Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploration of the Potential Mechanism of Yujin Powder Treating Dampness-heat Diarrhea by Integrating UPLC-MS/MS and Network Pharmacology Prediction

Author(s): Li-dong Jiang, Wang-dong Zhang, Bao-shan Wang, Yan-zi Cai, Xue Qin, Wen-bo Zhao, Peng Ji, Zi-wen Yuan, Yan-ming Wei and Wan-ling Yao*

Volume 27, Issue 10, 2024

Published on: 10 October, 2023

Page: [1466 - 1479] Pages: 14

DOI: 10.2174/0113862073246096230926045428

Price: $65

Abstract

Background: Yujin powder (YJP) is a classic prescription for treating dampness-heat diarrhea (DHD) in Traditional Chinese Medicine (TCM), but the main functional active ingredients and the exact mechanisms have not been systematically studied.

Objectives: This study aimed to preliminarily explore the potential mechanisms of YJP for treating DHD by integrating UPLC-MS/MS and network pharmacology methods.

Methods: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the ingredients of YJP. And then, the targets of these components were predicted and screened from TCMSP, SwissTargetPrediction databases. The disease targets related to DHD were obtained by using the databases of GeneCards, OMIM, DisGeNET, TTD, and DrugBank. The protein-protein interaction networks (PPI) of YJP-DHD were constructed using the STRING database and Origin 2022 software to identify the cross-targets by screening the core-acting targets and a network diagram by Cytoscape 3.8.2 software was also constructed. Metascape database was used for performing GO and KEGG enrichment anlysis on the core genes. Finally, molecular docking was used to verify the results with AutoDock 4.2.6, AutoDock Tools 1.5.6, PyMOL 2.4.0, and Open Babel 2.3.2 software.

Results: 597 components in YJP were detected, and 153 active components were obtained through database screening, among them the key active ingredients include coptisine, berberine, baicalein, etc. There were 362 targets treating DHD, among them the core targets included TNF, IL-6, ALB, etc. The enriched KEGG pathways mainly involve PI3K-Akt, TNF, MAPK, etc. Molecular docking results showed that coptisine, berberine, baicalein, etc., had a strong affinity with TNF, IL-6, and MAPK14. Therefore, TNF, IL-6, MAPK14, ALB, etc., are the key targets of the active ingredients of YJP coptisine, baicalein, and berberine, etc. They have the potential to regulate PI3K-Akt, MAPK, and TNF signalling pathways. The component-target-disease network diagram revealed that YJP treated DHD through the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury.

Conclusion: It is demonstrated that YJP treats DHD mainly through the main active ingredients coptisine, berberine, baicalein, etc. comprehensively exerting the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury, which will provide evidence for further in-depth studying the mechanism of YJP treating DHD.

Graphical Abstract

[1]
Troeger, C.; Khalil, I.A.; Blacker, B.F.; Molly, H.B.; Robert, C.R.J. Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: an analysis of the Global Burden of Disease Study 2017. Lancet Infect. Dis., 2020, 20(1), 60-79.
[http://dx.doi.org/10.1016/S1473-3099(19)30410-4] [PMID: 31678026]
[2]
Du, W.; Wang, X.; Xu, L.; Zhou, X.; Song, D.; Xu, Q. Editorial: Research advances in intestinal diseases and related diarrhea in animal production. Front. Vet. Sci., 2023, 10, 1201231.
[http://dx.doi.org/10.3389/fvets.2023.1201231] [PMID: 37215480]
[3]
Xu, Y.L. Study on intestinal microbial structure and fecal metabolomics in diarrheic piglets., Master Thesis, Anhui Agricultural Universit: Anhui, June 2020.
[4]
Lv, X.Y. Effect of Cornus officinalis-Cortex moutan onpiglet diarrhea caused by LT enterotoxigenic Escherichia coli., Master Thesis, Harbin University of Commerce: Harbin, June 2020.
[5]
Hur, T.Y.; Jung, Y.H.; Choe, C.Y.; Cho, Y.I.; Kang, S-J.; Lee, H-J.; Ki, K-S.; Baek, K-S.; Suh, G-H. The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Daehan Suyi Haghoeji, 2013, 53(2), 103-108.
[http://dx.doi.org/10.14405/kjvr.2013.53.2.103]
[6]
Woldemariam, S.; Zewde, S.; Hameto, D.; Habtamu, A. Major causes of lamb mortality at Ebinat woreda, Amhara National Regional State, North-western Ethiopia. Ethiop. Vet. J., 2014, 18, 57-71.
[7]
Liu, Z.J.; Xu, J.Q. Chinese veterinary medicine for animal medicine; People's medical publishing house: Bei Jing, 2002.
[8]
Wang, Y.G.; Shi, S.F. Chinese veterinary medicine for animal medicine; People's medical publishing house: Bei Jing, 2020.
[9]
Xiong, R.; Li, W.; Li, Y.; Zheng, K.; Zhang, T.; Gao, M.; Li, Y.; Hu, L.; Hu, C. Er Shen Wan extract reduces diarrhea and regulates AQP 4 and NHE 3 in a rat model of spleen-kidney Yang deficiency–induced diarrhea. Biomed. Pharmacother., 2018, 98, 834-846.
[http://dx.doi.org/10.1016/j.biopha.2018.01.023] [PMID: 29571254]
[10]
Zhang, Y.; Wen, W. Treatment of equine damp-heat diarrhea with modified Jinsan and acupoint application of traditional Chinese medicine. Chin. J. Vet. Med., 2012, 48(2), 89.
[11]
Ma, H.R. Modified Yujin Powder for Calf Diarrhea. Journal of Trad. Chin. Veter. Med., 2007, 26(5), 1.
[12]
Fu, N.X. Study on Jiawei Yujin Powder in the treatment of Bovine Acute Enteritis. Agricultural Technical Services., 2015, 32(11), 1.
[13]
Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How can synergism of traditional medicines benefit from network pharmacology? Molecules, 2017, 22(7), 1135.
[http://dx.doi.org/10.3390/molecules22071135] [PMID: 28686181]
[14]
Azeem, M.; Jamil, M.K.; Shang, Y. Notes on the localization of generalized hexagonal cellular networks. Mathematics, 2023, 11(4), 844.
[http://dx.doi.org/10.3390/math11040844]
[15]
Villoutreix, B.; Bastard, K.; Sperandio, O.; Fahraeus, R.; Poyet, J.L.; Calvo, F.; Déprez, B.; Miteva, M. In silico-in vitro screening of protein-protein interactions: towards the next generation of therapeutics. Curr. Pharm. Biotechnol., 2008, 9(2), 103-122.
[http://dx.doi.org/10.2174/138920108783955218] [PMID: 18393867]
[16]
Xue, L.C.; Dobbs, D.; Bonvin, A.M.J.J.; Honavar, V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett., 2015, 589(23), 3516-3526.
[http://dx.doi.org/10.1016/j.febslet.2015.10.003] [PMID: 26460190]
[17]
Laali, K.K.; Greves, W.J.; Correa-Smits, S.J.; Zwarycz, A.T.; Bunge, S.D.; Borosky, G.L.; Manna, A.; Paulus, A.; Chanan-Khan, A. Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: Synthesis, structural studies, Computational/Docking and in-vitro bioassay. J. Fluor. Chem., 2018, 206, 82-98.
[http://dx.doi.org/10.1016/j.jfluchem.2017.11.013]
[18]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[19]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[20]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5]
[21]
Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian Inheritance in Man (OMIM ®): Victor MCKUSICK 's magnum opus. Am. J. Med. Genet. A., 2021, 185(11), 3259-3265.
[http://dx.doi.org/10.1002/ajmg.a.62407] [PMID: 34169650]
[22]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[23]
Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res., 2022, 50(D1), D1398-D1407.
[http://dx.doi.org/10.1093/nar/gkab953] [PMID: 34718717]
[24]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[25]
Yao, W.; Yang, C.; Wen, Y.; Zhang, W.; Zhang, X.; Ma, Q.; Ji, P.; Hua, Y.; Wei, Y. Treatment effects and mechanisms of Yujin Powder on rat model of large intestine dampness-heat syndrome. J. Ethnopharmacol., 2017, 202, 265-280.
[http://dx.doi.org/10.1016/j.jep.2017.03.030] [PMID: 28330724]
[26]
Zhou, Y.X.; Gong, X.H.; Zhang, H.; Peng, C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. Pharmacother., 2020, 130, 110505.
[http://dx.doi.org/10.1016/j.biopha.2020.110505] [PMID: 32682112]
[27]
Gu, P.; Zhu, L.; Liu, Y.; Zhang, L.; Liu, J.; Shen, H. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int. Immunopharmacol., 2017, 50, 152-160.
[http://dx.doi.org/10.1016/j.intimp.2017.06.022] [PMID: 28666238]
[28]
Wang, Y.; Liu, J.; Huang, Z.; Li, Y.; Liang, Y.; Luo, C.; Ni, C.; Xie, J.; Su, Z.; Chen, J.; Li, C. Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response. Eur. J. Pharmacol., 2021, 896, 173912.
[http://dx.doi.org/10.1016/j.ejphar.2021.173912] [PMID: 33508280]
[29]
Li, C.; Xi, Y.; Li, S.; Zhao, Q.; Cheng, W.; Wang, Z.; Zhong, J.; Niu, X.; Chen, G. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol. Immunol., 2015, 67(2)(2 Pt B), 444-454.
[http://dx.doi.org/10.1016/j.molimm.2015.07.013] [PMID: 26224047]
[30]
Zhu, L.; Gu, P.; Shen, H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int. Immunopharmacol., 2019, 68, 242-251.
[http://dx.doi.org/10.1016/j.intimp.2018.12.036] [PMID: 30743078]
[31]
Yao, J. Zhao, L.; Zhao, Q.; Zhao, Y.; Sun, Y.; Zhang, Y.; Miao, H.; You, Q-D.; Hu, R.; Guo, Q-L. NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis., 2014, 5(6), e1283.
[http://dx.doi.org/10.1038/cddis.2014.221] [PMID: 24901054]
[32]
Ding, K. Tan, Y.Y.; Ding, Y.; Fang, Y.; Yang, X.; Fang, J.; Xu, D.C.; Zhang, H.; Lu, W.; Li, M.; Huang, S.C.; Cai, M.L.; Song, Y.; Ding, Y.J.; Zhang, S.M. β‐Sitosterol improves experimental colitis in mice with a target against pathogenic bacteria. J. Cell. Biochem., 2019, 120(4), 5687-5694.
[http://dx.doi.org/10.1002/jcb.27853] [PMID: 30548286]
[33]
Sayar, S.; Kurbuz, K.; Kahraman, R.; Caliskan, Z.; Atalay, R.; Ozturk, O.; Doganay, H.L.; Ozdil, K. A practical marker to determining acute severe ulcerative colitis: CRP/albumin ratio. North. Clin. Istanb., 2019, 7(1), 49-55.
[PMID: 32232203]
[34]
Tanriverdi, Z.; Gungoren, F.; Tascanov, M.B.; Besli, F.; Altiparmak, I.H. Comparing the diagnostic value of the C-reactive protein to albumin ratio with other inflammatory markers in patients with stable angina pectoris. Angiology, 2020, 71(4), 360-365.
[http://dx.doi.org/10.1177/0003319719897490] [PMID: 31888345]
[35]
Lai, Y.T. Perificam in combination with mesalazine for patients with mild to moderate ulcerative colitis Clinical efficacy and its influence on CRP and ESR levels. Anti Infect Pharm, 2019, 16(2), 332-334.
[36]
Qin, G.; Tu, J.; Liu, L.; Luo, L.; Wu, J.; Tao, L.; Zhang, C.; Geng, X.; Chen, X.; Ai, X.; Shen, B.; Pan, W. Serum albumin and C-reactive protein/albumin ratio are useful biomarkers of Crohn’s disease activity. Med. Sci. Monit., 2016, 22, 4393-4400.
[http://dx.doi.org/10.12659/MSM.897460] [PMID: 27848931]
[37]
Huang, J.B. Effect and Mechanisms of Huangqin Decoction Combined withRadix Actinidiae Chinensison Colorectal Cancer Mice withDamp-heat Ftagnation Syndrome., PhD Thesis, Zhejiang Chinese Medical University: Zhejiang, June 2022.
[38]
Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol. Ther., 2017, 175, 91-106.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.037] [PMID: 28216025]
[39]
Liu, H.Q.; An, Y.W.; Hu, A.Z.; Li, M.H.; Wu, J.L.; Liu, L.; Shi, Y.; Cui, G.H.; Chen, Y. Critical roles of the PI3K-Akt-mTOR signaling pathway in apoptosis and autophagy of astrocytes induced by methamphetamine. Open Chem., 2019, 17(1), 96-104.
[http://dx.doi.org/10.1515/chem-2019-0015]
[40]
Schuster, A.T.; Homer, C.R.; Kemp, J.R.; Nickerson, K.P.; Deutschman, E.; Kim, Y.; West, G.; Sadler, T.; Stylianou, E.; Krokowski, D.; Hatzoglou, M.; de la Motte, C.; Rubin, B.P.; Fiocchi, C.; McDonald, C.; Longworth, M.S. Chromosome-associated protein D3 promotes bacterial clearance in human intestinal epithelial cells by repressing expression of amino acid transporters. Gastroenterology, 2015, 148(7), 1405-1416.e3.
[http://dx.doi.org/10.1053/j.gastro.2015.02.013] [PMID: 25701737]
[41]
Zhu, L.; Shen, H.; Gu, P.Q.; Liu, Y.J.; Zhang, L.; Cheng, J.F. Baicalin alleviates TNBS induced colitis by inhibiting PI3K/AKT pathway activation. Exp. Ther. Med., 2020, 20(1), 581-590.
[http://dx.doi.org/10.3892/etm.2020.8718] [PMID: 32537016]
[42]
Li, C.; Wang, W. Molecular biology of aquaporins. Adv. Exp. Med. Biol., 2017, 969, 1-34.
[http://dx.doi.org/10.1007/978-94-024-1057-0_1] [PMID: 28258563]
[43]
Nishimura, H.; Yang, Y. Aquaporins in avian kidneys: function and perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 305(11), R1201-R1214.
[http://dx.doi.org/10.1152/ajpregu.00177.2013] [PMID: 24068044]
[44]
Liao, S.; Gan, L.; Lv, L.; Mei, Z. The regulatory roles of aquaporins in the digestive system. Genes Dis., 2021, 8(3), 250-258.
[http://dx.doi.org/10.1016/j.gendis.2019.12.011] [PMID: 33997172]
[45]
Ikarashi, N.; Kon, R.; Sugiyama, K. Aquaporins in the colon as a new therapeutic target in diarrhea and constipation. Int. J. Mol. Sci., 2016, 17(7), 1172.
[http://dx.doi.org/10.3390/ijms17071172] [PMID: 27447626]
[46]
Liu, C.; Zheng, Y.; Xu, W.; Wang, H.; Lin, N. Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BioMed Res. Int., 2014, 2014(3), 1-14.
[http://dx.doi.org/10.1155/2014/619465] [PMID: 25215286]
[47]
Feng, Y.J.; Li, Y.Y. The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J. Dig. Dis., 2011, 12(5), 327-332.
[http://dx.doi.org/10.1111/j.1751-2980.2011.00525.x] [PMID: 21955425]
[48]
Chen, Y.; Lu, S.; Zhang, Y.; Yu, J.; Deng, L.; Chen, H.; Zhang, Y.; Zhou, N.; Yuan, K.; Yu, L.; Xiong, Z.; Gui, X.; Yu, Y.; Min, W. TLR2 agonist Pam3CSK4 enhances the antibacterial functions of GM-CSF induced neutrophils to methicillin-resistant Staphylococcus aureus. Microb. Pathog., 2019, 130, 204-212.
[http://dx.doi.org/10.1016/j.micpath.2019.02.030] [PMID: 30885749]
[49]
Lee, I.A.; Hyun, Y.J.; Kim, D.H. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-κB activation. Eur. J. Pharmacol., 2010, 648(1-3), 162-170.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.046] [PMID: 20828550]
[50]
Liu, Y.; Liu, X.; Hua, W.; Wei, Q.; Fang, X.; Zhao, Z.; Ge, C.; Liu, C.; Chen, C.; Tao, Y.; Zhu, Y. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int. Immunopharmacol., 2018, 57, 121-131.
[http://dx.doi.org/10.1016/j.intimp.2018.01.049] [PMID: 29482156]
[51]
Lin, C.K.; Lin, Y.H.; Huang, T.C.; Shi, C.S.; Yang, C.T.; Yang, Y.L. VEGF mediates fat embolism-induced acute lung injury via VEGF receptor 2 and the MAPK cascade. Sci. Rep., 2019, 9(1), 11713.
[http://dx.doi.org/10.1038/s41598-019-47276-4] [PMID: 31406128]
[52]
Shibuya, H.; Hirohata, S. Differential effects of IFN-α on the expression of various TH2 cytokines in human CD4+ T cells. J. Allergy Clin. Immunol., 2005, 116(1), 205-212.
[http://dx.doi.org/10.1016/j.jaci.2005.03.016] [PMID: 15990796]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy