Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis?

Author(s): Kaiying Hou, Riffat Jabeen, Lin Sun and Jianshe Wei*

Volume 25, Issue 6, 2024

Published on: 06 October, 2023

Page: [724 - 736] Pages: 13

DOI: 10.2174/0113892010257816230920053547

Price: $65

Abstract

A steady increase in the prevalence of drug-resistant tuberculosis (DR-TB) has already been reported in Pakistan. In addition, DR-TB is gradually changing from one-drug resistance to multi-drug resistance, which is a serious challenge for tuberculosis treatment. This review provides an overview of the anti-tuberculosis drugs and focuses on the molecular mechanisms of drug resistance in Mycobacterium tuberculosis, with the hope that it will contribute to the study of drug resistance in response to the emergence of multidrug-resistant tuberculosis.

Graphical Abstract

[1]
World Health Organization. Global tuberculosis report., 2022. Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
[2]
World Health Organization. Global tuberculosis report., 2021. Available From: https://www.who.int/publications-detail-redirect/9789240037021
[3]
Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci., 2020, 27(1), 74.
[http://dx.doi.org/10.1186/s12929-020-00667-6] [PMID: 32552732]
[4]
Centers for Disease Control and Prevention (CDC). Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb. Mortal. Wkly. Rep., 2009, 58(1), 7-10.
[PMID: 19145221]
[5]
Wu, M.L.; Aziz, D.B.; Dartois, V.; Dick, T. NTM drug discovery: Status, gaps and the way forward. Drug Discov. Today, 2018, 23(8), 1502-1519.
[http://dx.doi.org/10.1016/j.drudis.2018.04.001] [PMID: 29635026]
[6]
Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; O’Brien, R.J.; Pai, M.; Richeldi, L.; Salfinger, M.; Shinnick, T.M.; Sterling, T.R.; Warshauer, D.M.; Woods, G.L. Official american thoracic society/infectious diseases society of america/centers for disease control and prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clin. Infect. Dis., 2017, 64(2), 111-115.
[http://dx.doi.org/10.1093/cid/ciw778] [PMID: 28052967]
[7]
Floyd, K.; Glaziou, P.; Zumla, A.; Raviglione, M. The global tuberculosis epidemic and progress in care, prevention, and research: An overview in year 3 of the End TB era. Lancet Respir. Med., 2018, 6(4), 299-314.
[http://dx.doi.org/10.1016/S2213-2600(18)30057-2] [PMID: 29595511]
[8]
Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol., 2010, 8(6), 423-435.
[http://dx.doi.org/10.1038/nrmicro2333] [PMID: 20440275]
[9]
Cynamon, M.H.; Sklaney, M. Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob. Agents Chemother., 2003, 47(8), 2442-2444.
[http://dx.doi.org/10.1128/AAC.47.8.2442-2444.2003] [PMID: 12878502]
[10]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[11]
Hooper, D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones. Clin. Infect. Dis., 2001, 32(Suppl. 1), S9-S15.
[http://dx.doi.org/10.1086/319370] [PMID: 11249823]
[12]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330.
[PMID: 19861002]
[13]
Abbadi, S.; Rashed, H.G.; Morlock, G.P.; Woodley, C.L.; El Shanawy, O.; Cooksey, R.C. Characterization of IS6110 restriction fragment length polymorphism patterns and mechanisms of antimicrobial resistance for multidrug-resistant isolates of Mycobacterium tuberculosis from a major reference hospital in Assiut, Egypt. J. Clin. Microbiol., 2001, 39(6), 2330-2334.
[http://dx.doi.org/10.1128/JCM.39.6.2330-2334.2001] [PMID: 11376084]
[14]
Arbex, M.A.; Varella, M.C.; Siqueira, H.R.; Mello, F.A. Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations. Part 1: First-line drugs. J. Bras. Pneumol., 2010, 36(5), 626-640.
[http://dx.doi.org/10.1590/S1806-37132010000500016] [PMID: 21085830]
[15]
Schito, M.; Migliori, G.B.; Fletcher, H.A.; McNerney, R.; Centis, R.; D’Ambrosio, L.; Bates, M.; Kibiki, G.; Kapata, N.; Corrah, T.; Bomanji, J.; Vilaplana, C.; Johnson, D.; Mwaba, P.; Maeurer, M.; Zumla, A. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin. Infect. Dis., 2015, 61(61)(Suppl. 3), S102-S118.
[http://dx.doi.org/10.1093/cid/civ609] [PMID: 26409271]
[16]
Zimhony, O.; Vilchèze, C.; Jacobs, W.R., Jr Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J. Bacteriol., 2004, 186(13), 4051-4055.
[http://dx.doi.org/10.1128/JB.186.13.4051-4055.2004] [PMID: 15205406]
[17]
Parvez, M.M.; Jung, J.A.; Shin, H.J.; Kim, D.H.; Shin, J.G. Characterization of 22 antituberculosis drugs for inhibitory interaction potential on organic anionic transporter polypeptide (OATP)-mediated uptake. Antimicrob. Agents Chemother., 2016, 60(5), 3096-3105.
[http://dx.doi.org/10.1128/AAC.02765-15] [PMID: 26976869]
[18]
Slayden, R.A.; Barry, C.E., III The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect., 2000, 2(6), 659-669.
[http://dx.doi.org/10.1016/S1286-4579(00)00359-2] [PMID: 10884617]
[19]
Pimentel, A.L.; de Lima Scodro, R.B.; Caleffi-Ferracioli, K.R.; Siqueira, V.L.D.; Campanerut-Sá, P.A.Z.; Lopes, L.D.G.; de Almeida, A.L.; Cardoso, R.F.; Seixas, F.A.V. Mutations in catalase-peroxidase KatG from isoniazid resistant Mycobacterium tuberculosis clinical isolates: Insights from molecular dynamics simulations. J. Mol. Model., 2017, 23(4), 121.
[http://dx.doi.org/10.1007/s00894-017-3290-3] [PMID: 28303436]
[20]
Tseng, S.T.; Tai, C.H.; Li, C.R.; Lin, C.F.; Shi, Z.Y. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J. Microbiol. Immunol. Infect., 2015, 48(3), 249-255.
[http://dx.doi.org/10.1016/j.jmii.2013.08.018] [PMID: 24184004]
[21]
Takayama, K.; Kilburn, J.O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother., 1989, 33(9), 1493-1499.
[http://dx.doi.org/10.1128/AAC.33.9.1493] [PMID: 2817850]
[22]
Halouska, S.; Fenton, R.J.; Zinniel, D.K.; Marshall, D.D.; Barletta, R.G.; Powers, R. Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria. J. Proteome Res., 2014, 13(2), 1065-1076.
[http://dx.doi.org/10.1021/pr4010579] [PMID: 24303782]
[23]
Akbergenov, R.; Shcherbakov, D.; Matt, T.; Duscha, S.; Meyer, M.; Wilson, D.N.; Böttger, E.C. Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob. Agents Chemother., 2011, 55(10), 4712-4717.
[http://dx.doi.org/10.1128/AAC.00628-11] [PMID: 21768509]
[24]
Feng, Z.; Barletta, R.G. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother., 2003, 47(1), 283-291.
[http://dx.doi.org/10.1128/AAC.47.1.283-291.2003] [PMID: 12499203]
[25]
Hwang, T.J.; Wares, D.F.; Jafarov, A.; Jakubowiak, W.; Nunn, P.; Keshavjee, S. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: A meta-analysis [Review article]. Int. J. Tuberc. Lung Dis., 2013, 17(10), 1257-1266.
[http://dx.doi.org/10.5588/ijtld.12.0863] [PMID: 23735593]
[26]
DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2000, 97(17), 9677-9682.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[27]
Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG Loci of Ethionamide-Resistant Clinical Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother., 2003, 47(12), 3799-3805.
[http://dx.doi.org/10.1128/AAC.47.12.3799-3805.2003] [PMID: 14638486]
[28]
Johnson, R.; Streicher, E.M.; Louw, G.E.; Warren, R.M.; van Helden, P.D.; Victor, T.C. Drug resistance in Mycobacterium tuberculosis. Curr. Issues Mol. Biol., 2006, 8(2), 97-111.
[PMID: 16878362]
[29]
Chien, J.Y.; Chiu, W.Y.; Chien, S.T.; Chiang, C.J.; Yu, C.J.; Hsueh, P.R. Mutations in gyrA and gyrB among Fluoroquinolone and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother., 2016, 60(4), 2090-2096.
[http://dx.doi.org/10.1128/AAC.01049-15] [PMID: 26787695]
[30]
Chen, J.; Chen, Z.; Li, Y.; Xia, W.; Chen, X.; Chen, T.; Zhou, L.; Xu, B.; Xu, S. Characterization of gyrA and gyrB mutations and fluoroquinolone resistance in Mycobacterium tuberculosis clinical isolates from Hubei Province, China. Braz. J. Infect. Dis., 2012, 16(2), 136-141.
[http://dx.doi.org/10.1590/S1413-86702012000200005] [PMID: 22552454]
[31]
Chang, K.C.; Yew, W.W.; Chan, R.C.Y. Rapid assays for fluoroquinolone resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother., 2010, 65(8), 1551-1561.
[http://dx.doi.org/10.1093/jac/dkq202] [PMID: 20542907]
[32]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[http://dx.doi.org/10.1016/S1473-3099(03)00671-6] [PMID: 12837348]
[33]
Matrat, S.; Veziris, N.; Mayer, C.; Jarlier, V.; Truffot-Pernot, C.; Camuset, J.; Bouvet, E.; Cambau, E.; Aubry, A. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob. Agents Chemother., 2006, 50(12), 4170-4173.
[http://dx.doi.org/10.1128/AAC.00944-06] [PMID: 17015625]
[34]
Cheng, A.F.B.; Yew, W.W.; Chan, E.W.C.; Chin, M.L.; Hui, M.M.M.; Chan, R.C.Y. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother., 2004, 48(2), 596-601.
[http://dx.doi.org/10.1128/AAC.48.2.596-601.2004] [PMID: 14742214]
[35]
Lau, R.W.T.; Ho, P.L.; Kao, R.Y.T.; Yew, W.W.; Lau, T.C.K.; Cheng, V.C.C.; Yuen, K.Y.; Tsui, S.K.W.; Chen, X.; Yam, W.C. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: Functional analysis of gyrA mutation at position 74. Antimicrob. Agents Chemother., 2011, 55(2), 608-614.
[http://dx.doi.org/10.1128/AAC.00920-10] [PMID: 20956608]
[36]
Li, Q.; Jiao, W.; Yin, Q.; Xu, F.; Li, J.; Sun, L.; Xiao, J.; Li, Y.; Mokrousov, I.; Huang, H.; Shen, A. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis beijing genotype strains in China. Antimicrob. Agents Chemother., 2016, 60(5), 2807-2812.
[http://dx.doi.org/10.1128/AAC.02358-15] [PMID: 26902762]
[37]
de Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother., 2013, 57(2), 827-832.
[http://dx.doi.org/10.1128/AAC.01541-12] [PMID: 23208709]
[38]
Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2020, 9(1), 1651-1663.
[http://dx.doi.org/10.1080/22221751.2020.1785334] [PMID: 32573374]
[39]
Ramaswamy, S.V.; Reich, R.; Dou, S.J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[40]
Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 2000, 407(6802), 340-348.
[http://dx.doi.org/10.1038/35030019] [PMID: 11014183]
[41]
Banerjee, R.; Schecter, G.F.; Flood, J.; Porco, T.C. Extensively drug-resistant tuberculosis: New strains, new challenges. Expert Rev. Anti Infect. Ther., 2008, 6(5), 713-724.
[http://dx.doi.org/10.1586/14787210.6.5.713] [PMID: 18847407]
[42]
Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7‐methylguanosine modification in 16S rRNA confers low‐level streptomycin resistance in bacteria. Mol. Microbiol., 2007, 63(4), 1096-1106.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05585.x] [PMID: 17238915]
[43]
Spies, F.S.; Almeida da Silva, P.E.; Ribeiro, M.O.; Rossetti, M.L.; Zaha, A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob. Agents Chemother., 2008, 52(8), 2947-2949.
[http://dx.doi.org/10.1128/AAC.01570-07] [PMID: 18541729]
[44]
Kambli, P.; Ajbani, K.; Nikam, C.; Sadani, M.; Shetty, A.; Udwadia, Z.; Georghiou, S.B.; Rodwell, T.C.; Catanzaro, A.; Rodrigues, C. Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. Int. J. Mycobacteriol., 2016, 5(1), 1-6.
[http://dx.doi.org/10.1016/j.ijmyco.2015.09.001] [PMID: 26927983]
[45]
Reeves, A.Z.; Campbell, P.J.; Willby, M.J.; Posey, J.E. Disparities in capreomycin resistance levels associated with the rrs A1401G mutation in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(1), 444-449.
[http://dx.doi.org/10.1128/AAC.04438-14] [PMID: 25385119]
[46]
Jugheli, L.; Bzekalava, N.; de Rijk, P.; Fissette, K.; Portaels, F.; Rigouts, L. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob. Agents Chemother., 2009, 53(12), 5064-5068.
[http://dx.doi.org/10.1128/AAC.00851-09] [PMID: 19752274]
[47]
Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(8), 3192-3197.
[http://dx.doi.org/10.1128/AAC.49.8.3192-3197.2005] [PMID: 16048924]
[48]
Zaunbrecher, M.A.; Sikes, R.D., Jr; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20004-20009.
[http://dx.doi.org/10.1073/pnas.0907925106] [PMID: 19906990]
[49]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[50]
Stanley, R.E.; Blaha, G.; Grodzicki, R.L.; Strickler, M.D.; Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol., 2010, 17(3), 289-293.
[http://dx.doi.org/10.1038/nsmb.1755] [PMID: 20154709]
[51]
Migliori, G.B.; Lange, C.; Centis, R.; Sotgiu, G.; Mütterlein, R.; Hoffmann, H.; Kliiman, K.; De Iaco, G.; Lauria, F.N.; Richardson, M.D.; Spanevello, A.; Cirillo, D.M. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur. Respir. J., 2008, 31(6), 1155-1159.
[http://dx.doi.org/10.1183/09031936.00028708] [PMID: 18515555]
[52]
Via, L.E.; Cho, S.N.; Hwang, S.; Bang, H.; Park, S.K.; Kang, H.S.; Jeon, D.; Min, S.Y.; Oh, T.; Kim, Y.; Kim, Y.M.; Rajan, V.; Wong, S.Y.; Shamputa, I.C.; Carroll, M.; Goldfeder, L.; Lee, S.A.; Holland, S.M.; Eum, S.; Lee, H.; Barry, C.E., III Polymorphisms associated with resistance and cross-resistance to aminoglycosides and capreomycin in Mycobacterium tuberculosis isolates from South Korean Patients with drug-resistant tuberculosis. J. Clin. Microbiol., 2010, 48(2), 402-411.
[http://dx.doi.org/10.1128/JCM.01476-09] [PMID: 20032248]
[53]
Malinga, L.; Brand, J.; Olorunju, S.; Stoltz, A.; van der Walt, M. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis., 2016, 85(4), 433-437.
[http://dx.doi.org/10.1016/j.diagmicrobio.2016.05.010] [PMID: 27298046]
[54]
Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol., 2014, 12(1), 35-48.
[http://dx.doi.org/10.1038/nrmicro3155] [PMID: 24336183]
[55]
Jnawali, H.N.; Yoo, H.; Ryoo, S.; Lee, K.J.; Kim, B.J.; Koh, W.J.; Kim, C.K.; Kim, H.J.; Park, Y.K. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World J. Microbiol. Biotechnol., 2013, 29(6), 975-982.
[http://dx.doi.org/10.1007/s11274-013-1256-x] [PMID: 23329063]
[56]
Njire, M.; Tan, Y.; Mugweru, J.; Wang, C.; Guo, J.; Yew, W.; Tan, S.; Zhang, T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv. Med. Sci., 2016, 61(1), 63-71.
[http://dx.doi.org/10.1016/j.advms.2015.09.007] [PMID: 26521205]
[57]
Zhang, Y.; Mitchison, D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis., 2003, 7(1), 6-21.
[PMID: 12701830]
[58]
Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(3), 540-543.
[http://dx.doi.org/10.1128/AAC.41.3.540] [PMID: 9055989]
[59]
Louw, G.E.; Warren, R.M.; Donald, P.R.; Murray, M.B.; Bosman, M.; Van Helden, P.D.; Young, D.B.; Victor, T.C. Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int. J. Tuberc. Lung Dis., 2006, 10(7), 802-807.
[PMID: 16848344]
[60]
Cheng, S.J.; Thibert, L.; Sanchez, T.; Heifets, L.; Zhang, Y. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: Spread of a monoresistant strain in Quebec, Canada. Antimicrob. Agents Chemother., 2000, 44(3), 528-532.
[http://dx.doi.org/10.1128/AAC.44.3.528-532.2000] [PMID: 10681313]
[61]
Fivian-Hughes, AS; Houghton, J; Davis, EO Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiol-Sgm, 2012, 158, 1388.
[http://dx.doi.org/10.1099/mic.0.X00002-0]
[62]
Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol., 2004, 53(1), 275-282.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04120.x] [PMID: 15225321]
[63]
Leung, K.L.; Yip, C.W.; Yeung, Y.L.; Wong, K.L.; Chan, W.Y.; Chan, M.Y.; Kam, K.M. Usefulness of resistant gene markers for predicting treatment outcome on second-line anti-tuberculosis drugs. J. Appl. Microbiol., 2010, 109(6), 2087-2094.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04840.x] [PMID: 20854453]
[64]
Pym, A.S.; Saint-Joanis, B.; Cole, S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun., 2002, 70(9), 4955-4960.
[http://dx.doi.org/10.1128/IAI.70.9.4955-4960.2002] [PMID: 12183541]
[65]
Lee, A.S.G.; Teo, A.S.M.; Wong, S.Y. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2001, 45(7), 2157-2159.
[http://dx.doi.org/10.1128/AAC.45.7.2157-2159.2001] [PMID: 11408244]
[66]
Alland, D.; Steyn, A.J.; Weisbrod, T.; Aldrich, K.; Jacobs, W.R., Jr Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol., 2000, 182(7), 1802-1811.
[http://dx.doi.org/10.1128/JB.182.7.1802-1811.2000] [PMID: 10714983]
[67]
Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492.
[http://dx.doi.org/10.1016/j.meegid.2016.09.004] [PMID: 27612406]
[68]
Starks, A.M.; Gumusboga, A.; Plikaytis, B.B.; Shinnick, T.M.; Posey, J.E. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(3), 1061-1066.
[http://dx.doi.org/10.1128/AAC.01357-08] [PMID: 19104018]
[69]
Sreevatsan, S.; Stockbauer, K.E.; Pan, X.; Kreiswirth, B.N.; Moghazeh, S.L.; Jacobs, W.R., Jr; Telenti, A.; Musser, J.M. Ethambutol resistance in Mycobacterium tuberculosis: Critical role of embB mutations. Antimicrob. Agents Chemother., 1997, 41(8), 1677-1681.
[http://dx.doi.org/10.1128/AAC.41.8.1677] [PMID: 9257740]
[70]
Mokrousov, I.; Narvskaya, O.; Limeschenko, E.; Otten, T.; Vyshnevskiy, B. Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J. Clin. Microbiol., 2002, 40(5), 1617-1620.
[http://dx.doi.org/10.1128/JCM.40.5.1617-1620.2002] [PMID: 11980930]
[71]
Lee, H.Y.; Myoung, H.J.; Bang, H.E.; Bai, G.H.; Kim, S.J.; Kim, J.D.; Cho, S.N. Mutations in the embB locus among Korean clinical isolates of Mycobacterium tuberculosis resistant to ethambutol. Yonsei Med. J., 2002, 43(1), 59-64.
[http://dx.doi.org/10.3349/ymj.2002.43.1.59] [PMID: 11854934]
[72]
Falzon, D.; Jaramillo, E.; Schünemann, H.J.; Arentz, M.; Bauer, M.; Bayona, J.; Blanc, L.; Caminero, J.A.; Daley, C.L.; Duncombe, C.; Fitzpatrick, C.; Gebhard, A.; Getahun, H.; Henkens, M.; Holtz, T.H.; Keravec, J.; Keshavjee, S.; Khan, A.J.; Kulier, R.; Leimane, V.; Lienhardt, C.; Lu, C.; Mariandyshev, A.; Migliori, G.B.; Mirzayev, F.; Mitnick, C.D.; Nunn, P.; Nwagboniwe, G.; Oxlade, O.; Palmero, D.; Pavlinac, P.; Quelapio, M.I.; Raviglione, M.C.; Rich, M.L.; Royce, S.; Rüsch-Gerdes, S.; Salakaia, A.; Sarin, R.; Sculier, D.; Varaine, F.; Vitoria, M.; Walson, J.L.; Wares, F.; Weyer, K.; White, R.A.; Zignol, M. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur. Respir. J., 2011, 38(3), 516-528.
[http://dx.doi.org/10.1183/09031936.00073611] [PMID: 21828024]
[73]
Caminero, J.A. Treatment of multidrug-resistant tuberculosis: Evidence and controversies. Int. J. Tuberc. Lung Dis., 2006, 10(8), 829-837.
[PMID: 16898365]
[74]
Nakatani, Y; Opel-Reading, HK; Merker, M Role of alanine racemase mutations in Mycobacterium tuberculosis d-cycloserine resistance. Antimicrob Agents Chemother., 2017, 61(12), e01575-e01517.
[http://dx.doi.org/10.1128/AAC.01575-17]
[75]
Chen, JM; Uplekar, S; Gordon, SV A point mutation in cycA partially contributes to the D-cycloserine resistance trait of mycobacterium bovis BCG vaccine strains. Plos One, 2012, 7(8), e43467.
[http://dx.doi.org/10.1371/journal.pone.0043467]
[76]
Chen, J.; Zhang, S.; Cui, P.; Shi, W.; Zhang, W.; Zhang, Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2017, 72(12), 3272-3276.
[http://dx.doi.org/10.1093/jac/dkx316] [PMID: 28961957]
[77]
Vadwai, V.; Ajbani, K.; Jose, M.; Vineeth, V.P.; Nikam, C.; Deshmukh, M.; Shetty, A.; Soman, R.; Rodrigues, C. Can inhA mutation predict ethionamide resistance? Int. J. Tuberc. Lung Dis., 2013, 17(1), 129-130.
[http://dx.doi.org/10.5588/ijtld.12.0511] [PMID: 23146620]
[78]
Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(1), 355-360.
[http://dx.doi.org/10.1128/AAC.01030-10] [PMID: 20974869]
[79]
Lakshmi, R.; Kumar, V.; Baskaran, M.; Sundar, S.; Rahman, F.; Selvakumar, N.; Ramachandran, R. Pattern of ethionamide susceptibility and its association with isoniazid resistance among previously treated tuberculosis patients from India. Braz. J. Infect. Dis., 2011, 15(6), 619-620.
[http://dx.doi.org/10.1016/S1413-8670(11)70264-1] [PMID: 22218528]
[80]
Boonaiam, S.; Chaiprasert, A.; Prammananan, T.; Leechawengwongs, M. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin. Microbiol. Infect., 2010, 16(4), 396-399.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02838.x] [PMID: 19486070]
[81]
Abe, C.; Kobayashi, I.; Mitarai, S.; Wada, M.; Kawabe, Y.; Takashima, T.; Suzuki, K.; Sng, L.H.; Wang, S.; Htay, H.H.; Ogata, H. Biological and molecular characteristics of Mycobacterium tuberculosis clinical isolates with low-level resistance to isoniazid in Japan. J. Clin. Microbiol., 2008, 46(7), 2263-2268.
[http://dx.doi.org/10.1128/JCM.00561-08] [PMID: 18508939]
[82]
Guo, H.; Seet, Q.; Denkin, S.; Parsons, L.; Zhang, Y. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J. Med. Microbiol., 2006, 55(11), 1527-1531.
[http://dx.doi.org/10.1099/jmm.0.46718-0] [PMID: 17030912]
[83]
Vilchèze, C.; Av-Gay, Y.; Attarian, R.; Liu, Z.; Hazbón, M.H.; Colangeli, R.; Chen, B.; Liu, W.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol., 2008, 69(5), 1316-1329.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06365.x] [PMID: 18651841]
[84]
Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J. Antimicrob. Chemother., 2020, 75(8), 2031-2043.
[http://dx.doi.org/10.1093/jac/dkaa136] [PMID: 32361756]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy