Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Perspective

Fluorescence Resonance Energy Transfer (FRET) based Sensors: An Advanced Multifactorial Approach in Modern Analysis

Author(s): Rohit Bhatia*, Amandeep Singh and Raj Kumar Narang

Volume 29, Issue 30, 2023

Published on: 10 October, 2023

Page: [2361 - 2365] Pages: 5

DOI: 10.2174/0113816128255541231009092936

Price: $65

conference banner
[1]
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric dendrimer-based materials: An overview of holistic-integrated molecular systems for Fluorescence Resonance Energy Transfer (FRET) phenomenon. Polymers 2021; 13(24): 4404.
[http://dx.doi.org/10.3390/polym13244404] [PMID: 34960954]
[2]
Wang L, Du W, Hu Z, Uvdal K, Li L, Huang W. Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angew Chem Int Ed 2019; 58(40): 14026-43.
[http://dx.doi.org/10.1002/anie.201901061] [PMID: 30843646]
[3]
Pehlivan ZS, Torabfam M, Kurt H, Ow-Yang C, Hildebrandt N, Yüce M. Aptamer and nanomaterial based FRET biosensors: A review on recent advances (2014-2019). Mikrochim Acta 2019; 186(8): 563.
[http://dx.doi.org/10.1007/s00604-019-3659-3] [PMID: 31338623]
[4]
Kaur A, Kaur P, Ahuja S. Förster Resonance Energy Transfer (FRET) and applications thereof. Anal Methods 2020; 12(46): 5532-50.
[http://dx.doi.org/10.1039/D0AY01961E] [PMID: 33210685]
[5]
Hochreiter B, Chong CS, Hartig A, et al. A novel FRET approach quantifies the interaction strength of peroxisomal targeting signals and their receptor in living cells. Cells 2020; 9(11): 2381.
[http://dx.doi.org/10.3390/cells9112381] [PMID: 33143123]
[6]
Liu Z, Shang C, Ma H, You M. An upconversion nanoparticle-based photostable FRET system for long-chain DNA sequence detection. Nanotechnology 2020; 31(23): 235501.
[http://dx.doi.org/10.1088/1361-6528/ab776d] [PMID: 32069442]
[7]
Li F, Li J, Dong B, Wang F, Fan C, Zuo X. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chem Soc Rev 2021; 50(9): 5650-67.
[http://dx.doi.org/10.1039/D0CS01281E] [PMID: 33729228]
[8]
Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine 2021; 16(28): 2539-6.
[http://dx.doi.org/10.2217/nnm-2021-0155] [PMID: 34814704]
[9]
Han AR, Durgannavar T, Ahn D, Chung SJ. A FRET‐based fluorescent probe to screen anticancer drugs, inhibiting p73 binding to MDM2. ChemBioChem 2021; 22(5): 830-3.
[http://dx.doi.org/10.1002/cbic.202000660] [PMID: 33103305]
[10]
Wang Z, He X, Yong T, Miao Y, Zhang C, Zhong Tang B. Multicolor tunable polymeric nanoparticle from the tetraphenylethylene cage for temperature sensing in living cells. J Am Chem Soc 2020; 142(1): 512-9.
[http://dx.doi.org/10.1021/jacs.9b11544] [PMID: 31829626]
[11]
Bischof H, Burgstaller S, Waldeck-Weiermair M, et al. Live-cell imaging of physiologically relevant metal ions using genetically encoded FRET-based probes. Cells 2019; 8(5): 492.
[http://dx.doi.org/10.3390/cells8050492] [PMID: 31121936]
[12]
Komatsu N, Terai K, Imanishi A, et al. A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Sci Rep 2018; 8(1): 8984.
[http://dx.doi.org/10.1038/s41598-018-27174-x] [PMID: 29895862]
[13]
Park SH, Ko W, Lee HS, Shin I. Analysis of protein-protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J Am Chem Soc 2019; 141(10): 4273-81.
[http://dx.doi.org/10.1021/jacs.8b10098] [PMID: 30707019]
[14]
Waadt R. Live imaging of abscisic acid dynamics using genetically encoded Fluorescence Resonance Energy Transfer (FRET)-based ABA biosensors. In: Abscisic Acid. New York, NY: Humana 2022; pp. 135-54.
[15]
Zhou Z, Wang Y, Hu P. Oxidation-responsive micelles for drug release monitoring and bioimaging of inflammation based on FRET effect in vitro and in vivo. Int J Nanomedicine 2022; 17: 2447-57.
[http://dx.doi.org/10.2147/IJN.S356202] [PMID: 35669000]
[16]
Wang Y, Breedijk RMP, Hink MA, et al. Dynamics of germinosome formation and FRET-based analysis of interactions between GerD and germinant receptor subunits in Bacillus cereus spores. Int J Mol Sci 2021; 22(20): 11230.
[http://dx.doi.org/10.3390/ijms222011230] [PMID: 34681888]
[17]
Jiménez-López J, Rodrigues SSM, Ribeiro DSM, Ortega-Barrales P, Ruiz-Medina A, Santos JLM. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochim Acta A Mol Biomol Spectrosc 2019; 212: 246-54.
[http://dx.doi.org/10.1016/j.saa.2019.01.005] [PMID: 30641365]
[18]
He J, Wink S, de Bont H, Le Dévédec S, Zhang Y, van de Water B. FRET biosensor-based kinase inhibitor screen for ERK and AKT activity reveals differential kinase dependencies for proliferation in TNBC cells. Biochem Pharmacol 2019; 169: 113640.
[http://dx.doi.org/10.1016/j.bcp.2019.113640] [PMID: 31536726]
[19]
Rectenwald JM, Hardy PB, Norris-Drouin JL, et al. A general TR-FRET assay platform for high-throughput screening and characterizing inhibitors of methyl-lysine reader proteins. SLAS Discov 2019; 24(6): 693-700.
[http://dx.doi.org/10.1177/2472555219844569]
[20]
Yang J, Davis T, Kazerouni AS, et al. Longitudinal fret imaging of glucose and lactate dynamics and response to therapy in breast cancer cells. Mol Imaging Biol 2022; 24(1): 144-55.
[http://dx.doi.org/10.1007/s11307-021-01639-4] [PMID: 34611767]
[21]
Kong X, Li M, Dong B, Yin Y, Song W, Lin W. An ultrasensitivity fluorescent probe based on the ict-fret dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem 2019; 91(24): 15591-8.
[http://dx.doi.org/10.1021/acs.analchem.9b03639] [PMID: 31726828]
[22]
Murai S, Takakura K, Sumimoto K, et al. A FRET biosensor, SMART, monitors necroptosis in renal tubular epithelial cells in a cisplatin-induced kidney injury model. bioRxiv 2022.2022.
[23]
Bernegger S, Brunner C, Vizovišek M, et al. A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Sci Rep 2020; 10(1): 10563.
[http://dx.doi.org/10.1038/s41598-020-67578-2] [PMID: 32601479]
[24]
Mirsadoughi E, Nemati F, Oroojalian F, Hosseini M. Turn-on FRET-based cysteine sensor by sulfur-doped carbon dots and Au nanoparticles decorated WS2 nanosheet. Spectrochim Acta A Mol Biomol Spectrosc 2022; 272: 120903.
[http://dx.doi.org/10.1016/j.saa.2022.120903] [PMID: 35123302]
[25]
Yang J, Huang Y, Cui H, Li L, Ding Y. A FRET fluorescent sensor for ratiometric and visual detection of sulfide based on carbon dots and silver nanoclusters. J Fluoresc 2022; 32(5): 1815-23.
[http://dx.doi.org/10.1007/s10895-022-02981-8] [PMID: 35704138]
[26]
Chan KK, Yap SHK, Giovanni D, Sum TC, Yong K-T. water-stable perovskite quantum dots-based fret nanosensor for the detection of rhodamine 6g in water, food, and biological samples. Microchem J 2022; 180: 107624.
[http://dx.doi.org/10.1016/j.microc.2022.107624]
[27]
Feng D, Ren M, Miao Y, et al. Dual selective sensor for exosomes in serum using magnetic imprinted polymer isolation sandwiched with aptamer/graphene oxide based FRET fluorescent ignition. Biosens Bioelectron 2022; 207: 114112.
[http://dx.doi.org/10.1016/j.bios.2022.114112] [PMID: 35429796]
[28]
Tsai HY, Algar WR. A dendrimer-based time-gated concentric FRET configuration for multiplexed sensing. ACS Nano 2022; 16(5): 8150-60.
[http://dx.doi.org/10.1021/acsnano.2c01473] [PMID: 35499916]
[29]
Ren Y, Cao L, Zhang X, et al. A novel fluorescence resonance energy transfer (FRET)-based paper sensor with smartphone for quantitative detection of Vibrio parahaemolyticus. Food Control 2023; 145: 109412.
[http://dx.doi.org/10.1016/j.foodcont.2022.109412]
[30]
Bhuckory S, Lahtinen S, Höysniemi N, et al. Understanding FRET in upconversion nanoparticle nucleic acid biosensors. Nano Lett 2023; 23(6): 2253-61.
[http://dx.doi.org/10.1021/acs.nanolett.2c04899] [PMID: 36729707]
[31]
Verma AK, Noumani A, Yadav AK, Solanki PR. FRET based biosensor: Principle applications recent advances and challenges. Diagnostics 2023; 13(8): 1375.
[http://dx.doi.org/10.3390/diagnostics13081375] [PMID: 37189476]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy