Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advancements in the Treatment of Alzheimer’s Disease: A Multitarget-directed Ligand Approach

Author(s): Sumit Kumar, Amol Mahajan, Ramesh Ambatwar and Gopal L. Khatik*

Volume 31, Issue 37, 2024

Published on: 09 October, 2023

Page: [6032 - 6062] Pages: 31

DOI: 10.2174/0109298673264076230921065945

Price: $65

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent develop-ment of multitarget-directed ligand research has been explored to target the complemen-tary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on “Pub-Med”, “ScienceDirect”, “ACS” and “Bentham Science” using the keywords neurodegen-erative diseases, Alzheimer’s disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review high-lights the current advancement and advantages of multitarget-directed ligands over tradi-tional single-targeted drugs and recent progress in their development to treat AD.

[1]
Patel, D.V.; Patel, N.R.; Kanhed, A.M.; Teli, D.M.; Patel, K.B.; Gandhi, P.M.; Patel, S.P.; Chaudhary, B.N.; Shah, D.B.; Prajapati, N.K.; Patel, K.V.; Yadav, M.R. Further studies on triazinoindoles as potential novel multitarget-directed anti-Alzheimer’s agents. ACS Chem. Neurosci., 2020, 11(21), 3557-3574.
[http://dx.doi.org/10.1021/acschemneuro.0c00448] [PMID: 33073564]
[2]
Blaikie, L.; Kay, G.; Kong, T.L.P. Current and emerging therapeutic targets of Alzheimer’s disease for the design of multi-target directed ligands. MedChemComm, 2019, 10(12), 2052-2072.
[http://dx.doi.org/10.1039/C9MD00337A] [PMID: 32206241]
[3]
Uddin, M.S.; Kabir, M.T.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/7039138] [PMID: 32411333]
[4]
Castanho, I.; Lunnon, K. Epigenetic Processes in Alzheimer’s Disease. In: Chromatin Signaling and Neurological Disorders; Elsevier Inc., 2019; pp. 153-180.
[http://dx.doi.org/10.1016/B978-0-12-813796-3.00008-0]
[5]
Pérez-Areales, F.J.; Garrido, M.; Aso, E.; Bartolini, M.; De Simone, A.; Espargaró, A.; Ginex, T.; Sabate, R.; Pérez, B.; Andrisano, V.; Puigoriol-Illamola, D.; Pallàs, M.; Luque, F.J.; Loza, M.I.; Brea, J.; Ferrer, I.; Ciruela, F.; Messeguer, A.; Muñoz-Torrero, D. Centrally active multitarget anti-Alzheimer agents derived from the antioxidant lead CR-6. J. Med. Chem., 2020, 63(17), 9360-9390.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00528] [PMID: 32706255]
[6]
Pasieka, A.; Panek, D.; Szałaj, N.; Espargaró, A.; Więckowska, A.; Malawska, B.; Sabaté, R.; Bajda, M. Dual inhibitors of amyloid-β and tau aggregation with amyloid-β disaggregating properties: Extended in cellulo, in silico, and kinetic studies of multifunctional anti-Alzheimer’s agents. ACS Chem. Neurosci., 2021, 12(11), 2057-2068.
[http://dx.doi.org/10.1021/acschemneuro.1c00235] [PMID: 34019757]
[7]
Zhao, J.; Shi, Q.; Tian, H.; Li, Y.; Liu, Y.; Xu, Z.; Robert, A.; Liu, Q.; Meunier, B. TDMQ20, a specific copper chelator, reduces memory impairments in Alzheimer’s disease mouse models. ACS Chem. Neurosci., 2021, 12(1), 140-149.
[http://dx.doi.org/10.1021/acschemneuro.0c00621] [PMID: 33322892]
[8]
Pawge, G.; Khatik, G.L. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem. Pharmacol., 2021, 190, 114651.
[http://dx.doi.org/10.1016/j.bcp.2021.114651] [PMID: 34118220]
[9]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement., 2022, 18(4), 700-789.
[http://dx.doi.org/10.1002/alz.12638] [PMID: 35289055]
[10]
Roggo, S. Inhibition of BACE, a promising approach to Alzheimer’s disease therapy. Curr. Top. Med. Chem., 2002, 2(4), 359-370.
[http://dx.doi.org/10.2174/1568026024607490] [PMID: 11966460]
[11]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[12]
Campora, M.; Francesconi, V.; Schenone, S.; Tasso, B.; Tonelli, M. Journey on naphthoquinone and anthraquinone derivatives: New insights in Alzheimer’s disease. Pharmaceuticals., 2021, 14(1), 33.
[http://dx.doi.org/10.3390/ph14010033] [PMID: 33466332]
[13]
Uddin, M.S.; Kabir, M.T.; Rahman, M.M.; Mathew, B.; Shah, M.A.; Ashraf, G.M. TV 3326 for Alzheimer’s dementia: A novel multimodal ChE and MAO inhibitors to mitigate Alzheimer’s-like neuropathology. J. Pharm. Pharmacol., 2020, 72(8), 1001-1012.
[http://dx.doi.org/10.1111/jphp.13244] [PMID: 32149402]
[14]
Morsy, A.; Trippier, P.C. Current and emerging pharmacological targets for the treatment of Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(s1), S145-S176.
[http://dx.doi.org/10.3233/JAD-190744] [PMID: 31594236]
[15]
Uddin, M.S.; Ashraf, G.M.; Mamun, A.A.; Mathew, B. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[16]
Arnsten, A.F.T.; Datta, D.; Del Tredici, K.; Braak, H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement., 2021, 17(1), 115-124.
[http://dx.doi.org/10.1002/alz.12192] [PMID: 33075193]
[17]
Evans, P.H. Free radicals in brain metabolism and pathology. Br. Med. Bull., 1993, 49(3), 577-587.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072632] [PMID: 8221024]
[18]
Samanta, S.; Rajasekhar, K.; Babagond, V.; Govindaraju, T. Small molecule inhibits metal-dependent and -independent multifaceted toxicity of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(8), 3611-3621.
[http://dx.doi.org/10.1021/acschemneuro.9b00216] [PMID: 31140779]
[19]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[20]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[21]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[22]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.R.; Snyder, P.J.; Giacobini, E.; Khachaturian, Z.S. Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research. J. Prev. Alzheimers Dis., 2019, 6(1), 2-15.
[PMID: 30569080]
[23]
Soma, S.; Suematsu, N.; Sato, A.Y.; Tsunoda, K.; Bramian, A.; Reddy, A.; Takabatake, K.; Karube, F.; Fujiyama, F.; Shimegi, S. Acetylcholine from the nucleus basalis magnocellularis facilitates the retrieval of well-established memory. Neurobiol. Learn. Mem., 2021, 183, 107484.
[http://dx.doi.org/10.1016/j.nlm.2021.107484] [PMID: 34175450]
[24]
Chaney, A.M.; Lopez-Picon, F.R.; Serrière, S.; Wang, R.; Bochicchio, D.; Webb, S.D.; Vandesquille, M.; Harte, M.K.; Georgiadou, C.; Lawrence, C.; Busson, J.; Vercouillie, J.; Tauber, C.; Buron, F.; Routier, S.; Reekie, T.; Snellman, A.; Kassiou, M.; Rokka, J.; Davies, K.E.; Rinne, J.O.; Salih, D.A.; Edwards, F.A.; Orton, L.D.; Williams, S.R.; Chalon, S.; Boutin, H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: A collaborative multi-modal study. Theranostics, 2021, 11(14), 6644-6667.
[http://dx.doi.org/10.7150/thno.56059] [PMID: 34093845]
[25]
Oddo, S.; LaFerla, F.M. The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J. Physiol. Paris, 2006, 99(2-3), 172-179.
[http://dx.doi.org/10.1016/j.jphysparis.2005.12.080] [PMID: 16448808]
[26]
Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed., 2015, 54(5), 1578-1582.
[http://dx.doi.org/10.1002/anie.201410456] [PMID: 25504761]
[27]
Guan, Z. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol. Sin., 2008, 29(7), 773-780.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00819.x] [PMID: 18565274]
[28]
Rui, W.; Reddy, H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57, 1041-1048.
[29]
Zhong, W.; Wu, A.; Berglund, K.; Gu, X.; Jiang, M.Q.; Talati, J.; Zhao, J.; Wei, L.; Yu, S.P. Pathogenesis of sporadic Alzheimer’s disease by deficiency of NMDA receptor subunit GluN3A. Alzheimers Dement., 2022, 18(2), 222-239.
[http://dx.doi.org/10.1002/alz.12398] [PMID: 34151525]
[30]
Yang, G.J.; Liu, H.; Ma, D.L.; Leung, C.H. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. J. Biol. Inorg. Chem., 2019, 24(8), 1159-1170.
[http://dx.doi.org/10.1007/s00775-019-01712-y] [PMID: 31486954]
[31]
Squitti, R.; Faller, P.; Hureau, C.; Granzotto, A.; White, A.R.; Kepp, K.P. Copper imbalance in Alzheimer’s disease and its link with the amyloid hypothesis: Towards a combined clinical, chemical, and genetic etiology. J. Alzheimers Dis., 2021, 83(1), 23-41.
[http://dx.doi.org/10.3233/JAD-201556] [PMID: 34219710]
[32]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[33]
Li, Y.; Jiao, Q.; Xu, H.; Du, X.; Shi, L.; Jia, F.; Jiang, H. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front. Mol. Neurosci., 2017, 10, 339.
[http://dx.doi.org/10.3389/fnmol.2017.00339] [PMID: 29114205]
[34]
Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[35]
Barão, S.; Moechars, D.; Lichtenthaler, S.F.; De Strooper, B. BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease. Trends Neurosci., 2016, 39(3), 158-169.
[http://dx.doi.org/10.1016/j.tins.2016.01.003] [PMID: 26833257]
[36]
Vassar, R.; Kandalepas, P.C. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(3), 20.
[http://dx.doi.org/10.1186/alzrt82] [PMID: 21639952]
[37]
Patel, S.; Bansoad, A.V.; Singh, R.; Khatik, G.L. BACE1: A key regulator in Alzheimer’s disease progression and current development of its inhibitors. Curr. Neuropharmacol., 2022, 20(6), 1174-1193.
[http://dx.doi.org/10.2174/1570159X19666211201094031] [PMID: 34852746]
[38]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[39]
Fahrenholz, F. Alpha-secretase as a therapeutic target. Curr. Alzheimer Res., 2007, 4(4), 412-417.
[http://dx.doi.org/10.2174/156720507781788837] [PMID: 17908044]
[40]
Basi, G.S.; Hemphill, S.; Brigham, E.F.; Liao, A.; Aubele, D.L.; Baker, J.; Barbour, R.; Bova, M.; Chen, X.H.; Dappen, M.S.; Eichenbaum, T.; Goldbach, E.; Hawkinson, J.; Lawler-Herbold, R.; Hu, K.; Hui, T.; Jagodzinski, J.J.; Keim, P.S.; Kholodenko, D.; Latimer, L.H.; Lee, M.; Marugg, J.; Mattson, M.N.; McCauley, S.; Miller, J.L.; Motter, R.; Mutter, L.; Neitzel, M.L.; Ni, H.; Nguyen, L.; Quinn, K.; Ruslim, L.; Semko, C.M.; Shapiro, P.; Smith, J.; Soriano, F.; Szoke, B.; Tanaka, K.; Tang, P.; Tucker, J.A.; Ye, X.M.; Yu, M.; Wu, J.; Xu, Y.; Garofalo, A.W.; Sauer, J.M.; Konradi, A.W.; Ness, D.; Shopp, G.; Pleiss, M.A.; Freedman, S.B.; Schenk, D. Amyloid precursor protein selective gamma-secretase inhibitors for treatment of Alzheimer’s disease. Alzheimers Res. Ther., 2010, 2(6), 36.
[http://dx.doi.org/10.1186/alzrt60] [PMID: 21190552]
[41]
Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[42]
Kumar, B.; Dwivedi, A.R.; Sarkar, B.; Gupta, S.K.; Krishnamurthy, S.; Mantha, A.K.; Parkash, J.; Kumar, V. 4,6-Diphenylpyrimidine derivatives as dual inhibitors of monoamine oxidase and acetylcholinesterase for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(1), 252-265.
[http://dx.doi.org/10.1021/acschemneuro.8b00220] [PMID: 30296051]
[43]
Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Front. Mol. Neurosci., 2019, 12, 143.
[http://dx.doi.org/10.3389/fnmol.2019.00143] [PMID: 31191248]
[44]
Fiore, M.; Forli, S.; Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): Medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem., 2016, 59(8), 3609-3634.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01457] [PMID: 26502061]
[45]
Duraisamy, S.; Bajpai, M.; Bughani, U.; Dastidar, S.G.; Ray, A.; Chopra, P. MK2: a novel molecular target for anti-inflammatory therapy. Expert Opin. Ther. Targets, 2008, 12(8), 921-936.
[http://dx.doi.org/10.1517/14728222.12.8.921] [PMID: 18620516]
[46]
Corrêa, S.A.L.; Eales, K.L. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J. Signal Transduct., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/649079] [PMID: 22792454]
[47]
Liu, S.L.; Wang, C.; Jiang, T.; Tan, L.; Xing, A.; Yu, J.T. The role of Cdk5 in Alzheimer’s disease. Mol. Neurobiol., 2016, 53(7), 4328-4342.
[http://dx.doi.org/10.1007/s12035-015-9369-x] [PMID: 26227906]
[48]
Silva, T.; Reis, J.; Teixeira, J.; Borges, F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev., 2014, 15, 116-145.
[http://dx.doi.org/10.1016/j.arr.2014.03.008] [PMID: 24726823]
[49]
Arfeen, M.; Bhagat, S.; Patel, R.; Prasad, S.; Roy, I.; Chakraborti, A.K.; Bharatam, P.V. Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK-3β inhibitors. Eur. J. Med. Chem., 2016, 121, 727-736.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.075] [PMID: 27423119]
[50]
Fan, S.J.; Huang, F.I.; Liou, J.P.; Yang, C.R. The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model. Cell Death Dis., 2018, 9(6), 655.
[http://dx.doi.org/10.1038/s41419-018-0688-5] [PMID: 29844403]
[51]
Vitolo, O.V.; Sant’Angelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci., 2002, 99(20), 13217-13221.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[52]
Cuadrado-tejedor, M.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 2012(3), 832-844.
[53]
Wu, Y.; Li, Z.; Huang, Y.Y.; Wu, D.; Luo, H.B. Novel phosphodiesterase inhibitors for cognitive improvement in Alzheimer’s disease. J. Med. Chem., 2018, 61(13), 5467-5483.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01370] [PMID: 29363967]
[54]
Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev., 1999, 20(5), 649-688.
[PMID: 10529898]
[55]
Li, M.; Meng, Y.; Chu, B.; Shen, Y.; Xue, X.; Song, C.; Liu, X.; Ding, M.; Cao, X.; Wang, P.; Xu, S.; Bi, J.; Xie, Z. Orexin-A exacerbates Alzheimer’s disease by inducing mitochondrial impairment. Neurosci. Lett., 2020, 718, 134741.
[http://dx.doi.org/10.1016/j.neulet.2020.134741] [PMID: 31927055]
[56]
Lim, G.P.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Ashe, K.H.; Frautschy, S.A.; Cole, G.M. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci., 2000, 20, 5709-5714.
[57]
Li, H.; Wu, J.; Zhu, L.; Sha, L.; Yang, S.; Wei, J.; Ji, L.; Tang, X.; Mao, K.; Cao, L.; Wei, N.; Xie, W.; Yang, Z. Insulin degrading enzyme contributes to the pathology in a mixed model of Type 2 diabetes and Alzheimer’s disease: Possible mechanisms of IDE in T2D and AD. Biosci. Rep., 2018, 38(1), BSR20170862.
[http://dx.doi.org/10.1042/BSR20170862] [PMID: 29222348]
[58]
Garcia-Alloza, M.; Hirst, W.D.; Chen, C.P.L-H.; Lasheras, B.; Francis, P.T.; Ramírez, M.J. Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacology, 2004, 29(2), 410-416.
[http://dx.doi.org/10.1038/sj.npp.1300330] [PMID: 14571255]
[59]
de Bruin, N.; Kruse, C. 5-HT6 receptor antagonists: Potential efficacy for the treatment of cognitive impairment in schizophrenia. Curr. Pharm. Des., 2015, 21(26), 3739-3759.
[http://dx.doi.org/10.2174/1381612821666150605112105] [PMID: 26044973]
[60]
Dias, K.S.T.; de Paula, C.T.; dos Santos, T.; Souza, I.N.O.; Boni, M.S.; Guimarães, M.J.R.; da Silva, F.M.R.; Castro, N.G.; Neves, G.A.; Veloso, C.C.; Coelho, M.M.; de Melo, I.S.F.; Giusti, F.C.V.; Giusti-Paiva, A.; da Silva, M.L.; Dardenne, L.E.; Guedes, I.A.; Pruccoli, L.; Morroni, F.; Tarozzi, A.; Viegas, C. Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 440-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.043] [PMID: 28282613]
[61]
Gervais, F.G.; Xu, D.; Robertson, G.S.; Vaillancourt, J.P.; Zhu, Y.; Huang, J.; LeBlanc, A.; Smith, D.; Rigby, M.; Shearman, M.S.; Clarke, E.E.; Zheng, H.; Van Der Ploeg, L.H.T.; Ruffolo, S.C.; Thornberry, N.A.; Xanthoudakis, S.; Zamboni, R.J.; Roy, S.; Nicholson, D.W. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic A β peptide formation. Cell, 1999, 97(3), 395-406.
[http://dx.doi.org/10.1016/S0092-8674(00)80748-5] [PMID: 10319819]
[62]
Kwak, S.; Weiss, J.H. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr. Opin. Neurobiol., 2006, 16(3), 281-287.
[http://dx.doi.org/10.1016/j.conb.2006.05.004] [PMID: 16698262]
[63]
Joshi, S.; Kapur, J. Mechanisms of status epilepticus: α -Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor hypothesis. Epilepsia, 2018, 59(S2), 78-81.
[http://dx.doi.org/10.1111/epi.14482] [PMID: 30159880]
[64]
Kanninen, K.; Malm, T.M.; Jyrkkänen, H.K.; Goldsteins, G.; Keksa-Goldsteine, V.; Tanila, H.; Yamamoto, M.; Ylä-Herttuala, S.; Levonen, A.L.; Koistinaho, J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci., 2008, 39(3), 302-313.
[http://dx.doi.org/10.1016/j.mcn.2008.07.010] [PMID: 18706502]
[65]
Gameiro, I.; Michalska, P.; Tenti, G.; Cores, Á.; Buendia, I.; Rojo, A.I.; Georgakopoulos, N.D.; Hernández-Guijo, J.M.; Teresa Ramos, M.; Wells, G.; López, M.G.; Cuadrado, A.; Menéndez, J.C.; León, R. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease. Sci. Rep., 2017, 7(1), 45701.
[http://dx.doi.org/10.1038/srep45701] [PMID: 28361919]
[66]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[67]
Lill, C.M.; Rengmark, A.; Pihlstrøm, L.; Fogh, I.; Shatunov, A.; Sleiman, P.M.; Wang, L.S.; Liu, T.; Lassen, C.F.; Meissner, E.; Alexopoulos, P.; Calvo, A.; Chio, A.; Dizdar, N.; Faltraco, F.; Forsgren, L.; Kirchheiner, J.; Kurz, A.; Larsen, J.P.; Liebsch, M.; Linder, J.; Morrison, K.E.; Nissbrandt, H.; Otto, M.; Pahnke, J.; Partch, A.; Restagno, G.; Rujescu, D.; Schnack, C.; Shaw, C.E.; Shaw, P.J.; Tumani, H.; Tysnes, O.B.; Valladares, O.; Silani, V.; Berg, L.H.; Rheenen, W.; Veldink, J.H.; Lindenberger, U.; Steinhagen-Thiessen, E.; Teipel, S.; Perneczky, R.; Hakonarson, H.; Hampel, H.; Arnim, C.A.F.; Olsen, J.H.; Van Deerlin, V.M.; Al-Chalabi, A.; Toft, M.; Ritz, B.; Bertram, L. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement., 2015, 11(12), 1407-1416.
[http://dx.doi.org/10.1016/j.jalz.2014.12.009] [PMID: 25936935]
[68]
Xu, K.; Dai, X.L.; Huang, H.C.; Jiang, Z.F. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2011, 2011, 143269.
[http://dx.doi.org/10.1155/2011/143269]
[69]
Houtkooper, R.H.; Pirinen, E.; Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 225-238.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[70]
Staderini, M.; Martín, M.A.; Bolognesi, M.L.; Menéndez, J.C. Imaging of β-amyloid plaques by near infrared fluorescent tracers: A new frontier for chemical neuroscience. Chem. Soc. Rev., 2015, 44(7), 1807-1819.
[http://dx.doi.org/10.1039/C4CS00337C] [PMID: 25622714]
[71]
Golde, T.E.; Bacskai, B.J. Bringing amyloid into focus. Nat. Biotechnol., 2005, 23(5), 552-554.
[http://dx.doi.org/10.1038/nbt0505-552] [PMID: 15877070]
[72]
Cui, M. Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain. Curr. Med. Chem., 2013, 21(1), 82-112.
[http://dx.doi.org/10.2174/09298673113209990216] [PMID: 23992340]
[73]
Tong, H.; Lou, K.; Wang, W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease. Acta Pharm. Sin. B, 2015, 5(1), 25-33.
[http://dx.doi.org/10.1016/j.apsb.2014.12.006] [PMID: 26579421]
[74]
Tsoi, K.K.F.; Chan, J.Y.C.; Chan, F.C.H.; Hirai, H.W.; Kwok, T.C.Y.; Wong, S.Y.S. Monotherapy is good enough for patients with mild‐to‐moderate Alzheimer’s disease: A network meta‐analysis of 76 randomized controlled trials. Clin. Pharmacol. Ther., 2019, 105(1), 121-130.
[http://dx.doi.org/10.1002/cpt.1104] [PMID: 29717478]
[75]
scarpini, E.; Schelterns, P.; Feldman, H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7] [PMID: 12941576]
[76]
Olin, J.; Schneider, L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2002, (3), CD001747.
[PMID: 12137632]
[77]
Knorz, A.L.; Quante, A. Alzheimer’s disease: Efficacy of mono- and combination therapy. A systematic review. J. Geriatr. Psychiatry Neurol., 2022, 35(4), 475-486.
[http://dx.doi.org/10.1177/08919887211044746] [PMID: 34476990]
[78]
Álvarez, X.A.; Linares, C.; Masliah, E. Combination drug therapy for the treatment of Alzheimer’s disease. Eur. Neurol. Rev., 2012, 7, 23-25.
[79]
Kabir, M.T.; Uddin, M.S.; Mamun, A.A.; Jeandet, P.; Aleya, L.; Mansouri, R.A.; Ashraf, G.M.; Mathew, B.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Combination drug therapy for the management of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(9), 3272.
[http://dx.doi.org/10.3390/ijms21093272] [PMID: 32380758]
[80]
Deardorff, W.J.; Grossberg, G. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 3267-3279.
[http://dx.doi.org/10.2147/DDDT.S86463] [PMID: 27757016]
[81]
Feldman, H.H.; Schmitt, F.A.; Olin, J.T.; Olin, J.T. Activities of daily living in moderate-to-severe Alzheimer disease: An analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis. Assoc. Disord., 2006, 20(4), 263-268.
[http://dx.doi.org/10.1097/01.wad.0000213859.35355.59] [PMID: 17132971]
[82]
Choi, S.H.; Park, K.W.; Na, D.L.; Han, H.J.; Kim, E.J.; Shim, Y.S.; Lee, J.H. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: A multicenter, randomized, open-label, parallel-group study. Curr. Med. Res. Opin., 2011, 27(7), 1375-1383.
[http://dx.doi.org/10.1185/03007995.2011.582484] [PMID: 21561398]
[83]
Farlow, M.R.; Alva, G.; Meng, X.; Olin, J.T. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: A post hoc analysis. Curr. Med. Res. Opin., 2010, 26(2), 263-269.
[http://dx.doi.org/10.1185/03007990903434914] [PMID: 19929593]
[84]
Mullard, A. Landmark Alzheimer’s drug approval confounds research community. Nature, 2021, 594(7863), 309-310.
[http://dx.doi.org/10.1038/d41586-021-01546-2] [PMID: 34103732]
[85]
Mahase, E. Alzheimer’s disease: FDA approves lecanemab amid cost and safety concerns. BMJ, 2023, 380, 73.
[http://dx.doi.org/10.1136/bmj.p73] [PMID: 36631154]
[86]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s Disease Drug Development Pipeline: 2022 In: Alzheimer’s Dement;; Cambridge University Press,, 2022; p. 8.
[http://dx.doi.org/10.1017/9781108975759]
[87]
ClinicalTrials.gov. Available from: https://clinicaltrials.gov/(Accessed on: Dec 17, 2021).
[88]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[89]
Frantz, S. Playing dirty. Nature, 2005, 437(7061), 942-943.
[http://dx.doi.org/10.1038/437942a] [PMID: 16222266]
[90]
Morphy, R.; Kay, C.; Rankovic, Z.; Morphy, R. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[91]
Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J. Med. Chem., 2019, 62(20), 8881-8914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[92]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[93]
Hopkins, A.; Mason, J.; Overington, J. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol., 2006, 16(1), 127-136.
[http://dx.doi.org/10.1016/j.sbi.2006.01.013] [PMID: 16442279]
[94]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[95]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev., 2019, 119(2), 1221-1322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[96]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[97]
Sultana, R.; Ravagna, A.; Mohmmad-Abdul, H.; Calabrese, V.; Butterfield, D.A. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem., 2005, 92(4), 749-758.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[98]
Xie, S.S.; Lan, J.S.; Wang, X.; Wang, Z.M.; Jiang, N.; Li, F.; Wu, J.J.; Wang, J.; Kong, L.Y. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023] [PMID: 26917219]
[99]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[100]
Posadas, I.; López-Hernández, B.; Ceña, V. Nicotinic receptors in neurodegeneration. Curr. Neuropharmacol., 2013, 11(3), 298-314.
[http://dx.doi.org/10.2174/1570159X11311030005] [PMID: 24179465]
[101]
Alam, S.; Lingenfelter, K.S.; Bender, A.M.; Lindsley, C.W. Classics in chemical neuroscience. Memantine. ACS Chem. Neurosci., 2017, 8(9), 1823-1829.
[http://dx.doi.org/10.1021/acschemneuro.7b00270] [PMID: 28737885]
[102]
Takada-Takatori, Y.; Kume, T.; Sugimoto, M.; Katsuki, H.; Sugimoto, H.; Akaike, A. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology, 2006, 51(3), 474-486.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.007] [PMID: 16762377]
[103]
Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem., 2012, 55(22), 9708-9721.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[104]
Onor, M.L.; Trevisiol, M.; Aguglia, E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin. Interv. Aging, 2007, 2(1), 17-32.
[http://dx.doi.org/10.2147/ciia.2007.2.1.17] [PMID: 18044073]
[105]
Matthews, D.C.; Ritter, A.; Thomas, R.G.; Andrews, R.D.; Lukic, A.S.; Revta, C.; Kinney, J.W.; Tousi, B.; Leverenz, J.B.; Fillit, H.; Zhong, K.; Feldman, H.H.; Cummings, J. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Alzheimers Dement., 2021, 7(1), e12106.
[http://dx.doi.org/10.1002/trc2.12106] [PMID: 33614888]
[106]
Sterling, J.; Herzig, Y.; Goren, T.; Finkelstein, N.; Lerner, D.; Goldenberg, W.; Miskolczi, I.; Molnar, S.; Rantal, F.; Tamas, T.; Toth, G.; Zagyva, A.; Zekany, A.; Lavian, G.; Gross, A.; Friedman, R.; Razin, M.; Huang, W.; Krais, B.; Chorev, M.; Youdim, M.B.; Weinstock, M.; Weinstock, M. Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem., 2002, 45(24), 5260-5279.
[http://dx.doi.org/10.1021/jm020120c] [PMID: 12431053]
[107]
Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B.H. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets, 2012, 13(4), 483-494.
[http://dx.doi.org/10.2174/138945012799499794] [PMID: 22280345]
[108]
Zheng, H.; Youdim, M.B.H.; Fridkin, M. Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer’s therapy. J. Med. Chem., 2009, 52(14), 4095-4098.
[http://dx.doi.org/10.1021/jm900504c] [PMID: 19485411]
[109]
Wilkinson, D.G. The pharmacology of donepezil: A new treatment for Alzheimer’s disease. Expert Opin. Pharmacother., 1999, 1(1), 121-135.
[http://dx.doi.org/10.1517/14656566.1.1.121] [PMID: 11249555]
[110]
Relman, A.S. Tacrine as a treatment for Alzheimer’s dementia: editor’s note. An interim report from the FDA. A response from Summers et al. N. Engl. J. Med., 1991, 324(5), 349-352.
[http://dx.doi.org/10.1056/NEJM199101313240525] [PMID: 1986300]
[111]
Potkin, S.G.; Anand, R.; Fleming, K.; Alva, G.; Keator, D.; Carreon, D.; Messina, J.; Wu, J.C.; Hartman, R.; Fallon, J.H. Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2001, 4(3), 223-230.
[http://dx.doi.org/10.1017/S1461145701002528] [PMID: 11602028]
[112]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives : HAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18, 423-426.
[113]
Viña, D.; Matos, M.J.; Yáñez, M.; Santana, L.; Uriarte, E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer’s disease. MedChemComm, 2012, 3(2), 213-218.
[http://dx.doi.org/10.1039/C1MD00221J]
[114]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[115]
Weinreb, O.; Mandel, S.; Bar-Am, O.; Yogev-Falach, M.; Avramovich-Tirosh, Y.; Amit, T.; Youdim, M.B.H. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics, 2009, 6(1), 163-174.
[http://dx.doi.org/10.1016/j.nurt.2008.10.030] [PMID: 19110207]
[116]
Nobili, A.; Latagliata, E.C.; Viscomi, M.T.; Cavallucci, V.; Cutuli, D.; Giacovazzo, G.; Krashia, P.; Rizzo, F.R.; Marino, R.; Federici, M.; De Bartolo, P.; Aversa, D.; Dell’Acqua, M.C.; Cordella, A.; Sancandi, M.; Keller, F.; Petrosini, L.; Puglisi-Allegra, S.; Mercuri, N.B.; Coccurello, R.; Berretta, N.; D’Amelio, M. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun., 2017, 8(1), 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[117]
Pi, R.; Mao, X.; Chao, X.; Cheng, Z.; Liu, M.; Duan, X.; Ye, M.; Chen, X.; Mei, Z.; Liu, P.; Li, W.; Han, Y. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One, 2012, 7(2), e31921.
[http://dx.doi.org/10.1371/journal.pone.0031921] [PMID: 22384101]
[118]
Ma, T.; Tan, M.S.; Yu, J.T.; Tan, L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/350516] [PMID: 25525597]
[119]
Ferrero, H.; Solas, M.; Francis, P.T.; Ramirez, M.J. Serotonin 5-HT6 receptor antagonists in Alzheimer’s disease: Therapeutic rationale and current development status. CNS Drugs, 2017, 31(1), 19-32.
[http://dx.doi.org/10.1007/s40263-016-0399-3] [PMID: 27914038]
[120]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline-indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[121]
Chen, Y.; Bian, Y.; Sun, Y.; Kang, C.; Yu, S.; Fu, T.; Li, W.; Pei, Y.; Sun, H. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. PeerJ, 2016, 4, e2140.
[http://dx.doi.org/10.7717/peerj.2140] [PMID: 27441112]
[122]
Jordan, J.B.; Whittington, D.A.; Bartberger, M.D.; Sickmier, E.A.; Chen, K.; Cheng, Y.; Judd, T. Fragment-linking approach using 19 F NMR spectroscopy to obtain highly potent and selective inhibitors of β-secretase. J. Med. Chem., 2016, 59(8), 3732-3749.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01917] [PMID: 26978477]
[123]
Hiremathad, A.; Keri, R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel tacrine-hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 148, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.023] [PMID: 29466775]
[124]
Bag, S.; Tulsan, R.; Sood, A.; Cho, H.; Redjeb, H.; Zhou, W.; LeVine, H., III; Török, B.; Török, M. Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(3), 626-630.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.006] [PMID: 25537270]
[125]
Fang, Y.; Zhou, H.; Gu, Q.; Xu, J. Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 167, 133-145.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.008] [PMID: 30771601]
[126]
Jenagaratnam, L.; McShane, R. Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database Syst. Rev., 2006, (1), CD005380.
[PMID: 16437529]
[127]
Prati, F.; Cavalli, A.; Bolognesi, M. Navigating the chemical space of multitarget-directed ligands: From hybrids to fragments in Alzheimer’s disease. Molecules, 2016, 21(4), 466.
[http://dx.doi.org/10.3390/molecules21040466] [PMID: 27070562]
[128]
Czarnecka, K.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I.; Szymański, P.; Girek, M.; Maciejewska, K.; Skibiński, R.; Jończyk, J.; Bajda, M.; Kabziński, J.; Sołowiej, P.; Majsterek, I. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 158-170.
[http://dx.doi.org/10.1080/14756366.2017.1406485] [PMID: 29210299]
[129]
Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A.J.; Nachon, F.; Pejchal, J.; Jarosova, M.; Hepnarova, V.; Jun, D.; Hrabinova, M.; Dolezal, R.; Zdarova Karasova, J.; Mzik, M.; Kristofikova, Z.; Misik, J.; Muckova, L.; Jost, P.; Soukup, O.; Benkova, M.; Setnicka, V.; Habartova, L.; Chvojkova, M.; Kleteckova, L.; Vales, K.; Mezeiova, E.; Uliassi, E.; Valis, M.; Nepovimova, E.; Bolognesi, M.L.; Kuca, K. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 168, 491-514.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.021] [PMID: 30851693]
[130]
Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Faingold, I.I.; Poletaeva, D.A.; Soldatova, Y.V.; Kotelnikova, R.A.; Serkov, I.V.; Ustinov, A.K.; Proshin, A.N. New multifunctional agents based on conjugates of hydroxytoluene for Alzheimer’s disease treatment. Molecules, 2020, 25, 5891.
[http://dx.doi.org/10.3390/molecules25245891] [PMID: 33322783]
[131]
Nazari, M.; Rezaee, E.; Hariri, R.; Akbarzadeh, T.; Tabatabai, S.A. Novel 1,2,4-oxadiazole derivatives as selective butyrylcholinesterase inhibitors: Design, synthesis and biological evaluation. EXCLI J., 2021, 20, 907-921.
[PMID: 34121977]
[132]
Wen-Juan, H.; Xia, L.Z.; Jia-cheng, S.; Jia-li, C.; Zhi-qiang, S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2018, 6020, 1-14.
[133]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg. Med. Chem., 2014, 22(17), 4784-4791.
[http://dx.doi.org/10.1016/j.bmc.2014.06.057] [PMID: 25088549]
[134]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.084] [PMID: 25597007]
[135]
Panek, D.; Więckowska, A.; Wichur, T.; Bajda, M.; Godyń, J.; Jończyk, J.; Mika, K.; Janockova, J.; Soukup, O.; Knez, D.; Korabecny, J.; Gobec, S.; Malawska, B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem., 2017, 125, 676-695.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.078] [PMID: 27721153]
[136]
Gazova, Z.; Soukup, O.; Sepsova, V.; Siposova, K.; Drtinova, L.; Jost, P.; Spilovska, K.; Korabecny, J.; Nepovimova, E.; Fedunova, D.; Horak, M.; Kaniakova, M.; Wang, Z.J.; Hamouda, A.K.; Kuca, K. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 607-619.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.020] [PMID: 27865910]
[137]
Panek, D.; Więckowska, A.; Jończyk, J.; Godyń, J.; Bajda, M.; Wichur, T.; Pasieka, A.; Knez, D.; Pišlar, A.; Korabecny, J.; Soukup, O.; Sepsova, V.; Sabaté, R.; Kos, J.; Gobec, S.; Malawska, B. Design, synthesis, and biological evaluation of 1-Benzylamino-2-hydroxyalkyl derivatives as new potential disease-modifying multifunctional anti-alzheimer’s agents. ACS Chem. Neurosci., 2018, 9(5), 1074-1094.
[http://dx.doi.org/10.1021/acschemneuro.7b00461] [PMID: 29345897]
[138]
Sakata, R.P.; Antoniolli, G.; Lancellotti, M.; Kawano, D.F.; Guimarães Barbosa, E.; Almeida, W.P. Synthesis and biological evaluation of 2′-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104201.
[http://dx.doi.org/10.1016/j.bioorg.2020.104201] [PMID: 32890999]
[139]
Wang, L.; Esteban, G.; Ojima, M.; Bautista-Aguilera, O.M.; Inokuchi, T.; Moraleda, I.; Iriepa, I.; Samadi, A.; Youdim, M.B.H.; Romero, A.; Soriano, E.; Herrero, R.; Fernández Fernández, A.P. Ricardo-Martínez-Murillo; Marco-Contelles, J.; Unzeta, M. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 80, 543-561.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.078] [PMID: 24813882]
[140]
Benek, O.; Soukup, O.; Pasdiorova, M.; Hroch, L.; Sepsova, V.; Jost, P.; Hrabinova, M.; Jun, D.; Kuca, K.; Zala, D.; Ramsay, R.R.; Marco-Contelles, J.; Musilek, K. Design, synthesis and in vitro evaluation of indolotacrine analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. ChemMedChem, 2016, 11(12), 1264-1269.
[http://dx.doi.org/10.1002/cmdc.201500383] [PMID: 26427608]
[141]
Marco-Contelles, J.; Unzeta, M.; Bolea, I.; Esteban, G.; Ramsay, R.R.; Romero, A.; Martínez-Murillo, R.; Carreiras, M.C.; Ismaili, L. ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front. Neurosci., 2016, 10, 294.
[http://dx.doi.org/10.3389/fnins.2016.00294] [PMID: 27445665]
[142]
Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[143]
Piemontese, L.; Tomás, D.; Hiremathad, A.; Capriati, V.; Candeias, E.; Cardoso, S.M.; Chaves, S.; Santos, M.A.; Tomás, D.; Hiremathad, A.; Capriati, V.; Cardoso, S.M.; Chaves, S.; Donepezil, M.A.S. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1212-1224.
[http://dx.doi.org/10.1080/14756366.2018.1491564] [PMID: 30160188]
[144]
Wang, Z.; Cao, M.; Xiang, H.; Wang, W.; Feng, X.; Yang, X. WBQ5187, a multitarget directed agent, ameliorates cognitive impairment in a transgenic mouse model of Alzheimer’s disease and modulates cerebral β-amyloid, gliosis, cAMP levels, and neurodegeneration. ACS Chem. Neurosci., 2019, 10(12), 4787-4799.
[http://dx.doi.org/10.1021/acschemneuro.9b00409] [PMID: 31697472]
[145]
Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; Feoli, A.; Castellano, S.; Petralla, S.; Monti, B.; Rossi, M.; Moda, F.; Legname, G.; Martinez, A.; Bolognesi, M.L. Tau-centric multitarget approach for Alzheimer’s Disease: Development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J. Med. Chem., 2018, 61(17), 7640-7656.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00610] [PMID: 30078314]
[146]
Wang, M.; Liu, T.; Chen, S.; Wu, M.; Han, J.; Li, Z. Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3β inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2021, 209, 112874.
[http://dx.doi.org/10.1016/j.ejmech.2020.112874] [PMID: 33017743]
[147]
Poliseno, V.; Chaves, S.; Brunetti, L.; Loiodice, F.; Carrieri, A.; Laghezza, A.; Tortorella, P.; Magalhães, J.D.; Cardoso, S.M.; Santos, M.A.; Piemontese, L. Derivatives of tenuazonic acid as potential new multi-target anti-Alzheimer’s disease agents. Biomolecules, 2021, 11(1), 111.
[http://dx.doi.org/10.3390/biom11010111] [PMID: 33467709]
[148]
Kou, X.; Song, L.; Wang, Y.; Yu, Q.; Ju, H.; Yang, A.; Shen, R. Design, synthesis and anti-Alzheimer’s disease activity study of xanthone derivatives based on multi-target strategy. Bioorg. Med. Chem. Lett., 2020, 30(4), 126927.
[http://dx.doi.org/10.1016/j.bmcl.2019.126927] [PMID: 31901382]
[149]
He, F.; Chou, C.J.; Scheiner, M.; Poeta, E.; Chen, Y. Melatonin-and ferulic acid-based hdac6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological Alzheimer’s disease mouse model. J. Med. Chem., 2021, 64, 3794-3812.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01940] [PMID: 33769811]
[150]
Guo, J.; Cheng, M.; Liu, P.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. A multi-target directed ligands strategy for the treatment of Alzheimer’s disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur. J. Med. Chem., 2022, 242, 114630.
[http://dx.doi.org/10.1016/j.ejmech.2022.114630] [PMID: 35987018]
[151]
Codony, S.; Pont, C.; Griñán-Ferré, C.; Di Pede-Mattatelli, A.; Calvó-Tusell, C.; Feixas, F.; Osuna, S.; Jarné-Ferrer, J.; Naldi, M.; Bartolini, M.; Loza, M.I.; Brea, J.; Pérez, B.; Bartra, C.; Sanfeliu, C.; Juárez-Jiménez, J.; Morisseau, C.; Hammock, B.D.; Pallàs, M.; Vázquez, S.; Muñoz-Torrero, D. Discovery and in vivo proof of concept of a highly potent dual inhibitor of soluble epoxide hydrolase and acetylcholinesterase for the treatment of Alzheimer’s disease. J. Med. Chem., 2022, 65(6), 4909-4925.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02150] [PMID: 35271276]
[152]
Singh, J.V.; Thakur, S.; Kumar, N.; Singh, H.; Mithu, V.S.; Singh, H.; Bhagat, K.; Gulati, H.K.; Sharma, A.; Singh, H.; Sharma, S.; Bedi, P.M.S. Donepezil-inspired multitargeting indanone derivatives as effective anti-Alzheimer’s agents. ACS Chem. Neurosci., 2022, 13(6), 733-750.
[http://dx.doi.org/10.1021/acschemneuro.1c00535] [PMID: 35195392]
[153]
Leuci, R.; Brunetti, L.; Laghezza, A.; Piemontese, L.; Carrieri, A.; Pisani, L.; Tortorella, P.; Catto, M.; Loiodice, F.; Pisani, L.; Tortorella, P.; Catto, M.; Loiodice, F.; Carrieri, A. A new series of aryloxyacetic acids endowed with multi-target activity towards peroxisome proliferator-activated receptors (PPARs), Fatty Acid Amide Hydrolase (FAAH), and Acetylcholinesterase (AChE). Molecules, 2022, 27(3), 958.
[http://dx.doi.org/10.3390/molecules27030958] [PMID: 35164223]
[154]
Peschiulli, A.; Oehlrich, D.; Van Gool, M.; Austin, N.; Van Brandt, S.; Surkyn, M.; De Cleyn, M.; Vos, A.; Tresadern, G.; Rombouts, F.J.R.; Macdonald, G.J.; Moechars, D.; Trabanco, A.A.; Gijsen, H.J.M. A brain-penetrant and bioavailable pyrazolopiperazine BACE1 inhibitor elicits sustained reduction of amyloid β in vivo. ACS Med. Chem. Lett., 2022, 13(1), 76-83.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00445] [PMID: 35059126]
[155]
Azmy, E.M.; Nassar, I.F. New Indole Derivatives as Multitarget Anti-Alzheimer’s Agents : Synthesis; Biological Evaluation and Molecular Dynamics, 2023.
[156]
Hassan, A.S.; Morsy, N.M.; Aboulthana, W.M.; Ragab, A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Advances, 2023, 13(14), 9281-9303.
[http://dx.doi.org/10.1039/D3RA00297G] [PMID: 36950709]
[157]
Muğlu, H.; Sönmez, F.; Çavuş, M.S.; Kurt, B.Z.; Yakan, H. New Schiff bases based on isatin and (thio)/carbohydrazone: Preparation, experimental-theoretical spectroscopic characterization, and DFT approach to antioxidant characteristics. Res. Chem. Intermed., 2023, 49(4), 1463-1484.
[http://dx.doi.org/10.1007/s11164-022-04908-1]
[158]
Chen, H.; Mi, J.; Li, S.; Liu, Z.; Yang, J.; Chen, R.; Wang, Y.; Ban, Y.; Zhou, Y.; Dong, W.; Sang, Z. Design, synthesis and evaluation of quinoline- O -carbamate derivatives as multifunctional agents for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2169682.
[http://dx.doi.org/10.1080/14756366.2023.2169682] [PMID: 36688444]
[159]
Cong, S.; Shi, Y.; Yu, G.; Zhong, F.; Li, J.; Liu, J.; Ye, C.; Tan, Z.; Deng, Y. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem., 2023, 250, 115216.
[http://dx.doi.org/10.1016/j.ejmech.2023.115216] [PMID: 36857812]
[160]
Yelamanda Rao, K.; Jeelan Basha, S.; Monika, K.; Sreelakshmi, M.; Sivakumar, I.; Mallikarjuna, G.; Yadav, R.M.; Kumar, S.; Subramanyam, R.; Damu, A.G. Synthesis and anti-Alzheimer potential of novel α-amino phosphonate derivatives and probing their molecular interaction mechanism with acetylcholinesterase. Eur. J. Med. Chem., 2023, 253, 115288.
[http://dx.doi.org/10.1016/j.ejmech.2023.115288] [PMID: 37031527]
[161]
Madhav, H.; Abdel-Rahman, S.A.; Hashmi, M.A.; Rahman, M.A.; Rehan, M.; Pal, K.; Nayeem, S.M.; Gabr, M.T.; Hoda, N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer’s agents: In-silico design, synthesis, and characterization. Eur. J. Med. Chem., 2023, 254, 115354.
[http://dx.doi.org/10.1016/j.ejmech.2023.115354] [PMID: 37043996]
[162]
Liu, P.; Cheng, M.; Guo, J.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.S.; Liu, J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg. Med. Chem., 2023, 78, 117146.
[http://dx.doi.org/10.1016/j.bmc.2022.117146] [PMID: 36580744]
[163]
Pasieka, A.; Panek, D.; Zaręba, P.; Sługocka, E.; Gucwa, N.; Espargaró, A.; Latacz, G.; Khan, N.; Bucki, A.; Sabaté, R.; Więckowska, A.; Malawska, B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2023, 88-89, 117333.
[http://dx.doi.org/10.1016/j.bmc.2023.117333] [PMID: 37236021]
[164]
Qin, P.; Ran, Y.; Xie, F.; Liu, Y.; Wei, C.; Luan, X.; Wu, J. Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2023, 80, 117178.
[http://dx.doi.org/10.1016/j.bmc.2023.117178] [PMID: 36706609]
[165]
Liu, X.; Yu, C.; Yao, Y.; Lai, H.; Ye, X.; Xu, J.; Guo, J.; Xiao, X.; Lin, C.; Huang, Z.; Lin, J.; Yu, C.; Zha, D. Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2023, 248, 115120.
[http://dx.doi.org/10.1016/j.ejmech.2023.115120] [PMID: 36682173]
[166]
Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Grishchenko, M.V.; Lushchekina, S.V.; Astakhova, T.Y.; Serebryakova, O.G.; Timokhina, E.N.; Zhilina, E.F.; Shchegolkov, E.V.; Ulitko, M.V.; Radchenko, E.V.; Palyulin, V.A.; Burgart, Y.V.; Saloutin, V.I.; Bachurin, S.O.; Richardson, R.J. Conjugates of tacrine and salicylic acid derivatives as new promising multitarget agents for Alzheimer’s disease. Int. J. Mol. Sci., 2023, 24(3), 2285.
[http://dx.doi.org/10.3390/ijms24032285] [PMID: 36768608]
[167]
Rogers, S.L.; Farlow, M.R.; Doody, R.S.; Mohs, R.; Friedhoff, L.T. Donepezil Study Group. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology, 1989, 50(1), 136-145.
[168]
Linse, S.; Scheidt, T.; Bernfur, K.; Vendruscolo, M.; Dobson, C.M.; Cohen, S.I.A.; Sileikis, E.; Lundqvist, M.; Qian, F.; O’Malley, T.; Bussiere, T.; Weinreb, P.H.; Xu, C.K.; Meisl, G.; Devenish, S.R.A.; Knowles, T.P.J.; Hansson, O. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol., 2020, 27(12), 1125-1133.
[http://dx.doi.org/10.1038/s41594-020-0505-6] [PMID: 32989305]
[169]
Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med., 2018, 378(4), 321-330.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[170]
Ostrowitzki, S.; Lasser, R.A.; Dorflinger, E.; Scheltens, P.; Barkhof, F.; Nikolcheva, T.; Ashford, E.; Retout, S.; Hofmann, C.; Delmar, P.; Klein, G.; Andjelkovic, M.; Dubois, B.; Boada, M.; Blennow, K.; Santarelli, L.; Fontoura, P. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther., 2017, 9(1), 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy