Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Synthetic Methods for Various Chromeno-fused Heterocycles and their Potential as Antimicrobial Agents

Author(s): Neetu Agrawal*, Radhika Goswami and Shilpi Pathak

Volume 20, Issue 2, 2024

Published on: 06 October, 2023

Page: [115 - 129] Pages: 15

DOI: 10.2174/0115734064274748231005074100

Price: $65

conference banner
Abstract

Chromenes are a significant family of heterocyclic chemicals that have a wide range of biological applications, a simple chemical structure, and only mildly undesirable side effects. The synthesis of a wide range of chromene analogs that displayed unexpected behaviors via numerous mechanisms was investigated by a number of different research teams, which led to the discovery of multiple pathways for their synthesis. In addition, different chromene-fused heterocycles exhibit a wide variety of fascinating biological actions, including those that are anticancer, anticonvulsant, antibacterial, anticholinesterase, antituberculosis, and anti-diabetic. In light of this, the purpose of this study is to highlight the many synthesis techniques and antibacterial activity associated with chromene-fused heterocyclic compounds. Moreover, such research can open avenues for exploring other therapeutic applications of these compounds in various disease areas, as their biological activities extend beyond antibacterial effects.

Next »
Graphical Abstract

[1]
Kuthan, J. Pyrans, thiopyrans, and selenopyrans. Adv. Heterocycl. Chem., 1983, 34, 145-303.
[http://dx.doi.org/10.1016/S0065-2725(08)60822-3]
[2]
Colotta, V.; Catarzi, D.; Varano, F.; Melani, F.; Filacchioni, G.; Cecchi, L.; Trincavelli, L.; Martini, C.; Lucacchini, A. Synthesis and A1 and A2A adenosine binding activity of some pyrano[2,3-c]pyrazol-4-ones. Farmaco, 1998, 53(3), 189-196.
[http://dx.doi.org/10.1016/S0014-827X(98)00006-8] [PMID: 9639867]
[3]
Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets — what are the challenges? Nat. Rev. Drug Discov., 2013, 12(4), 265-286.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[4]
Peng, X-M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[5]
Nicolaou, K.; Roecker, A.J.; Hughes, R.; van Summeren, R.; Pfefferkorn, J.A.; Winssinger, N. Novel strategies for the solid phase synthesis of substituted indolines and indoles. Bioorg. Med. Chem., 2003, 11(3), 465-476.
[http://dx.doi.org/10.1016/S0968-0896(02)00386-3] [PMID: 12517442]
[6]
Roudbaraki, S.J.; Mansoor, S.S.; Ghashang, M. Aqueous media synthesis of pyrano[3,2-c]chromen derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Polycycl. Aromat. Compd., 2021, 41(1), 211-222.
[http://dx.doi.org/10.1080/10406638.2019.1576746]
[7]
Madda, J.; Venkatesham, A.; Naveen Kumar, B.; Nagaiah, K.; Sujitha, P.; Kumar, G.C.; Rao, T.P.; Babu, J.N. Synthesis of novel chromeno-annulated cis -fused pyrano[3,4- c]benzopyran and naphtho pyran derivatives via domino aldol-type/hetero Diels–Alder reaction and their cytotoxicity evaluation. Bioorg. Med. Chem. Lett., 2014, 24(18), 4428-4434.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.005] [PMID: 25172420]
[8]
Zheng, J.; He, M.; Xie, B.; Yang, L.; Hu, Z.; Zhou, H.B.; Dong, C. Enantioselective synthesis of novel pyrano[3,2- c ]chromene deriva-tives as AChE inhibitors via an organocatalytic domino reaction. Org. Biomol. Chem., 2018, 16(3), 472-479.
[http://dx.doi.org/10.1039/C7OB02794J] [PMID: 29265146]
[9]
Prasad, J.V.; Kumar, N.R.; Solomon, K.A.; Nilaventhan, K.R.S.S.; Lowrence, R.C.; Saisubramanian, N.; Gopikrishna, G. One Pot synthesis of fused chromeno-pyrano-pyrimidines and evaluation of their antimicrobial activity. Indian J. Chem. - Sect. B Org. Med. Chem., 2014, 53, 345-351.
[10]
Belhadj, F.; Kibou, Z.; Benabdallah, M.; Aissaoui, M.; Rahmoun, M.N.; Villemin, D.; Choukchou-Braham, N. Synthesis and biological evaluation of new chromenes and chromeno[2,3-d] pyrimidines. S. Afr. J. Chem., 2021, 75, 150-155.
[http://dx.doi.org/10.17159/0379-4350/2021/v75a18]
[11]
Banothu, J.; Bavanthula, R. Brønsted acidic ionic liquid catalyzed highly efficient synthesis of chromeno pyrimidinone derivatives and their antimicrobial activity. Chin. Chem. Lett., 2012, 23(9), 1015-1018.
[http://dx.doi.org/10.1016/j.cclet.2012.06.041]
[12]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res., 2011, 20(7), 854-864.
[http://dx.doi.org/10.1007/s00044-010-9399-x]
[13]
Ghashang, M.; Mansoor, S.S.; Aswin, K. Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno[2,3-d]pyrimidinone derivatives and their antimicrobial activity. J. Adv. Res., 2014, 5(2), 209-218.
[http://dx.doi.org/10.1016/j.jare.2013.03.003] [PMID: 25685489]
[14]
El Azab, I.H.; Elkanzi, N.A.A. Synthesis and pharmacological evaluation of some new chromeno[3,4-c]pyrrole-3,4-dione-based N -Heterocycles as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(2), 1404-1414.
[http://dx.doi.org/10.1002/jhet.2721]
[15]
Khalaj, M. Preparation of benzo[4,5]thiazolo[3,2-a]chromeno[4,3-d]pyrimidin-6-one derivatives using MgO-MgAl2O4 composite nano-powder. Arab. J. Chem., 2020, 13(8), 6403-6411.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.041]
[16]
Mobinikhaledi, A.; Foroughifar, N.; Mosleh, T.; Hamta, A. Synthesis of some novel chromenopyrimidine derivatives and evaluation of their biological activities. Iran. J. Pharm. Res., 2014, 13(3), 873-879.
[PMID: 25276187]
[17]
Ameli, S.; Pordel, M.; Davoodnia, A.; Jajarmi, M. Synthesis and antibacterial activity of some new benzo[5,6]chromeno[2,3-d]pyrimidines. Russ. J. Bioorganic Chem., 2017, 43(4), 429-434.
[http://dx.doi.org/10.1134/S1068162017040100]
[18]
Moustafa, A.H.; Mohammed, S.M.; El-Salam, E.A.A.; El-Sayed, H.A. Synthesis and antimicrobial activity of new 3h-chromeno[2,3-d]pyrimidine derivatives. Russ. J. Gen. Chem., 2020, 90(8), 1566-1572.
[http://dx.doi.org/10.1134/S1070363220080277]
[19]
Aly, H.M.; Kamal, M.M. Efficient one-pot preparation of novel fused chromeno[2,3-d]pyrimidine and pyrano[2,3-d]pyrimidine deriva-tives. Eur. J. Med. Chem., 2012, 47(1), 18-23.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.040] [PMID: 22000923]
[20]
Jadhav, G.R.; Deshmukh, D.G.; Medhane, V.J.; Gaikwad, V.B.; Bholay, A.D. 2,5-Disubstituted 1,3,4-oxadiazole derivatives of chrome-no[4,3-b]pyridine: synthesis and study of antimicrobial potency. Heterocycl. Commun., 2016, 22(3), 123-130.
[http://dx.doi.org/10.1515/hc-2015-0215]
[21]
Ebrahimi, Z.; Davoodnia, A.; Motavalizadehkakhky, A.; Mehrzad, J. Synthesis of Benzo[ f]chromeno[2,3-d]pyrimidines via the tandem intramolecular pinner/dimroth rearrangement and their antibacterial and antioxidant evaluation. Org. Prep. Proced. Int., 2019, 51(4), 357-367.
[http://dx.doi.org/10.1080/00304948.2019.1596472]
[22]
Čačić, M.; Molnar, M.; Šarkanj, B.; Has-Schön, E.; Rajković, V. Synthesis and antioxidant activity of some new coumarinyl-1,3-thiazolidine-4-ones. Molecules, 2010, 15(10), 6795-6809.
[http://dx.doi.org/10.3390/molecules15106795] [PMID: 20881932]
[23]
Bansal, Y.; Ratra, S.; Bansal, G.; Singh, I.; Aboul-Enein, H.Y. Design and synthesis of coumarin substituted oxathiadiazolone derivatives having anti-inflammatory activity possibly through p38 MAP kinase inhibition. J. Indian Chem. Soc., 2009, 6(3), 504-509.
[http://dx.doi.org/10.1007/BF03246527]
[24]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[25]
Okasha, R.; Albalawi, F.; Afifi, T.; Fouda, A.; Al-Dies, A.A.; El-Agrody, A. Structural characterization and antimicrobial activities of 7H-benzo[h]chromeno[2,3-d]pyrimidine and 14H-benzo[h]chromeno[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine derivatives. Molecules, 2016, 21(11), 1450.
[http://dx.doi.org/10.3390/molecules21111450] [PMID: 27809292]
[26]
Sabry, N.M.; Mohamed, H.M.; Khattab, E.S.A.E.H.; Motlaq, S.S.; El-Agrody, A.M. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur. J. Med. Chem., 2011, 46(2), 765-772.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.015] [PMID: 21216502]
[27]
Baral, N.; Mishra, D.R.; Mishra, N.P.; Mohapatra, S.; Raiguru, B.P.; Panda, P.; Nayak, S.; Nayak, M.; Kumar, P.S. Microwaveassisted rapid and efficient synthesis of chromene-fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem., 2020, 57(2), 575-589.
[http://dx.doi.org/10.1002/jhet.3773]
[28]
Padilha, G.; Iglesias, B.A.; Back, D.F.; Kaufman, T.S.; Silveira, C.C. Synthesis of Chromeno[4,3-b]pyrrol-4(1 H)-ones, from β-Nitroalkenes and 4-Phenylaminocoumarins, under Solvent-free Conditions. ChemistrySelect, 2017, 2(3), 1297-1304.
[http://dx.doi.org/10.1002/slct.201700114]
[29]
Karami, M.; Hasaninejad, A.; Mahdavi, H.; Iraji, A.; Mojtabavi, S.; Faramarzi, M.A.; Mahdavi, M. One-pot multi-component synthesis of novel chromeno[4,3-b]pyrrol-3-yl derivatives as alpha-glucosidase inhibitors. Mol. Divers., 2022, 26(5), 2393-2405.
[http://dx.doi.org/10.1007/s11030-021-10337-w] [PMID: 34697701]
[30]
Kochnev, I.A.; Barkov, A.Y.; Zimnitskiy, N.S.; Korotaev, V.Y.; Sosnovskikh, V.Y. Green and efficient construction of chromeno[3,4-c]pyrrole Core via barton–zard reaction from 3-Nitro-2H-chromenes and ethyl isocyanoacetate. Molecules, 2022, 27(23), 8456.
[http://dx.doi.org/10.3390/molecules27238456] [PMID: 36500555]
[31]
Li, T.; Wang, J.; Xu, J.; Jin, J.; Chi, Y.R.; Jin, Z. Enantio- and diastereoselective synthesis of chromeno[4,3-b]pyrrole derivatives bearing tetrasubstituted chirality centers through carbene catalyzed cascade reactions. Org. Lett., 2020, 22(1), 326-330.
[http://dx.doi.org/10.1021/acs.orglett.9b04371] [PMID: 31833772]
[32]
Lai, X.; Che, C. Synthesis of chromeno[4,3-b]pyrrol-4(1 H)-ones through a multicomponent reaction and cyclization strategy. ACS Omega, 2020, 5(34), 21968-21977.
[http://dx.doi.org/10.1021/acsomega.0c03589] [PMID: 32905458]
[33]
Arumugam, N.; Raghunathan, R.; Almansour, A.I.; Karama, U. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(3), 1375-1379.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.061] [PMID: 22230048]
[34]
Ghoneim, A.A.; El-Farargy, A.F.; Abdelaziz, S. Synthesis and antimicrobial activities of new s-nucleosides of chromeno[2,3-B]pyridine derivatives and C-nucleosides of [1,2,4]triazolo[1,5-a]quinoline derivatives. Nucleosides Nucleotides Nucleic Acids, 2014, 33(9), 583-596.
[http://dx.doi.org/10.1080/15257770.2014.912320] [PMID: 25105450]
[35]
Kundu, S.K.; Patra, S.; Sardar, C.; Bhanja, S.K.; Patra, P. Synthesis of 5 H -chromeno[4,3-b]pyridin-5-one derivatives as a backbone of natural product polyneomarline C scaffolds in presence of Et 3 N and NH 4 OAc in EtOH. Chim. Techno Acta, 2022, 9(2), 20229211.
[36]
Parisot, W.; Huvelle, S.; Haddad, M.; Lefèvre, G.; Phansavath, P.; Ratovelomanana-Vidal, V. Synthesis of 5 H -chromeno[3,4-c]pyridine derivatives through ruthenium-catalyzed [2 + 2 + 2] cycloaddition. Org. Chem. Front., 2023, 10(5), 1309-1315.
[http://dx.doi.org/10.1039/D2QO01918C]
[37]
Li, Z.; Yang, H.; Zhang, L.; Xu, X.; Shao, X. Acid-Mediated synthesis of chromeno[2,3-b]pyridine derivatives via condensation of 2-amino-3-formylchromones and 1-(methylthio)-2-nitroenamine derivatives. Synlett, 2022, 33(8), 754-758.
[http://dx.doi.org/10.1055/a-1790-2992]
[38]
Oshiro, P.B.; Bregadiolli, B.A.; da Silva-Filho, L.C. A facile one-step synthesis of chromeno[4,3-b]pyridine derivatives promoted by niobium pentachloride. J. Heterocycl. Chem., 2020, 57(7), 2795-2800.
[http://dx.doi.org/10.1002/jhet.3988]
[39]
Nikookar, H.; Moghimi, S.; Sayahi, M.H.; Mahdavi, M.; Ranjbar, P.R.; Firoozpour, L.; Foroumadi, A. A convenient method for the synthesis of chromeno[4,3-b]pyridines via three-component reaction. Comb. Chem. High Throughput Screen., 2018, 21(5), 344-348.
[http://dx.doi.org/10.2174/1386207321666180524110635] [PMID: 29792140]
[40]
Helal, M.H.; Ali, G.A.M.E-H.; Ali, A.A.; Ammar, Y.A. One-step synthesis of chromene-3-carboxamide, bischromene, chromeno[3,4-c]pyridine and bischromeno[3,4-c]pyridine derivatives for antimicrobial evaluation. J. Chem. Res., 2010, 34(8), 465-469.
[http://dx.doi.org/10.3184/030823410X12812852410870]
[41]
Patel, A.A.; Lad, H.B.; Pandya, K.R.; Patel, C.V.; Brahmbhatt, D.I. Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridin-5-ones by two facile methods and evaluation of their antimicrobial activity. Med. Chem. Res., 2013, 22(10), 4745-4754.
[http://dx.doi.org/10.1007/s00044-013-0489-4]
[42]
Vasamsetty, S.; Medidi, S.; Ampolu, S.; Majji, R.K.; Kotupalli, M.R.; Satyanarayana, C.C.; Nowduri, A.; Sanasi, P.D. Catalyst free one-pot synthesis of chromeno quinolines and their antibacterial activity. Green Sust. Chem, 2017, 7(2), 141-151.
[http://dx.doi.org/10.4236/gsc.2017.72011]
[43]
Singh, J.B.; Mishra, K.; Gupta, T.; Singh, R.M. TBHP Promoted Cross-Dehydrogenative Coupling (CDC) reaction: Metal/additive-free synthesis of chromone-fused quinolines. ChemistrySelect, 2017, 2, 1207-1210.
[http://dx.doi.org/10.1002/slct.201601527]
[44]
Zhu, M.S.; Zhang, X.Q.; Wang, Y.N.; Xu, Y.J.; Sun, R.; Ge, J.F. Preparation of chromeno[ b]quinoline derivatives and their application for lipid droplets markers. J. Org. Chem., 2022, 87(15), 10385-10389.
[http://dx.doi.org/10.1021/acs.joc.2c00667] [PMID: 35802521]
[45]
Sharghi, H.; Khalifeh, R.; Rashidi, Z. Synthesis of chromeno[3,4-b]quinoline derivatives by heterogeneous [Cu(II) BHPPDAH] catalyst without being immobilized on any support under mild conditions using PEG 300 as green solvent. Mol. Divers., 2013, 17(4), 721-730.
[http://dx.doi.org/10.1007/s11030-013-9468-4] [PMID: 23975595]
[46]
Gan, J.; Zhou, W.; Shen, X.; Wang, C. Synthesis of Chromeno[2,3-b]quinoline derivatives via ZNCL2-mediated three-component reaction of 2-aminochromenones, benzaldehydes and cyclohexane-1,3-dione. J. Heterocycl. Chem., 2023, 60(7), 1230-1238.
[http://dx.doi.org/10.1002/jhet.4665]
[47]
Kumar, A.S.; Kumar, R.A.; Satyanarayana, V.; Reddy, E.P.; Reddy, B.J.M.; Kumar, D.N.; Khurana, A.; Chandraiah, G.; Yadav, J.S. Catalyst-free synthesis of novel 6-phenyl-6 H -chromeno [4,3-b] quinoline derivatives at RT: Their further structure evaluation leads to potential anti-cancer agents. Nat. Prod. Commun., 2017, 12, 1934578X1701200.
[48]
Kotharkar, S.A.; Shinde, D.B. Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(24), 6181-6184.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.040] [PMID: 17027265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy