Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Progress of Cancer Stem Cells in Retinoblastoma

Author(s): Nan Wang and Jian-Min Ma*

Volume 19, Issue 8, 2024

Published on: 06 October, 2023

Page: [1093 - 1101] Pages: 9

DOI: 10.2174/011574888X252989230921065809

Price: $65

Abstract

The theory of cancer stem cells is a breakthrough discovery that offers exciting possibilities for comprehending the biological behavior of tumors. More and more evidence suggests that retinoblastoma cancer stem cells promote tumor growth and are likely to be the origin of tumor formation, drug resistance, recurrence, and metastasis. At present, some progress has been made in the verification, biological behavior, and drug resistance mechanism of retinoblastoma cancer stem cells. This article aims to review the relevant research and explore future development direction.

Graphical Abstract

[1]
Tang Z, Ma H, Mao Y, et al. Identification of stemness in primary retinoblastoma cells by analysis of stem-cell phenotypes and tumorigenicity with culture and xenograft models. Exp Cell Res 2019; 379(1): 110-8.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.034] [PMID: 30935947]
[2]
Deegan WF. Emerging strategies for the treatment of retinoblastoma. Curr Opin Ophthalmol 2003; 14(5): 291-5.
[http://dx.doi.org/10.1097/00055735-200310000-00010] [PMID: 14502057]
[3]
Knudson AG Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci 1971; 68(4): 820-3.
[http://dx.doi.org/10.1073/pnas.68.4.820] [PMID: 5279523]
[4]
Sachdeva UM, O’Brien JM. Understanding pRb: Toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 2012; 122(2): 425-34.
[http://dx.doi.org/10.1172/JCI57114] [PMID: 22293180]
[5]
Wong JR, Morton LM, Tucker MA, et al. Risk of subsequent malignant neoplasms in long-term hereditary retinoblastoma survivors after chemotherapy and radiotherapy. J Clin Oncol 2014; 32(29): 3284-90.
[http://dx.doi.org/10.1200/JCO.2013.54.7844] [PMID: 25185089]
[6]
Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12: 963780.
[http://dx.doi.org/10.3389/fonc.2022.963780] [PMID: 36408154]
[7]
Abramson DH, Frank CM. Second nonocular tumors in survivors of bilateral retinoblastoma. Ophthalmology 1998; 105(4): 573-80.
[http://dx.doi.org/10.1016/S0161-6420(98)94006-4] [PMID: 9544627]
[8]
Rushlow DE, Mol BM, Kennett JY, et al. Characterisation of retinoblastomas without RB1 mutations: Genomic, gene expression, and clinical studies. Lancet Oncol 2013; 14(4): 327-34.
[http://dx.doi.org/10.1016/S1470-2045(13)70045-7] [PMID: 23498719]
[9]
Cassoux N, Lumbroso L, Levy-Gabriel C, Aerts I, Doz F, Desjardins L. Retinoblastoma: Update on current management. Asia Pac J Ophthalmol 2017; 6(3): 290-5.
[PMID: 28558178]
[10]
Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma. Nat Rev Dis Primers 2015; 1(1): 15021.
[http://dx.doi.org/10.1038/nrdp.2015.21] [PMID: 27189421]
[11]
Chantada GL, Qaddoumi I, Canturk S, et al. Strategies to manage retinoblastoma in developing countries. Pediatr Blood Cancer 2011; 56(3): 341-8.
[http://dx.doi.org/10.1002/pbc.22843] [PMID: 21225909]
[12]
Warda O, Naeem Z, Roelofs KA, Sagoo MS, Reddy MA. Retinoblastoma and vision. Eye 2022; 37(5): 797-808.
[PMID: 34987197]
[13]
Zhou C, Wen X, Ding Y, et al. Eye-preserving therapies for advanced retinoblastoma. Ophthalmology 2022; 129(2): 209-19.
[http://dx.doi.org/10.1016/j.ophtha.2021.09.002] [PMID: 34536465]
[14]
Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of intraocular retinoblastoma with vincristine and carboplatin. J Clin Oncol 2003; 21(10): 2019-25.
[http://dx.doi.org/10.1200/JCO.2003.09.103] [PMID: 12743157]
[15]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[16]
Hewitt HB. Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br J Cancer 1958; 12(3): 378-401.
[http://dx.doi.org/10.1038/bjc.1958.47] [PMID: 13596492]
[17]
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-8.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[18]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[19]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[20]
Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66(19): 9339-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[21]
Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature 2012; 488(7412): 527-30.
[http://dx.doi.org/10.1038/nature11344] [PMID: 22854777]
[22]
Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14(3): 275-91.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[23]
Jia M, Wei Z, Liu P, Zhao X. Silencing of ABCG2 by MicroRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. J Korean Med Sci 2016; 31(6): 836-42.
[http://dx.doi.org/10.3346/jkms.2016.31.6.836] [PMID: 27247490]
[24]
Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev 2020; 49(22): 7856-78.
[http://dx.doi.org/10.1039/D0CS00379D] [PMID: 32633291]
[25]
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781.
[http://dx.doi.org/10.1016/j.lfs.2019.116781] [PMID: 31430455]
[26]
Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8(7): 545-54.
[http://dx.doi.org/10.1038/nrc2419] [PMID: 18511937]
[27]
Marx J. Cancer research. Mutant stem cells may seed cancer. Science 2003; 301(5638): 1308-10.
[http://dx.doi.org/10.1126/science.301.5638.1308] [PMID: 12958339]
[28]
Soda Y, Marumoto T, Friedmann-Morvinski D, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci 2011; 108(11): 4274-80.
[http://dx.doi.org/10.1073/pnas.1016030108] [PMID: 21262804]
[29]
Seigel GM. Differentiation potential of human retinoblastoma cells. Curr Pharm Biotechnol 2011; 12(2): 213-6.
[http://dx.doi.org/10.2174/138920111794295846] [PMID: 21044005]
[30]
Shimokawa M, Ohta Y, Nishikori S, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 2017; 545(7653): 187-92.
[http://dx.doi.org/10.1038/nature22081] [PMID: 28355176]
[31]
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 2017; 16(1): 41.
[http://dx.doi.org/10.1186/s12943-017-0600-4] [PMID: 28209166]
[32]
Quayle LA, Ottewell PD, Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention. Clin Exp Metastasis 2018; 35(8): 831-46.
[http://dx.doi.org/10.1007/s10585-018-9946-2] [PMID: 30377878]
[33]
Sancho P, Burgos-Ramos E, Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 2015; 22(4): 590-605.
[http://dx.doi.org/10.1016/j.cmet.2015.08.015] [PMID: 26365176]
[34]
Yokoi E, Mabuchi S, Shimura K, et al. Lurbinectedin (PM01183), a selective inhibitor of active transcription, effectively eliminates both cancer cells and cancer stem cells in preclinical models of uterine cervical cancer. Invest New Drugs 2019; 37(5): 818-27.
[http://dx.doi.org/10.1007/s10637-018-0686-6] [PMID: 30374654]
[35]
Oshimori N, Oristian D, Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 2015; 160(5): 963-76.
[http://dx.doi.org/10.1016/j.cell.2015.01.043] [PMID: 25723170]
[36]
Kurtova AV, Xiao J, Mo Q, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015; 517(7533): 209-13.
[http://dx.doi.org/10.1038/nature14034] [PMID: 25470039]
[37]
Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci 2009; 106(33): 13820-5.
[http://dx.doi.org/10.1073/pnas.0905718106] [PMID: 19666588]
[38]
Ma B, Lei X, Guan Y, et al. Maintenance of retinal cancer stem cell-like properties through long-term serum-free culture from human retinoblastoma. Oncol Rep 2011; 26(1): 135-43. [J].
[PMID: 21573498]
[39]
Kelland L. Targeting the limitless replicative potential of cancer: The telomerase/telomere pathway. Clin Cancer Res 2007; 13(17): 4960-3.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0422] [PMID: 17785545]
[40]
Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015; 6(12): e2020.
[http://dx.doi.org/10.1038/cddis.2015.363] [PMID: 26673665]
[41]
Zhang M, Mathur A, Zhang Y, et al. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res 2012; 72(16): 4178-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3983] [PMID: 22751465]
[42]
Kipp AP, Deubel S, Arnér ESJ, Johansson K. Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-κB activities in 3D spheroids enriched for cancer stem cells. Redox Biol 2017; 12: 403-9.
[http://dx.doi.org/10.1016/j.redox.2017.03.013] [PMID: 28319891]
[43]
Chefetz I, Grimley E, Yang K, et al. A Pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep 2019; 26(11): 3061-3075.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.02.032] [PMID: 30865894]
[44]
Yip NC, Fombon IS, Liu P, et al. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 2011; 104(10): 1564-74.
[http://dx.doi.org/10.1038/bjc.2011.126] [PMID: 21487404]
[45]
Najafi M, Mortezaee K, Ahadi R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 2019; 231: 116520.
[http://dx.doi.org/10.1016/j.lfs.2019.05.076] [PMID: 31158379]
[46]
Bayik D, Lathia JD. Cancer stem cell–immune cell crosstalk in tumour progression. Nat Rev Cancer 2021; 21(8): 526-36.
[http://dx.doi.org/10.1038/s41568-021-00366-w] [PMID: 34103704]
[47]
Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma. Mol Vis 2005; 11(11): 729-37.
[PMID: 16179903]
[48]
Gail MS, Abigail SH, Arupa G, Lorrie MM, Gonzalez-Fernandez F. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 2007; 13: 823-32.
[49]
Zhong X, Li Y, Peng F, et al. Identification of tumorigenic retinal stem like cells in human solid retinoblastomas. Int J Cancer 2007; 121(10): 2125-31.
[http://dx.doi.org/10.1002/ijc.22880] [PMID: 17565741]
[50]
Vemuganti GK, Nair RM, Revu NVL, et al. A short-term chick embryo in vivo xenograft model to study retinoblastoma cancer stem cells. Indian J Ophthalmol 2022; 70(5): 1703-11.
[http://dx.doi.org/10.4103/ijo.IJO_2348_21] [PMID: 35502056]
[51]
Austin Doyle L, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47): 7340-58.
[http://dx.doi.org/10.1038/sj.onc.1206938] [PMID: 14576842]
[52]
Bhattacharya S, Das A, Mallya K, Ahmad I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci 2007; 120(15): 2652-62.
[http://dx.doi.org/10.1242/jcs.008417] [PMID: 17635990]
[53]
Mohan A, Kandalam M, Ramkumar HL, Gopal L, Krishnakumar S. Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma. Br J Ophthalmol 2006; 90(7): 889-93.
[http://dx.doi.org/10.1136/bjo.2005.089219] [PMID: 16556617]
[54]
Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8. [J].
[PMID: 14522905]
[55]
Jang JW, Song Y, Kim SH, Kim J, Seo HR. Potential mechanisms of CD133 in cancer stem cells. Life Sci 2017; 184: 25-9.
[http://dx.doi.org/10.1016/j.lfs.2017.07.008] [PMID: 28697984]
[56]
Hu H, Deng F, Liu Y, et al. Characterization and retinal neuron differentiation of WERI-Rb1 cancer stem cells. Mol Vis 2012; 18: 2388-97. [J].
[PMID: 23049239]
[57]
Nair RM, Balla MMS, Khan I, Kalathur RKR, Kondaiah P, Vemuganti GK. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer 2017; 17(1): 779.
[http://dx.doi.org/10.1186/s12885-017-3750-2] [PMID: 29162051]
[58]
Balla MMS, Vemuganti GK, Kannabiran C, Honavar SG, Murthy R. Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Invest Ophthalmol Vis Sci 2009; 50(4): 1506-14.
[http://dx.doi.org/10.1167/iovs.08-2356] [PMID: 19029022]
[59]
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39(3): 969-87.
[http://dx.doi.org/10.1007/s10555-020-09898-3] [PMID: 32507912]
[60]
Mitra M, Kandalam M, Harilal A, et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy. Mol Vis 2012; 18: 290-308.
[PMID: 22328825]
[61]
Krishnakumar S, Mohan A, Mallikarjuna K, et al. EpCAM expression in retinoblastoma: A novel molecular target for therapy. Invest Ophthalmol Vis Sci 2004; 45(12): 4247-50.
[http://dx.doi.org/10.1167/iovs.04-0591] [PMID: 15557427]
[62]
Mitra M, Kandalam M, Verma RS, UmaMaheswari K, Krishnakumar S. Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis 2010; 16: 828-42. [J].
[PMID: 20461151]
[63]
Qiang L, Yang Y, Ma YJ, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 2009; 279(1): 13-21.
[http://dx.doi.org/10.1016/j.canlet.2009.01.016] [PMID: 19232461]
[64]
Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028-34.
[http://dx.doi.org/10.1038/nm0901-1028] [PMID: 11533706]
[65]
Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434(7035): 843-50.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[66]
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461-73.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[67]
Silva AK, Yi H, Hayes SH, Seigel GM, Hackam AS. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: A potential role for the canonical Wnt signaling pathway. Mol Vis 2010; 16: 36-45. [J].
[PMID: 20069066]
[68]
Tell S, Yi H, Jockovich ME, Murray TG, Hackam AS. The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. Biochem Biophys Res Commun 2006; 349(1): 261-9.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.044] [PMID: 16930536]
[69]
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2020; 67(Pt 1): 74-82.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.007] [PMID: 31412296]
[70]
Moya IM, Halder G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211-26.
[http://dx.doi.org/10.1038/s41580-018-0086-y] [PMID: 30546055]
[71]
Zhou B, Lin W, Long Y, et al. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7(1): 95.
[http://dx.doi.org/10.1038/s41392-022-00934-y] [PMID: 35332121]
[72]
Xiao W, Chen X, He M. Inhibition of the Jagged/Notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, Src, p38MAPK and Wnt/β-catenin signaling pathways. Mol Med Rep 2014; 10(1): 453-8.
[http://dx.doi.org/10.3892/mmr.2014.2213] [PMID: 24805975]
[73]
Asnaghi L, Tripathy A, Yang Q, et al. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget 2016; 7(43): 70028-44.
[http://dx.doi.org/10.18632/oncotarget.12142] [PMID: 27661116]
[74]
Zhao N, Zhou L, Lu Q, et al. SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res 2021; 214: 108887.
[75]
Dong C, Liu S, Lv Y, et al. Long non-coding RNA HOTAIR regulates proliferation and invasion via activating Notch signalling pathway in retinoblastoma. J Biosci 2016; 41(4): 677-87.
[http://dx.doi.org/10.1007/s12038-016-9636-7] [PMID: 27966488]
[76]
Gao Y, Luo X, Zhang J. LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther 2021; 28(1-2): 42-54.
[http://dx.doi.org/10.1038/s41417-020-0181-z] [PMID: 32439866]
[77]
Zhang S, Cui Z. MicroRNA 34b 5p inhibits proliferation, stemness, migration and invasion of retinoblastoma cells via Notch signaling. Exp Ther Med 2021; 21(3): 255.
[http://dx.doi.org/10.3892/etm.2021.9686] [PMID: 33603862]
[78]
Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol 2014; 70: 572-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.041] [PMID: 25088498]
[79]
Narayana RVL, Jana P, Tomar N, et al. Carboplatin- and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro. Invest Ophthalmol Vis Sci 2021; 62(14): 13.
[http://dx.doi.org/10.1167/iovs.62.14.13] [PMID: 34784412]
[80]
Katchinskiy N, Godbout R, Hatef A, Elezzabi AY. Anti-EpCAM gold nanorods and femtosecond laser pulses for targeted lysis of retinoblastoma. Adv Ther 2018; 1(1): 1800009.
[http://dx.doi.org/10.1002/adtp.201800009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy