[98]
Olšovská, J.; Kameník, Z.; Cajthaml, T. Hyphenated ultra high-performance liquid chromatography–Nano Quantity Analyte Detector technique for determination of compounds with low UV absorption. J. Chromatogr. A, 2009, 1216(30), 5774-5778.
[http://dx.doi.org/10.1016/j.chroma.2009.05.088] [PMID: 19539939]
[99]
Magnusson, L-E. Fundamental advances and applications of condensation nucleation light scattering detection for capillary electrophoresis; Southern Illinois University at Carbondale, 2002.
[100]
Magnusson, L.E.; Anisimov, M.P.; Koropchak, J.A. Evidence for sub-3 nanometer neutralized particle detection using glycerol as a condensing fluid. J. Aerosol Sci., 2010, 41(7), 637-654.
[http://dx.doi.org/10.1016/j.jaerosci.2010.04.002]
[101]
Magnusson, L.E.; Koropchak, J.A.; Anisimov, M.P.; Poznjakovskiy, V.M.; de la Mora, J.F. Correlations for vapor nucleating critical embryo parameters. J. Phys. Chem. Ref. Data, 2003, 32(4), 1387-1410.
[http://dx.doi.org/10.1063/1.1555590]
[102]
Hering, S.V.; Stolzenburg, M.R.; Quant, F.R.; Oberreit, D.R.; Keady, P.B. A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci. Technol., 2005, 39(7), 659-672.
[http://dx.doi.org/10.1080/02786820500182123]
[103]
Chemmalil, L.; Suravajjala, S.; See, K.; Jordan, E.; Furtado, M.; Sun, C.; Hosselet, S. A novel approach for quantitation of nonderivatized sialic acid in protein therapeutics using hydrophilic interaction chromatographic separation and nano quantity analyte detection. J. Pharm. Sci., 2015, 104(1), 15-24.
[http://dx.doi.org/10.1002/jps.24093] [PMID: 25515177]
[104]
Wang, J-f.; Yang, H-x.; Zhu, L.; Yin, L-h. Determination of kanamycin sulfate injection by HPLC-NQAD and HPLC-ELSD. Chin. J. Pharmac. Anal., 2014, 34(4), 644-648.
[105]
Fekete, S.; Ganzler, K.; Fekete, J. Simultaneous determination of polysorbate 20 and unbound polyethylene-glycol in protein solutions using new core–shell reversed phase column and condensation nucleation light scattering detection. J. Chromatogr. A, 2010, 1217(40), 6258-6266.
[http://dx.doi.org/10.1016/j.chroma.2010.08.028] [PMID: 20810121]
[106]
Risley, D.S.; Magnusson, L.E.; Morow, P.R.; Aburub, A. Analysis of magnesium from magnesium stearate in pharmaceutical tablet formulations using hydrophilic interaction liquid chromatography with nano quantity analyte detection. J. Pharm. Biomed. Anal., 2013, 78-79, 112-117.
[http://dx.doi.org/10.1016/j.jpba.2013.02.003] [PMID: 23474810]
[107]
Cohen, R.D.; Liu, Y.; Gong, X. Analysis of volatile bases by high performance liquid chromatography with aerosol-based detection. J. Chromatogr. A, 2012, 1229, 172-179.
[http://dx.doi.org/10.1016/j.chroma.2012.01.036] [PMID: 22305356]
[108]
Hutchinson, J.P.; Li, J.; Farrell, W.; Groeber, E.; Szucs, R.; Dicinoski, G.; Haddad, P.R. Comparison of the response of four aerosol detectors used with ultra high pressure liquid chromatography. J. Chromatogr. A, 2011, 1218(12), 1646-1655.
[http://dx.doi.org/10.1016/j.chroma.2011.01.062] [PMID: 21315361]
[109]
Lu, Q. Development and evaluation of a prototype commercial condensation nucleation light scattering detector for HPLC and a corona discharge neutralizer for electrospray aerosols used with condensation nucleation light scattering detection; Southern Illinois University at Carbondale, 2004.
[110]
Fujinari, E.M. High performance liquid chromatography-chemiluminescent nitrogen detection: HPLC-CLND. Developments in Food Science. 39; Elsevier, 1998, pp. 431-466.
[http://dx.doi.org/10.1016/S0167-4501(98)80019-8]
[111]
Fitch, W.L.; Szardenings, A.K.; Fujinari, E.M. Chemiluminescent nitrogen detection for HPLC: An important new tool in organic analytical chemistry. Tetrahedron Lett., 1997, 38(10), 1689-1692.
[http://dx.doi.org/10.1016/S0040-4039(97)00191-3]
[112]
Li, F.; Zhang, C.; Guo, X.; Feng, W. Chemiluminescence detection in HPLC and CE for pharmaceutical and biomedical analysis. Biomed. Chromatogr., 2003, 17(2-3), 96-105.
[http://dx.doi.org/10.1002/bmc.238] [PMID: 12717797]
[113]
Fujinari, E.M.; Courthaudon, L.O. Nitrogen-specific liquid chromatography detector based on chemiluminescence. J. Chromatogr. A, 1992, 592(1-2), 209-214.
[http://dx.doi.org/10.1016/0021-9673(92)85087-A]
[114]
Petritis, K.; Elfakir, C.; Dreux, M. HPLC-CLND for the analysis of underivatized amino acids. LC GC Eur., 2001, 14(7), 389-396.
[115]
Sun, J.; Guo, H.X.; Semin, D.; Cheetham, J. Direct separation and detection of biogenic amines by ion-pair liquid chromatography with chemiluminescent nitrogen detector. J. Chromatogr. A, 2011, 1218(29), 4689-4697.
[http://dx.doi.org/10.1016/j.chroma.2011.05.051] [PMID: 21665217]
[116]
Rasanen, I.; Kyber, M.; Szilvay, I.; Rintatalo, J.; Ojanperä, I. Single-calibrant quantification of seized synthetic opioids by liquid chromatography-chemiluminescence nitrogen detection. Forensic Sci. Int., 2019, 305, 110001.
[http://dx.doi.org/10.1016/j.forsciint.2019.110001] [PMID: 31704516]
[117]
Wei, L.; Lu, X.; Kang, X.; Song, Y. Determination of glutathione and cysteine in human breast milk by high-performance liquid chromatography with chemiluminescence detection for evaluating the oxidative stress and exposure to heavy metals of lactating women. Anal. Lett., 2020, 53(16), 2607-2618.
[http://dx.doi.org/10.1080/00032719.2020.1750024]
[118]
Li, J.; Zeng, W.; Lai, X.; Wang, X.; Xu, X.; Cai, H.; Wei, L.; Cheng, X. Selective and sensitive determination of tetracyclines by HPLC with chemiluminescence detection based on a cerium(IV)-methoxylated cypridina luciferin analogue system. J. Sep. Sci., 2018, 41(22), 4115-4121.
[http://dx.doi.org/10.1002/jssc.201800683] [PMID: 30211986]
[119]
Aksenov, A.A.; da Silva, R.; Knight, R.; Lopes, N.P.; Dorrestein, P.C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem., 2017, 1(7), 0054.
[http://dx.doi.org/10.1038/s41570-017-0054]
[120]
Korfmacher, W.A. Foundation review: Principles and applications of LC-MS in new drug discovery. Drug Discov. Today, 2005, 10(20), 1357-1367.
[http://dx.doi.org/10.1016/S1359-6446(05)03620-2] [PMID: 16253874]
[121]
de Velde, F.; Alffenaar, J.W.C.; Wessels, A.M.A.; Greijdanus, B.; Uges, D.R.A. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1771-1777.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.038] [PMID: 19457725]
[122]
Le, A.; Ng, A.; Kwan, T.; Cusmano-Ozog, K.; Cowan, T.M. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 944, 166-174.
[http://dx.doi.org/10.1016/j.jchromb.2013.11.017] [PMID: 24316529]
[123]
Fabresse, N.; Fall, F.; Etting, I.; Devillier, P.; Alvarez, J.C.; Grassin-Delyle, S. LC–MS/MS determination of tranexamic acid in human plasma after phospholipid clean-up. J. Pharm. Biomed. Anal., 2017, 141, 149-156.
[http://dx.doi.org/10.1016/j.jpba.2017.04.024] [PMID: 28445815]
[124]
Yuan, Y.; Zhang, M.; Fan, X.L.; Hu, C.; Jin, S.; Van Schepdael, A.; Hoogmartens, J.; Adams, E. Analysis of impurities in vertilmicin sulfate by liquid chromatography ion-trap mass spectrometry. J. Pharm. Biomed. Anal., 2013, 80, 1-8.
[http://dx.doi.org/10.1016/j.jpba.2013.02.026] [PMID: 23518304]
[125]
Shishov, A.; Nechaeva, D.; Bulatov, A. HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchem. J., 2019, 150, 104080.
[http://dx.doi.org/10.1016/j.microc.2019.104080]
[126]
Krnáč, D.; Reiffová, K.; Rolinski, B. A new HPLC-MS/MS method for simultaneous determination of Cyclosporine A, Tacrolimus, Sirolimus and Everolimus for routine therapeutic drug monitoring. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1128, 121772.
[http://dx.doi.org/10.1016/j.jchromb.2019.121772] [PMID: 31484099]
[127]
Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal., 2018, 152, 102-110.
[http://dx.doi.org/10.1016/j.jpba.2018.01.031] [PMID: 29414000]
[128]
Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal., 2020, 186, 113273.
[http://dx.doi.org/10.1016/j.jpba.2020.113273] [PMID: 32251979]
[129]
Schmidt, S.; Hoffmann, H.; Garbe, L.A.; Schneider, R.J. Liquid chromatography–tandem mass spectrometry detection of diclofenac and related compounds in water samples. J. Chromatogr. A, 2018, 1538, 112-116.
[http://dx.doi.org/10.1016/j.chroma.2018.01.037] [PMID: 29397981]
[130]
Bollen, P.D.J.; de Graaff-Teulen, M.J.A.; Schalkwijk, S.; van Erp, N.P.; Burger, D.M. Development and validation of an UPLC-MS/MS bioanalytical method for simultaneous quantification of the antiretroviral drugs dolutegravir, elvitegravir, raltegravir, nevirapine and etravirine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1105, 76-84.
[http://dx.doi.org/10.1016/j.jchromb.2018.12.008] [PMID: 30572204]
[131]
Ståhlberg, J. Essentials in Modern HPLC Separations, 2nd; Elsevier, 2000.
[132]
García-Alvarez-Coque, M; Ramis-Ramos, G; Ruiz-Angel, M. Liquid chromatography| ion pair.Eng. Encycl. Analy. Sci; Elsevier, 2015, pp. 117-126.
[133]
Hopfgartner, G.; Varesio, E.; Tschäppät, V.; Grivet, C.; Bourgogne, E.; Leuthold, L.A. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom., 2004, 39(8), 845-855.
[http://dx.doi.org/10.1002/jms.659] [PMID: 15329837]
[134]
Guironnet, A.; Sanchez-Cid, C.; Vogel, T.M.; Wiest, L.; Vulliet, E. Aminoglycosides analysis optimization using ion pairing liquid chromatography coupled to tandem mass spectrometry and application on wastewater samples. J. Chromatogr. A, 2021, 1651, 462133.
[http://dx.doi.org/10.1016/j.chroma.2021.462133] [PMID: 34087719]
[135]
(a) McCalley, D.V. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? J. Chromatogr. A, 2007, 1171(1-2), 46-55.;
(b) Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds J. Chromatogr. A, 1990, 499, 177-96.
[http://dx.doi.org/10.1016/j.chroma.2007.09.047] [PMID: 17931636]
[136]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[http://dx.doi.org/10.1007/s00216-011-5308-5] [PMID: 21879300]
[137]
Periat, A.; Boccard, J.; Veuthey, J.L.; Rudaz, S.; Guillarme, D. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. J. Chromatogr. A, 2013, 1312, 49-57.
[http://dx.doi.org/10.1016/j.chroma.2013.08.097] [PMID: 24034137]
[138]
Periat, A.; Kohler, I.; Bugey, A.; Bieri, S.; Versace, F.; Staub, C.; Guillarme, D. Hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry: Effect of electrospray ionization source geometry on sensitivity. J. Chromatogr. A, 2014, 1356, 211-220.
[http://dx.doi.org/10.1016/j.chroma.2014.06.066] [PMID: 25017394]
[139]
Ishii, R.; Horie, M.; Chan, W.; MacNeil, J. Multi-residue quantitation of aminoglycoside antibiotics in kidney and meat by liquid chromatography with tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(12), 1509-1519.
[http://dx.doi.org/10.1080/02652030802189740] [PMID: 19680860]
[140]
Tao, Y.; Chen, D.; Yu, H.; Huang, L.; Liu, Z.; Cao, X.; Yan, C.; Pan, Y.; Liu, Z.; Yuan, Z. Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography–tandem mass spectrometry. Food Chem., 2012, 135(2), 676-683.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.086] [PMID: 22868145]
[141]
Kumar, P.; Rubies, A.; Companyó, R.; Centrich, F. Hydrophilic interaction chromatography for the analysis of aminoglycosides. J. Sep. Sci., 2012, 35(4), 498-504.
[http://dx.doi.org/10.1002/jssc.201100860] [PMID: 22282410]
[142]
Kawano, S. Analysis of impurities in streptomycin and dihydrostreptomycin by hydrophilic interaction chromatography/electrospray ionization quadrupole ion trap/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(6), 907-914.
[http://dx.doi.org/10.1002/rcm.3936] [PMID: 19224534]
[143]
Jiang, W.; Appelblad, P.; Jonsson, T.; Hemstrom, P. Analysis of aminoglycosides with a zwitterionic HILIC stationary phase and mass spectrometry detection. Chromatography Today., 2011, 5, 26.
[144]
Scherf-Clavel, O.; Kinzig, M.; Stoffel, M.S.; Fuhr, U.; Sörgel, F. A HILIC-MS/MS assay for the quantification of metformin and sitagliptin in human plasma and urine: A tool for studying drug transporter perturbation. J. Pharm. Biomed. Anal., 2019, 175, 112754.
[http://dx.doi.org/10.1016/j.jpba.2019.07.002] [PMID: 31336285]
[145]
Camperi, J.; Combès, A.; Fournier, T.; Pichon, V.; Delaunay, N. Analysis of the human chorionic gonadotropin protein at the intact level by HILIC-MS and comparison with RPLC-MS. Anal. Bioanal. Chem., 2020, 412(18), 4423-4432.
[http://dx.doi.org/10.1007/s00216-020-02684-8] [PMID: 32377867]
[146]
Mullangi, S.; Ravindhranath, K.; Panchakarla, R.K. An efficient HILIC-MS/MS method for the trace level determination of three potential genotoxic impurities in aripiprazole active drug substance. J. Anal. Sci. Technol., 2021, 12(1), 21.
[http://dx.doi.org/10.1186/s40543-021-00273-7]
[147]
Douša, M.; Jireš, J. HILIC-MS determination of dimethylamine in the active pharmaceutical ingredients and in the dosage forms of metformin. J. Pharm. Biomed. Anal., 2020, 191, 113573.
[http://dx.doi.org/10.1016/j.jpba.2020.113573] [PMID: 32896809]
[148]
Cheng, C.; Liu, S.; Mueller, B.J.; Yan, Z. A generic static headspace gas chromatography method for determination of residual solvents in drug substance. J. Chromatogr. A, 2010, 1217(41), 6413-6421.
[http://dx.doi.org/10.1016/j.chroma.2010.08.016] [PMID: 20801455]
[149]
Hinshaw, J.V. A Compendium of GC Detection. Past Present, 2018.
[150]
de Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures. Anal. Chem., 2010, 82(15), 6457-6462.
[http://dx.doi.org/10.1021/ac1006574]
[151]
Poole, C.F. Ionization-based detectors for gas chromatography. J. Chromatogr. A, 2015, 1421, 137-153.
[http://dx.doi.org/10.1016/j.chroma.2015.02.061] [PMID: 25757823]
[152]
Ragunathan, N.; Krock, K.A.; Klawun, C.; Sasaki, T.A.; Wilkins, C.L. Gas chromatography with spectroscopic detectors. J. Chromatogr. A, 1999, 856(1-2), 349-397.
[http://dx.doi.org/10.1016/S0021-9673(99)00819-5] [PMID: 10526796]
[153]
Almeida, C.; Fernandes, J.O.; Cunha, S.C. A novel dispersive liquid–liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC–MS) method for the determination of eighteen biogenic amines in beer. Food Control, 2012, 25(1), 380-388.
[http://dx.doi.org/10.1016/j.foodcont.2011.10.052]
[154]
Wang, D.; Kong, J.; Wu, J.; Wang, X.; Lai, M. GC–MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett., 2017, 642, 7-13.
[http://dx.doi.org/10.1016/j.neulet.2017.01.039] [PMID: 28111353]
[155]
Isoherranen, N.; Soback, S. Determination of gentamicin after trimethylsilylimidazole and trifluoroacetic anhydride derivatization using gas chromatography and negative ion chemical ionization ion trap mass spectrometry. Analyst, 2000, 125(9), 1573-1576.
[http://dx.doi.org/10.1039/b003710i]
[156]
Skoog, DA; Holler, FJ; Crouch, SR Principles of instrumental analysis; Cengage learning, 2017.
[157]
Poole, C. Gas chromatography; Elsevier, 2021.
[158]
Uyanik, A. Gas chromatography in anaesthesia. I. A brief review of analytical methods and gas chromatographic detector and column systems. J. Chromatogr. B. Biomed. Sci.Appl., 2000, 693(1), 1-9.
[159]
Tranchida, P.Q.; Mondello, L. Detectors and basic data analysis. Sep Sci Technol. 12; Elsevier, 2020, pp. 205-227.
[160]
Woźniak, M.K.; Banaszkiewicz, L.; Wiergowski, M.; Tomczak, E.; Kata, M.; Szpiech, B.; Namieśnik, J.; Biziuk, M. Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicol., 2020, 38(1), 42-58.
[http://dx.doi.org/10.1007/s11419-019-00485-y]
[161]
Verma, P.; Bajaj, A.; Tripathi, R.; Shukla, S.K.; Nagpal, S. Development and validation of the method for the detection of glimepiride via derivatization employing N-methyl-N-(trimethylsilyl) trifluoroacetamide using gas chromatography-mass spectrometry. Egypt. J. Forensic Sci., 2021, 11, 1-9.
[162]
van Tricht, E.; Geurink, L.; Backus, H.; Germano, M.; Somsen, G.W.; Sänger-van de Griend, C.E. One single, fast and robust capillary electrophoresis method for the direct quantification of intact adenovirus particles in upstream and downstream processing samples. Talanta, 2017, 166, 8-14.
[http://dx.doi.org/10.1016/j.talanta.2017.01.013] [PMID: 28213262]
[163]
Wuethrich, A.; Quirino, J.P. Derivatisation for separation and detection in capillary electrophoresis (2015–2017). Electrophoresis, 2018, 39(1), 82-96.
[http://dx.doi.org/10.1002/elps.201700252] [PMID: 28758685]
[164]
Huidobro, A.L.; García, A.; Barbas, C. Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection. J. Pharm. Biomed. Anal., 2009, 49(5), 1303-1307.
[http://dx.doi.org/10.1016/j.jpba.2009.03.005] [PMID: 19361942]
[165]
El-Attug, M.N.; Hoogmartens, J.; Adams, E.; Van Schepdael, A. Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances. J. Pharm. Biomed. Anal., 2012, 58, 49-57.
[http://dx.doi.org/10.1016/j.jpba.2011.09.032] [PMID: 22015240]
[166]
El-Attug, M.N.; Adams, E.; Van Schepdael, A. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C4D) for the analysis of amikacin and its related substances. Electrophoresis, 2012, 33(17), 2777-2782.
[http://dx.doi.org/10.1002/elps.201100688] [PMID: 22965725]
[167]
McMenamin, M.E.; Himmelfarb, J.; Nolin, T.D. Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(28), 3274-3281.
[http://dx.doi.org/10.1016/j.jchromb.2009.05.046] [PMID: 19515618]
[168]
Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 964, 116-127.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.025] [PMID: 24731621]
[169]
Hassan, H.M.A.; Alsohaimi, I.H.; El-Sayed, M.Y.; Ali, I.I.; El-Didamony, A.M.; Altaleb, H.A.; Alshammari, M.S. Selective spectrofluorimetric approach for the assessment of two antipsychotic drugs through derivatization with O-Phthalaldehyde. Pharmaceuticals, 2022, 15(10), 1174.
[http://dx.doi.org/10.3390/ph15101174] [PMID: 36297286]
[170]
Fukuda, T.; Iwata, H.; Kishikawa, N.; El-Maghrabey, M.H.; Ohyama, K.; Kawakami, S.; Wada, M.; Kuroda, N. Selective fluorescence labeling of myristicin using Mizoroki-Heck coupling reaction. Application to nutmeg powder, oil, and human plasma samples. J. Chromatogr. A, 2022, 1681, 463465.
[http://dx.doi.org/10.1016/j.chroma.2022.463465] [PMID: 36116367]
[171]
Zeid, A.M.; Aboshabana, R.; Ibrahim, F.A. First-order derivative synchronous spectrofluorimetric determination of two antihypertensive drugs, metolazone and valsartan, in pharmaceutical and biological matrices. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 267(Pt 2), 120591.
[http://dx.doi.org/10.1016/j.saa.2021.120591] [PMID: 34789407]
[172]
Ali, M.F.B.; Uejo, Y.; Kishikawa, N.; Ohyama, K.; Kuroda, N. A selective and highly sensitive high performance liquid chromatography with fluorescence derivatization approach based on Sonogashira coupling reaction for determination of ethinyl estradiol in river water samples. J. Chromatogr. A, 2020, 1628, 461440.
[http://dx.doi.org/10.1016/j.chroma.2020.461440] [PMID: 32822980]
[173]
Christofi, M.; Markopoulou, C.K.; Tzanavaras, P.D.; Zacharis, C.K. UHPLC-fluorescence method for the determination of trace levels of hydrazine in allopurinol and its formulations: Validation using total-error concept. J. Pharm. Biomed. Anal., 2020, 187, 113354.
[http://dx.doi.org/10.1016/j.jpba.2020.113354] [PMID: 32416339]
[174]
Chen, W.; Zhang, S.; You, J.; Chen, Z.; Yue, M. Analysis of fatty acids in trichosanthes kirilowii maxim by MSPD and fluorescence derivatization. J. Chromatogr. Sci., 2018, 56(10), 941-947.
[PMID: 29982360]
[175]
Fedorowicz, J.; Wierzbicka, M.; Cebrat, M.; Wiśniewska, P.; Piątek, R.; Zalewska-Piątek, B.; Szewczuk, Z.; Sączewski, J. Application of safirinium N-hydroxysuccinimide esters to derivatization of peptides for high-resolution mass spectrometry, Tandem mass spectrometry, and fluorescent labeling of bacterial cells. Int. J. Mol. Sci., 2020, 21(24), 9643.
[http://dx.doi.org/10.3390/ijms21249643] [PMID: 33348897]
[176]
Huang, T.; Garceau, M.E.; Gao, P. Liquid chromatographic determination of residual hydrogen peroxide in pharmaceutical excipients using platinum and wired enzyme electrodes. J. Pharm. Biomed. Anal., 2003, 31(6), 1203-1210.
[http://dx.doi.org/10.1016/S0731-7085(03)00022-0] [PMID: 12667936]
[177]
Yue, H.; Bu, X.; Huang, M.H.; Young, J.; Raglione, T. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection. Int. J. Pharm., 2009, 375(1-2), 33-40.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.027] [PMID: 19481688]
[178]
Ohira, S.I.; Kaneda, K.; Matsuzaki, T.; Mori, S.; Mori, M.; Toda, K. Universal HPLC detector for hydrophilic organic compounds by means of total organic carbon detection. Anal. Chem., 2018, 90(11), 6461-6467.
[http://dx.doi.org/10.1021/acs.analchem.7b04849] [PMID: 29733193]
[179]
Shelor, C.P.; Yoshikawa, K.; Dasgupta, P.K. Automated programmable preparation of carbonate-bicarbonate eluents for ion chromatography with pressurized carbon dioxide. Anal. Chem., 2017, 89(18), 10063-10070.
[http://dx.doi.org/10.1021/acs.analchem.7b02808] [PMID: 28838239]
[180]
Zhang, M.; Stamos, B.N.; Dasgupta, P.K. Admittance detector for high impedance systems: Design and applications. Anal. Chem., 2014, 86(23), 11547-11553.
[http://dx.doi.org/10.1021/ac503247g] [PMID: 25354912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy